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Abstract

Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly

understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile

carbon (C) pools, microbial community structure and C mineralization rate under an intensive

wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were

collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and

phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure

plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools

(including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C,

MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and

SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated

that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil micro-

bial communities and SOC mineralization rate from those observed in the CK treatment.

Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional

labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related

microbial communities, and resulted in 53% higher cumulative mineralization of C compared

to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial

community structure. Further addition of manure on the top of straw in the NPSM treatment

did not significantly increase microbial community abundances, but it did alter microbial com-

munity structure by increasing G+/G- ratio compared to that of NPS. The cumulative minerali-

zation of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the

NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully

taken into account when setting realistic and effective goals for long-term soil C stabilization.
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Introduction

Soil organic carbon (SOC) is recognized as the largest terrestrial carbon (C) reservoir and has

gained much attention because of its importance to soil fertility, crop productivity, and climate

change mitigation [1, 2]. Fertilization is an important determinant of quantities of SOC in

croplands since it can change the equilibrium between primary C inputs and C decomposition

[3, 4]. Soil microorganisms are the main decomposers of SOC and key drivers of soil nutrient

cycling in agricultural eco-systems [5]. A better understanding of the mechanisms of SOC

decomposition via microorganisms is critical for identifying fertilization strategies that main-

tain and improve soil C accumulation and soil fertility.

The changes of soil microbial communities under different fertilization regimes may be

contributed to changes in environmental characteristics, such as soil water content [6], tem-

perature [7], pH [8] and substrate availability [9]. The content and quality of SOC are consid-

ered key factors that affect soil microbial communities [9]. However, increases in SOC content

following the addition of fertilizers may take considerable time. Consequently, changes in

SOC cannot fully and quickly reflect the influence that the complexity of the organic com-

pounds may have on the microbiological processes controlling nutrient availability. Soil labile

C fractions are a series of small, but sensitive, proportions of SOC with turnover times of a few

days to months. It was revealed that soil labile C fractions, like dissolved organic C (DOC) and

microbial biomass C (MBC) were major determinants for the preservation of soil microbial

diversity in long-term fertilization trials [9]. Most studies documented that the application of

organic manure increased the amounts of labile organic C pools [10, 11]. However, no influ-

ences results have also been reported [12]. The inconsistent results may be attributed to the dif-

ferences of input sources and rate of fertilizers, tillage management, crop rotation, experiment

duration, and site-specifics [12–14].

The effects of chemical fertilizers and organic amendments on soil microorganisms have

been given particular attention. A meta-analysis of long-term inorganic fertilizer trials revealed

a 15.1% increase of the microbial biomass after mineral fertilizers application compared to

unfertilized treatments [15]. Eo and Park [16] also found that inputs of nitrogen (N) and phos-

phorus (P) fertilizers had considerable effects on specific bacterial groups. Furthermore, it is

generally accepted that organic fertilizers have more significant effect on abundances of micro-

organisms in soils compared with mineral fertilizers [17, 9]. Ngosong et al. [18] observed that

organic manure increased fungal abundance especially that of arbuscular mycorrhizal fungi

(AMF). Moreover, Elfstrand et al. [19] found higher fungi /bacteria ratios (F/B) in soils receiv-

ing green manure. Changes in microbial community structures in turn have important impli-

cations for the SOC mineralization. For example, Lipson et al. [20] stated that bacteria had

higher growth rates and lower yields than fungi, suggesting a more important role for bacteria

in determining soil heterotrophic respiration. However, Dai et al. [21] reported that alterations

in soil microbial abundance and community composition did not significantly influence the C

mineralization under long-term fertilization in paddy soils. The relationships between soil

microbial community composition and function are not always straightforward because of the

existence of several microbial groups that carry out similar functions and the complexity of

soil system [22]. Thus, uncertainties still remain about the impacts of mineral and organic fer-

tilization on soil microbial communities and their roles in SOC mineralization.

The winter wheat-summer maize double cropping is the principal cropping system in

northern China, covering an area of 16 million hectares, where its outputs account for about a

quarter of the total national food production [23]. In recent years, the productivity of soils

in this cropping system has been declining as a result of unsustainable agricultural practices,

such as frequent tillage, crop residue removal, and excessive mineral fertilizer application.
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Simultaneously, application of organic amendment to soil in the form of manure and straw is

commonly recommended to improve SOC quality and quantity and increase crop yield. To be

mentioned, annual organic C and mineral N inputs under the maize-wheat double cropping

system can be multifold higher than single cereal-based rotations. Previous studies have shown

that different fertilization regimes had profound impacts on crop yield and SOC contents

under this cropping system [24, 25]. However, it is not clear how high-input fertilizer practices

affect soil microorganisms and functions relevant to SOC decomposition. We hypothesized

that (1) different fertilization methods affect microbial community structure because C and N

inputs will directly and indirectly decrease possible nutrient limitation; and (2) these changes

in microbial community composition will alter the SOC decomposition rate. Thus, the objec-

tives of this study were to: (1) verify the effects of different fertilization methods on SOC labile

fractions and abundance and composition of microbial communities; (2) determine the influ-

ences of different fertilization methods on SOC mineralization; and (3) evaluate the roles of

labile C fractions and soil microbial communities in SOC mineralization.

Methods and materials

Ethics statement

The study was conducted at the Niujiawa Agricultural Experimental Farm of Shanxi Academy

of Agricultural Sciences located in Yuncheng city, Shanxi province, China. Permission was

obtained from the administration to allow soil sampling. No rare or endangered wild animals

were collected in this experiment. Furthermore, this study did not use wild animals as research

objects and did not threaten the environmental system.

Study area and experiment design

A field experiment with a winter wheat (Triticum aestivum L.) and summer maize (Zea mays
L.) double-cropping system had been conducted since 2007 at the Niujiawa Agricultural

Experimental Farm located in Yuncheng city, Shanxi province, China (35˚110 N, 111˚050 E).

The climate is temperate monsoonal with an average annual temperature of 13.3˚C and an

average annual rainfall of 525 mm. The soil with a silty clay loam texture (17.5% clay, 28.0%

sand and 54.5% silt) in the upper surface horizon was developed from alluvial sediments of the

Yellow River. Its mean pH is 8.15, CaCO3 content is 6.5%, and bulk density is 1.39 g cm-3 in

the 0 to 10 cm soil layer.

The field experiment was conducted based on a completely randomized design with three

replications of each treatment. The size of each plot was 60 m2. The four treatments were (1)

CK, unfertilized control; (2) NP, inorganic N and P fertilizers; (3) NPS, mineral N and P fertil-

izers in combination with maize straw; and (4) NPSM, mineral N and P fertilizers in combina-

tion with both maize straw and chicken manure. For the NP, NPS and NPSM treatments,

mineral N and P fertilizers were applied in the forms of urea and calcium super-phosphate,

which totally supplied 450 kg N ha-1 yr-1and 148.5 kg P ha-1 yr-1 to two crops. Two-thirds of

urea and total amounts of calcium super-phosphate and manure were applied as a basal dose

before sowing, the remaining one-third of urea was used at the jointing stage of each crop. For

the NPSM treatment, 9 t ha-1 yr-1 (dry weight) of chicken manure was added to each crop. The

organic C and total N contents of the manure were 233 and 19.9 g kg-1, respectively, those

totally supplied roughly 4.2 t C ha-1 yr-1 and 358 kg N ha-1 yr-1 to two crops. For the NPS and

the NPSM treatments, 10.5 t ha-1 yr-1 (dry weight) of maize straw chopped into 10 cm length

pieces, was returned to the soil prior to wheat sowing. The C and N contents of maize straw

were 336 and 6.3 g kg-1, which approximately supplied 3.5 t C ha-1 yr-1 and 66 kg N ha-1 yr-1.

Standing crop above ground parts were harvested at soil surface and removed from the CK

Soil C fractions, microbial communities and C mineralization as affected by high-input fertilizer practices
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and NP plots. The wheat straw of all treatments was incorporated into soils after being

chopped. A rotary tillage operation till was performed by machine before sowing and for mix-

ing of mineral fertilizers, straw and manure into soil at about a 10–15 cm depth.

Soil chemo-physical analysis

In March 2016, composite soil samples (500g) from each plot were collected from the 0–10cm

soil layer at ten randomly chosen points. Finely ground soil samples were treated with 1.0 M

HCl for 24 h at 20˚C to remove inorganic C before analysis [26]. The contents of SOC and

total N were measured using an elemental analyzer (Vario EL II, Germany). The DOC and dis-

solved organic N (DON) was extracted with distilled water (1:5 soil: water) by the method

described by Gong et al. [24]. After removing inorganic C by using concentrated phosphoric

acid, the amount of organic C in the filtrate was determined by a TOC analyzer (Vario TOC,

Germany). The DON was calculated as the difference between total dissolved N and inorganic

N in the filtrate [27]. Light free organic C (LFOC) and light free N (LFN) was determined by

adding sodium polytungstate solution with a density of 1.6 g cm-3 according to the method of

Dorodnikov et al. [28]. Organic C and N contents of light free fractions were measured using

an elemental analyzer (Vario EL II, Germany). The MBC and microbial biomass N (MBN)

were determined by the chloroform-fumigation extraction method based on the difference

between chloroform-treated and untreated soils [29]. The organic C and N concentrations of

K2SO4-extracted solutions were measured using a TOC analyzer (Vario TOC, Germany).

Microbial community structure

Soil microbial community composition was determined by phospholipid fatty acid (PLFA)

analysis as described by Ai et al. [30]. Three grams of freeze-dried soil samples were used to

extract the lipids by a single-phase CHCl3: methanol: citrate buffer (15.2 mL at a 1:2:0.8 volume

ratio). The soil extracts were fractionated into neutral lipids, glycolipids, and polar lipids using

a silica-bonded phase column (SPE-Si, Supelco, Poole, UK) with CHCl3, acetone and metha-

nol, respectively. The recovered polar lipids were saponified and methylated to fatty acid

methyl esters (FAME). FAMES were quantified by a gas chromatograph (N6890, Agilent) and

identified with an MIDI Sherlock Microbial Identification System (Version 4.5, MIDI, Inc.,

Newark, DE).

We divided all PLFAs into 5 microbial groups based on previously published PLFA bio-

marker data [31]: Gram-positive (G+) bacteria (i14:0, i15:0, a15:0, i16:0, i17:0,a17:0), Gram-

negative (G-) bacteria (16:1ω7c, 16:1ω9c, 17:1ω8c, 18:1ω5c, 18:1ω7c, cy17:0, cy19:0), actino-

mycetes (10Me16:0, 10Me17:0, 10Me18:0), saprophytic fungi (18:1ω9c and 18:2ω6c) and AMF

(16:1ω5c). Bacterial sums were calculated using G+, G-, and actinomycete markers; fungal

sums were calculated using both saprophytic and AMF fungal markers. Bacterial sums and

fungal sums were used to calculate the ratio of fungal/bacterial PLFAs (F/B). (http://dx.doi.

org/10.17504/protocols.io.nggdbtw)

C mineralization

An incubation experiment was conducted at 25˚C and 60% water-holding capacity for 124

days. In brief, each fresh soil sample of 25 g was put into a 250 ml glass jar. After one week of a

pre-incubation period, CO2 samples were taken after 1, 3, 6, 9, 13 days, and then every 7 days

interval up to 27 days, 14 days up to 55 days and later 24 days up to 124 days of incubation.

Before taking CO2 samples, we closed the jars with air-tight seals for 24 h. The CO2 concentra-

tion was measured using a gas chromatograph (Agient 7890A). (http://dx.doi.org/10.17504/

protocols.io.nhedb3e)

Soil C fractions, microbial communities and C mineralization as affected by high-input fertilizer practices
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The cumulative amount of mineralized C (Ct in mg CO2-C kg-1 soil) produced in each

treatment was calculated and was then plotted against incubation time (t). Furthermore, the Ct

was fitted to a parallel first-plus-zero order kinetic model [32]:

Ct ¼ C0ð1 � e� kf�tÞ þ ks

This model assumes the existence of two pools of available C with different resistance

against microbial degradation: (1) an easily mineralizable pool (C0) that mineralizes according

to first order kinetics at a rate of kf (mg CO2-C kg-1 day-1), and (2) a more resistant C pool that

mineralizes according to zero order kinetics at a rate of ks (mg CO2-C kg-1 day-1). All curves

were fitted with SPSS software (version 23.0, Inc., Chicago, IL) as unconstrained non-linear

regressions by the Levenberg–Marquardt algorithm.

Statistical analysis

One-way ANOVA was used to test the effect of fertilizer treatments on the organic C content

and C/N ratios of labile fractions, abundance of PLFA biomarkers, cumulative amount of

emitted CO2-C, C0, kf and ks. Differences between individual means were tested by Tukey

HSD post hoc tests. The magnitudes of correlations among soil C characteristics, microbial

communities and C mineralization parameters, were tested by Pearson correlation coefficient.

Both statistical analyses above were carried out by SPSS software (version 23.0, Inc., Chicago,

IL). Redundancy analysis (RDA) was applied to visualize the effect of soil labile organic frac-

tions on microbial community structure, and was carried out using CANOCO software (ver-

sion 5.0, Microcomputer Power, Inc., Ithaca, NY). In all analyses, statistical significance was

recognized at P<0.05.

Results

SOC and soil labile organic C fractions

After nine years application of organic fertilizers, straw with manure (NPSM) or straw only

(NPS) substantially increased SOC content by 143% and 71% (P<0.05), respectively, while

application of chemical fertilizers alone did not affect SOC level compared with that of CK

(Fig 1). The effects of fertilization on soil labile organic C showed a similar trend to total SOC.

The contents of DOC, LFOC, and MBC were respectively 264%, 108%, and 102% higher after

NPSM application, and respectively 57%, 82% and 38% higher after NPS application than

compared with those of CK.

The C/N ratio of bulk soil was constant across all fertilization treatments, but C/N ratio of

labile organic C factions had differential responses to the different treatments (Fig 1).Ratios of

DOC/DON and LFOC/LFN were lower in treatments with additions of exogenous organic

amendment and chemical fertilizers than in the control. In contrast, the MBC/MBN was 19%

higher under NPSM application than compared to that of CK.

Microbial community composition

Overall, the application of organic fertilizers significantly increased total PLFAs abundance.

We calculated abundances of specific microbial groups for data analysis to determine the

microbial community composition under various fertilizer treatments. The NPSM and NPS

fertilization treatments had significantly greater abundances of all microbial groups considered

(i.e. G+, G-, actinomycetes, saprophytic fungi and AMF), however, we found no further

increases from NPS to NPSM (Fig 2). Compared with CK, NPSM and NPS treatments caused

greater measures of G+ and G- biomarkers by 107–160% and 106–110%, and greater measures

Soil C fractions, microbial communities and C mineralization as affected by high-input fertilizer practices
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Fig 1. Organic C contents and C/N ratios of bulk soil and labile fractions under different fertilization regimes. Error bars represent

standard error of the means (n = 3).

https://doi.org/10.1371/journal.pone.0195144.g001
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of actinomycetes by 66–86%. The NPSM and NPS treatments were also greater in abundances

of fungal communities, the saprophytic fungi were greater by 123–135% and AMF was greater

by 88–96%. The G+/G- ratio was higher under NPSM treatment compared to other treat-

ments, indicating that NPSM fertilization had changed soil microbial communities. However,

there were no obvious differences of F/B ratios across all treatments.

Correlations between microbial community structure and labile organic C fractions were

analyzed by the RDA plot (Fig 3). Soil labile fractions were used as environmental variables.

The first and second ordination axes accounted for 75.33% and 3.38%) of the total variation

between soil C fractions and microbial community composition assessed by PLFAs. The C

contents of bulk soil and all labile fractions were significantly (P<0.05) and positively corre-

lated with microbial communities along the first axis, while DOC/DON and LFOC/LFN

showed negative correlation with microbial communities.

Soil C mineralization

Cumulative CO2-C emission over time tended to be higher in NPSM and NPS than in CK and

NP treatments throughout the incubation period (Fig 4). By the end of the incubation, the

NPSM treatment had largest increase of the cumulative mineralization C (Cmin) by 85%, and

the NPS treatment also resulted in an increase of 53% (Table 1) compared to CK. (Table 1).

Table 1 showed the results of curve fittings for all mineralization data using the first-plus-

zero order kinetic model, where values of R2 that were close to 1, indicated that the model

described the mineralization process satisfactorily. Compared to CK, the NPSM and NPS

Fig 2. Abundance of microbial biomarker groups under different fertilization regimes. Error bars represent standard error of the means (n = 3).

https://doi.org/10.1371/journal.pone.0195144.g002
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treatments enlarged the size of the easily mineralizable C pool (C0) by 103 and 78%, res-

pectively. Likewise, mineralization rates of the resistant C pool (ks) were higher in organic fer-

tilization plots than in CK plots, though only significantly (P<0.05) in NPSM fertilization

plots.

Fig 3. Redundancy analysis (RDA) of the soil microbial communities constrained by labile organic C fractions.

https://doi.org/10.1371/journal.pone.0195144.g003
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Relationships between C mineralization, labile fractions and microbial

community composition

The Cmin and C0 were significantly and positively correlated with SOC and C contents of all

labile fractions, but were not correlated with C/N ratios (Table 2). The Cmin and C0 were also

correlated with the abundances of G+, G-, actinomycetes, saprophytic fungi, AMF, G+/G-,

and F/B. The ks was positively correlated with the SOC, DOC, MBC, G+/G- and the abundance

of most microbial groups except G-.

Fig 4. Cumulative CO2 emission over time under different fertilization regimes. Error bars represent standard error of the means (n = 3).

https://doi.org/10.1371/journal.pone.0195144.g004

Table 1. The parameters of curve fittings for all mineralization data using a parallel first-plus-zero-order kinetic model. Values are the means±SD (n = 3).

Treatment Cmin

(mg CO2-C kg-1)

C0

(mg CO2-C kg-1)

kf
(day-1)

ks
(mg CO2-C kg-1 day-1)

R2

CK 891±131c 553±104b 0.046±0.001a 2.82±0.29b 0.998

NP 1040±152c 717±136b 0.047±0.004a 2.68±0.38b 0.999

NPS 1364±149b 987±147a 0.048±0.001a 3.33±0.31b 0.998

NPSM 1653±133a 1122±81a 0.052±0.007a 4.42±0.6a 0.999

Values followed by same letters within each column are not significantly different (P<0.05)

https://doi.org/10.1371/journal.pone.0195144.t001
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Discussion

Effects of different fertilization regimes on SOC and labile organic C

fractions

Nine years application of inorganic fertilizers alone did not significantly increase the bulk SOC

level (Fig 1), indicating that additional C inputs derived from increased plant growth as a

potential result of chemical fertilization were still offset by C loss from microbial decomposi-

tion. In line with previous reports [12], the return of straw (NPS) is an effective practice to

increase SOC sequestration compared with chemical fertilization alone (NP) (Fig 1). In a

meta-analysis of Wang et al. [33], the sequestration efficiency of straw-C ranged from -8.3 to

56.6% over 10–30 years, and on average, 9.5±1.1% of straw-C input was converted to SOC dur-

ing a mean experimental period of 18 years in China. It is worth to note that the addition of

manure on top of the straw in the NPSM treatment even further improved the amount of

stored soil C (Fig 1), suggesting that tested soils have strong potentials to sequester consider-

able C from manure in a field with additional straw inputs.

Changes in labile organic C fractions can respond to soil management practices more

quickly than total SOC content [24]. It has been widely accepted that application of organic

manure markedly increases labile organic C fractions [24, 34, 35], which is consistent with our

findings. The DOC is mobile within the soil solution and is thus considered to be the most bio-

available source of C substrates for microbial populations [36]. However, our results and that

of Li et al. [37] suggested that application of chemical fertilizers alone had no significant effect

on DOC, confirming that the primary source of DOC was organic amendments. Moreover,

the NPSM treatment resulted in a sharp elevation of DOC compared to that of the NPS (Fig

1), which could be explained possibly by the presence of a considerable amount of soluble

materials in manure amendments [38]. The LFOC represents the slightly decomposed plant

litter [39] and functions as nucleation sites for fungi and other soil microbes [28]. In the cur-

rent study, the straw or manure amendment directly contributed to the higher LFOC contents

as light fraction dry matter (data not shown) and C contents were higher under NPS and

Table 2. Pearson correlation between soil C mineralization parameters, C contents and C/N of labile fractions and microbial communities (n = 12).

Cmin C0 kf ks
SOC 0.895�� 0.855�� 0.488 0.667�

DOC 0.833�� 0.734�� 0.702� 0.708�

LFOC 0.798�� 0.787�� 0.419 0.537

MBC 0.859�� 0.789�� 0.678� 0.669�

C/N 0.211 0.240 0.157 0.164

DOC/DON -0.321 -0.380 0.262 0.109

LFOC/LFN -0.246 -0.371 -0.180 -0.211

MBC/MBN 0.559 0.465 0.600� 0.607�

G+ 0.987�� 0.962�� 0.473 0.701�

G- 0.890�� 0.921�� 0.389 0.533

Actinomycetes 0.951�� 0.931�� 0.404 0.721�

Saprophy fungi 0.938�� 0.937�� 0.443 0.649�

AMF 0.950�� 0.934�� 0.406 0.694�

G+/G- 0.718�� 0.639�� 0.305 0.739��

F/B 0.613� 0.605� 0.065 0.554

�� Correlation is significant at the 0.01 level

� Correlation is significant at the 0.05 level.

https://doi.org/10.1371/journal.pone.0195144.t002
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NPSM treatments. The microbial biomass C is indicative of the size of the microbial biomass

[37]. Significant increases of MBC were observed after manure or straw addition, suggesting

that organic amendments had beneficial effects on growth of the microbial biomass probably

by providing a readily-available source of C substrate and improving the soil environment

[40].

The effects of fertilization on the C/N ratios of labile organic C pool have not been consis-

tent, as indicated by the positive [41], negative [42] and lack of effects [36, 43] that have been

reported. These inconsistent results may be attributed to the specific processes governing C

and N cycling under specific fertilization practices. In the present study, the C/N ratio of total

soil appeared to be stable, however, both chemical and organic fertilizers caused declines in

DOC/DON and LFOC/LFN compared to those of the CK (Fig 1). The larger N input originat-

ing from urea, crop residues and manure resulted in decreases in C/N ratios of labile fractions.

The MBC/MBN in NPSM treatment is comparable to the global average reported by Xu et al.

[44]. The changes of MBC/MBN could be related to changes in microbial species and popula-

tions [42].

Effects of different fertilization regimes on microbial community structure

Phospholipid fatty acids are major constituents of membranes of all living cells, and certain

microorganisms groups have different “signature” fatty acids. Several studies have docu-

mented significant differences in the abundance and composition of soil microbial communi-

ties among the different fertilizer management programs based on PLFA patterns [30, 45]. In

line with previous reports [30, 45], our results showed distinctly (P<0.05) higher amounts of

total PLFAs and identified representative PLFA biomarkers in soils where organic fertilizers

applied in combination with mineral fertilizers than compared to soils which received no

organic fertilizers (Fig 2). Given that the microbial biomass is generally C limited in agricul-

tural soil, the application of organic fertilizers presumably stimulated the growth of various

microbial groups by increasing SOC labile fractions, which could act as major sources and

energy for microorganisms [6]. This is further supported by the RDA data, which showed that

C contents and C/N ratios of SOC and its labile fractions explained 78.7% of the variance of

microbial community composition (Fig 3). Therefore, it is plausible that the addition of

organic manure provided readily available substrates for the microbial community, whereas

the relatively small increase of labile organic C under inorganic fertilization may be unable to

support the substantial growth of microorganisms.

The microbial community composition at the experimental site was dominated by bacteria,

which contributed 60% of total PLFAs. Lazcano et al. [46] described that bacteria were the

most sensitive microbial groups to the different fertilizers because bacteria have a much

shorter turnover time than fungi and can react faster to the environmental changes in soil.

Our results showed that fertilization not only influenced the soil microbial abundances but

also altered bacterial community composition. The G+ and G- bacteria have been reported to

have different effects on C cycling and accumulation in soil, and the greater ratio of G+/G- is

favorable for SOC accumulation [47]. Thus far, there have been inconsistent results concern-

ing the effects of fertilization regimes on the abundance of G+ and G-. Peacock et al. [45]

reported that a 5-year addition of manure increased the G- bacterial biomass but decreased the

G+ bacterial biomass. In contrast, Ai et al [30] documented that a 31-year application of

organic fertilizer increased the abundance of G+ bacteria, but application of chemical fertilizer

increased G- bacteria [30]. In our study, a higher G+/G- ratio was found only in the NPSM fer-

tilization treatment. Marschner et al. [48] also found higher G+/G- ratios under mineral fertil-

izer application with manure than with straw. Dong et al. [8] stated that microorganisms
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naturally occurring in applied organic matter amendments could also increase the overall

greater microbial biomass. Thus, we assumed that the type of manure applied could be an

important factor in determining G+/G-.

Fungi play an essential role in carbon and nutrient cycling in agricultural ecosystems and

are known to be sensitive to fertilizers. In general, lower fungal biomass relative to bacteria is

typical in agricultural eco-systems, and it has been attributed to different factors such as inten-

sive physical disturbance, and altered amount of the nutrient inputs as compared to undis-

turbed soils [6, 49]. In the current experiment, low F/B ratios of PLFAs ranging from 0.25 to

0.28 for both mineral and organic fertilizers were observed. This is consistent with Ngosong

et al. [18] who reported low values between 0.02 and 0.35 for mineral and organic (cattle

manure) fertilizer amendments, respectively. Specifically, it has been reported that mineral fer-

tilizers reduced F/B ratios, while organic manure stimulated fungi growth and thus increases

F/B ratios [50]. However, we did not observe statistically significant differences in F/B ratios

among our four different fertilization regimes. In support of our findings, Bardgett and McAl-

ister [51] also found that applied fertilizers did not increase F/B ratios in a 6-year experiment,

and they pointed out that this was due to high residual fertility.

Effects of different fertilization regimes on C mineralization

As expected, the application of organic manure or straw combined with mineral fertilizers

resulted in greater C mineralization than compared to application of mineral fertilizers alone

or the unfertilized control. The result agrees with those by Mohanty et al. [52], who reported

that long-term application of farmyard manure significantly and positively affected C mineral-

ization in a rice-rice system. The mineralization of SOC is directly governed by interactions

between the effects of microbial biomass, microbial community structure, substrate quality

and availability, and microclimates [53, 54]. In our study, the soil samples from the treatments

were incubated at the same temperature and moisture, which may have little effect on C min-

eralization. The relative importance in C mineralization was thus analyzed by the microbial

communities and substrate availability (Table 2). We suggested that the C contents of SOC

and its labile fractions, and microbial community abundance and composition were crucial

for C mineralization, however, the C/N ratios of total soil and labile organic C fractions were

less important for the C mineralization. These results were expected given that soil microbial

community respiration is usually limited by the C substrates supply in the intensive agricul-

tural systems.

Although all soils from the field sites were pre-incubated for one week, nevertheless, we still

observed an initial flush of CO2 emission, most likely derived from rapid depletion of easily

degradable organic C fractions (Fig 4). To better understanding of mineralization processes,

we chose to model data by means of a parallel first-plus-zero-order kinetic model. In compar-

ing the mineralization rate (ks) of the resistant pool among fertilizer practices, we found that ks

was 56.6% higher under the NPSM treatment than CK treatment. This has to be carefully

taken into account when setting realistic and effective goals for long-term soil C stabilization.

Positive and significant correlations were observed between ks and the labile C fractions (DOC

and MBC), indicating that differences in ks values among fertilizer practices could be attrib-

uted to differences in the relative amounts of labile organic C fractions. We also found signifi-

cant correlation between ks and G+ bacteria, actinomycetes, saprophy fungi and AMF, but no

significant correlation was found between ks and G- bacterial. Marschner et al. [48] reported a

shift in the response of G- and G+ bacteria to addition of exogenous organic material over

time, indicating that G- bacteria were initially stimulated upon the addition of compost, while

the abundance of G+ bacteria increased over time. Bastida et al. [55] observed that G- bacteria
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populations in a semiarid soil controlled the initial decomposition of soil organic matter, but

fungi and, particularly actinomycetes played important roles in later steps following two

months of incubation. However, our results were only speculated through the statistical

approach. Future direct measurements are necessary to investigate how microbial communi-

ties and substrates are linked with C mineralization processes through dynamical studies.

Conclusions

This study clearly indicated that nine years of various applied organic fertilizers significantly

increased total SOC contents and labile organic C fractions (DOC, LFOC and MBC) in agri-

cultural soils. Moreover, the greatest increases were observed in treatment with the combined

applications of chicken manure, straw and mineral fertilizers. The application of organic fertil-

izers significantly increased abundances of all PLFA-related microbial communities including

G+ bacteria, G- bacteria, actinomycetes, saprophytic fungi and AMF. Organic fertilization also

slightly altered the composition of microbial communities. Furthermore, the application of

organic fertilizers resulted in 53%-85% greater cumulative mineralization of C. Soil labile C

fractions and soil microbial communities predominantly determined the variance in C miner-

alization, while C/N ratios of labile fractions did not significantly influenced C mineralization

in the current agricultural system. This research provided information on the mineralization

rate of resistant C pools, which are higher under organic fertilization regimes. This has to be

carefully taken into account when setting realistic and effective goals for long-term soil C

stabilization.
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