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Abstract

Significant advances in biotechnology have allowed for simultaneous measurement of

molecular data across multiple genomic, epigenomic and transcriptomic levels from a single

tumor/patient sample. This has motivated systematic data-driven approaches to integrate

multi-dimensional structured datasets, since cancer development and progression is driven

by numerous co-ordinated molecular alterations and the interactions between them. We

propose a novel multi-scale Bayesian approach that combines integrative graphical struc-

ture learning from multiple sources of data with a variable selection framework—to deter-

mine the key genomic drivers of cancer progression. The integrative structure learning is

first accomplished through novel joint graphical models for heterogeneous (mixed scale)

data, allowing for flexible and interpretable incorporation of prior existing knowledge. This

subsequently informs a variable selection step to identify groups of co-ordinated molecular

features within and across platforms associated with clinical outcomes of cancer progres-

sion, while according appropriate adjustments for multicollinearity and multiplicities. We

evaluate our methods through rigorous simulations to establish superiority over existing

methods that do not take the network and/or prior information into account. Our methods

are motivated by and applied to a glioblastoma multiforme (GBM) dataset from The Cancer

Genome Atlas to predict patient survival times integrating gene expression, copy number

and methylation data. We find a high concordance between our selected prognostic gene

network modules with known associations with GBM. In addition, our model discovers sev-

eral novel cross-platform network interactions (both cis and trans acting) between gene

expression, copy number variation associated gene dosing and epigenetic regulation

through promoter methylation, some with known implications in the etiology of GBM. Our

framework provides a useful tool for biomedical researchers, since clinical prediction using

multi-platform genomic information is an important step towards personalized treatment of

many cancers.
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Introduction

The last decade has seen a proliferation of multi-platform genomic data, aided partly by the

rapid evolution and declining costs of modern technologies, producing high-throughput

multi-dimensional data. It is now technologically and economically feasible to collect diverse

data on matched patient/tumor samples at a detailed molecular resolution across multiple

modalities such as genomics (DNA copy number), epigenomics (methylation), transcrip-

tomics (mRNA/gene expression) and proteomics. Such large scale coordinated efforts include

worldwide consortiums such as the International Cancer Genome Consortium (ICGC; icgc.

org), The Cancer Genome Atlas (TCGA; cancergenome.nih.gov) and more recently the Geno-

mic Data Commons (GDC; gdc.cancer.gov), which have collated data over multiple types of

cancer on diverse molecular platforms, to accelerate discovery of molecular markers associated

with cancer development and progression. The resulting analytical challenges are to integrate

these vast amounts of data into models that accurately predict the complex pathophysiology of

cancer and to translate this complexity into clinically actionable outputs, towards the holy grail

of precision medicine.

Initial studies in cancer genomics relying on single platform analyses (mostly gene expres-

sion- and protein-based) have discovered multiple candidate “druggable” targets such as

KRAS mutation in colon and lung cancer [1], BRAF in colorectal, thyroid, and melanoma

cancers [2], and PI3K in breast, colon and ovarian cancers [3]. However, it is believed that

integrating data across multiple molecular platforms has the potential to discover more co-

ordinated changes on a global (unbiased) level [4]. Through data integration, we espouse the

philosophy that cancer is driven by numerous molecular/genetic alterations and the interac-

tions between them, with each type of alteration likely to provide a unique but complementary

view of cancer progression. This offers a more holistic view of the genomic landscape of can-

cer, with increased power and lower false discovery rates in detecting important biomarkers

[5], and translates to substantially improved understanding, clinical management and treat-

ment [6].

Our methods are motivated by a TCGA based study in glioblastoma multiforme (GBM),

where-in diverse platform-specific features are obtained at genomic, epigenomic and tran-

scriptomic resolutions across matched tumor samples. Our goals are two-pronged: first assess

dependence within and between platform-specific features, and second, incorporate the

dependence in finding important molecular markers associated with relevant clinical out-

comes. Integrating data across platforms has sound biological justifications due to interplay of

features between and within the platforms. For example, between platforms, attributes at the

genomic/DNA level such as methylation and copy number variation can directly affect mRNA

expression, which in turn is known to influence clinical outcomes such as cancer progression

times and pathobiology of the tumors. Within platform interactions arise from pathway-based

dependencies (e.g. functional and signaling pathways) as well as dependencies based on chro-

mosomal/genomic location (e.g. copy number data). Furthermore, the molecular features are

inherently on different scales: discrete (copy number variation) and continuous (DNA methyl-

ation and mRNA expression). In addition, there exist substantial prior knowledge on path-

way/graphical interactions between these genes (e.g. from public databases and literature),

which can be incorporated to achieve improved estimation, increase signal to noise ratio and

more refined biological interpretations. Our proposed approach combines all the above aspects

to develop an integrative model for predicting clinical outcomes.

There has been a growing but limited literature on statistical and computational approaches

exploiting the information garnered from data integration in relating the platforms to the clin-

ical outcome—which is usually the goal of translational research in finding markers of cancer
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progression. Choi et al. [7] propose a double layered mixture model to jointly analyze copy

number and gene expression data. Recently, Wang et al. [5] and Jennings et al. [8] proposed

integrative Bayesian analysis of genomics data (iBAG, in short), which models biological rela-

tionships between genomic features from multiple platforms, and subsequently uses the esti-

mated relationships to relate the platforms to a clinical outcome. However, iBAG assumes

independence between genes in discovering mechanistic relationships between platforms at a

gene-centric level, which may not be biologically practical as genes are known to lie on func-

tional or cell signaling pathways [9].

Given that the associations between genes and gene products can be captured efficiently via

networks, there is a growing variable selection literature for graph structured genomic covari-

ates coming from a single platform [10]–[13] which account for the inherent dependencies in

relating genetic biomarkers to the clinical outcome of interest. Such approaches either assume

a known network structure on covariates (supervised), or estimate the graph from the raw data

without considering prior knowledge (unsupervised). Both these classes of approaches have

critical drawbacks. Supervised approaches may not be practical in genomic studies, since no

existing and curated knowledge can be considered as complete and the gene network is likely

to vary over different conditions, tumor types and biological processes. On the other hand,

unsupervised approaches may often lead to inaccurate estimates because of the low signal to

noise ratio [14], especially for high throughput genomic data typically collected on a low/mod-

erate number of replicates. In these scenarios, there is an increasing recognition of the practical

advantages of including prior biological knowledge when estimating gene networks from the

data [15], which is not accounted for in existing structured variable selection approaches.

Moreover to our knowledge, the existing structured variable selection approaches consider

data from a single platform and are not equipped to handle mixed covariates from multiple

platforms, which may give rise to different sets of between platform interactions not captured

in a single platform analysis.

Unlike previous approaches incorporating prior information to estimate the graph based

on single platform data ([16], [17]), the focus of our current work is to combine multi-platform

and multi-scale genomic data, and prior knowledge on the gene network, to estimate the

graph for mixed variables, and subsequently use structures in the estimated graph to inform

variable selection via a novel clique based approach. In addition, the proposed network estima-

tion approach involves a belief parameter to control the degree of fidelity to the prior knowl-

edge in order to guard against mis-specification. Concisely stated, the major novelties of our

approach are: (i) estimating graphical models for mixed data from multiple platforms, while

incorporating prior graphical knowledge; (ii) developing a structured variable selection

approach, which accounts for correlated groups of predictors within and across platforms, and

can identify individual and groups of significant covariates related to the outcome (iii) allow-

ing for both cis- and trans-acting relationships between molecular features, and providing

appropriate controls for multicolleanarity and multiple testing. These goals are achieved via a

principled multi-scale approach which involves a prior informed Bayesian graphical model for

mixed variables in the first stage, which is then used to inform a subsequent Bayesian struc-

tured variable selection framework (see Fig 1). The above features make our approach distinct

from existing structured variable selection approaches which typically focus on single platform

data with known network knowledge [18].

Methods

We focus on a univariate continuous response, y 2 <, to be regressed on a p-dimensional vec-

tor of mixed covariates x = [x1, . . ., xD�] obtained from D�(� 2) distinct platforms. However,
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we note that our approach can be generalized to binary or ordinal outcomes via latent variable

based thresholding approaches [19], [20]. In our notations, xj is the covariate vector corre-

sponding to the j-th platform which has pj features, j = 1, . . ., D�, so that
PD�

j¼1
pj ¼ p. We note

at the outset that the proposed approach allows for unequal number of measurements for dif-

ferent platforms, and hence it is possible to accommodate additional or missing measurements

in one or more platforms. This is a useful feature, for example, when one has to include a

methylation measurement that is far away from a gene but is highly relevant for its expression.

Let us denote the n × 1 vector of responses as y and the n × p dimensional covariate matrix as

X = [X1, . . ., XD�], where the covariates may be continuous, binary or ordered categorical. The

mixed covariates have an underlying graphical structure which is to be estimated (e.g. panel

(c) in Fig 1), while incorporating prior existing graphical knowledge, denoted by G0 (e.g. panel

(b) in Fig 1). This is the graphical modeling or structure learning step, which is used to inform

the subsequent structured variable selection step. The above steps comprise our two step

approach which is described in detail below.

Fig 1. A schematic diagram of our integrative modeling approach. Panel (a) shows the heatmaps of the genes by sample matrix constructed from

data for three platforms; panel (b) depicts the prior graph constructed using previous studies; while panel (c) is the estimated graph of the genes within

and across the platforms. The dashed arrows determine graphical structure and the solid arrows represent the regression model incorporating graphical

dependencies. Red and green lines in panel (c) represent high negative and positive partial correlations under the estimated graph, while all other edges

with lower absolute partial correlations are depicted with watermark lines. We have also provided an interactive version of S1 Interactive Plot.

https://doi.org/10.1371/journal.pone.0195070.g001
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First stage: Integrative structure learning

The graphical modeling approach for mixed data models ordered categorical variables by

rounding continuous latent variables [19], [20], and specifies a graphical model jointly on

the observed continuous covariates and the latent continuous variables. The graph for mixed

data involves the vertex set V = {1, . . ., p} and edge set E, and is used to: (1) model dependence

between features within and across platforms—in our application, measurements for different

platforms are available for the same set of genes, so that the joint modeling across platforms

allows for both cis-acting (localized to a gene) and trans-acting (across gene locations); and (2)

detect potentially overlapping subgroups of features within and across platforms, which define

functional modules that work together to drive the clinical outcome. Such modules correspond

to cliques in the graph, which are defined as a subgroup of V such that each node in this sub-

group is connected to every other node in the subgroup.

Without loss of generality, let xi ¼ ½xi1; . . . ; xiD� � ¼ ðxCi ; x
O
i Þ denote the covariate vector for

the i-th subject, with the superscripts C,O denoting continuous and ordinal (and/or binary)

covariates respectively. Let zO denote the generic notation for the latent continuous variable

corresponding to ordinal predictor xO, and consider the following graphical model for mixed

covariates

xOij ¼ l; if Dl� 1 <¼ zOij < Dl; � 1 ¼ D0 < D1 < . . . < DMo
¼ 1; j ¼ 1; . . . ; pO;

zOi ¼ ðzOi1; . . . ; zOipOÞ; ðxCi ; z
O
i Þ � N½D�ð0;O

� 1
Þ; O � pðO j G0Þ; i ¼ 1; . . . ; n;

ð1Þ

where N[D] denotes a Gaussian distribution with truncated domains defined by the hyper-

rectangle D,Mo − 1 is the number of ordinal levels, pO is the number of ordinal covariates,

and O� π(OjG0) corresponds to a continuous shrinkage prior which depends on prior graph

knowledge G0 (to be described in the sequel). Under the generic continuous shrinkage specifi-

cation (1), the MCMC samples can be simulated from the posterior

PðO; zO
1
; . . . ; zOn jX;G0Þ / pðO j G0Þ

Yn

i¼1

YpO

j¼1

XMo

l¼1

1ðxOij ¼ lÞ1ðDl� 1 � zOij < DlÞ

( )

NðxCi ; z
O
i ; 0; O

� 1
Þ:

Subsequently a post-MCMC step can be implemented in order to obtain the graph estimate

Ĝ by thresholding absolute partial correlations corresponding to the estimated precision

matrix Ô, as elaborated in Section 3.

We use a continuous shrinkage prior on O as it enables us to update all elements of the pre-

cision matrix at every iteration, thus utilizing the full prior knowledge on all edges to drive

inferences. We note that discrete mixture approaches [21] based on reversible jump Markov

chain Monte Carlo may not be able to visit a sizable proportion of the edges even for moderate

dimensional graphs under a finite number of Markov chain Monte Carlo runs. In such a case,

these edges will not be updated at all, and will instead correspond to the initial choice of the

adjacency matrix relying on the prior graph. Such an approach will not satisfy our objective of

learning all possible edges of the graph from the data while incorporating prior knowledge,

and hence we choose a continuous shrinkage approach over discrete mixture alternatives.

Incorporating prior graph information

As mentioned before, there exists a huge amount of literature/databases describing the func-

tional behaviors of genes, as characterized in metabolic, signaling and other regulation path-

ways. These include publicly available information on genes, biological pathways, Gene

Ontology (GO) terms, gene-gene interaction networks e.g. Kyoto Encyclopedia of Genes and
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Genomes (KEGG) and Ingenuity Pathway Analysis (IPA) [22] or context-specific literature

in various tumor types [23]. These sources can be queried to yield prior known connectivity

graph between genes that can be brought into the network inference towards more biologically

plausible structures.

Let G0 be the prior graph having vertex set V = {1, . . ., p} and edge set E0, with the corre-

sponding adjacency matrix A0 = (a0,ij), where a0,ij is the inclusion indicator for edge (i, j).
Throughout this article, we consider undirected graphs so that a0,ij = a0,ji for all (i, j). We pro-

pose an approach which specifies an exponential prior on the diagonals and double exponen-

tial priors on the off-diagonal elements of O. Further, the shrinkage parameters are assigned a

mixture distribution which incorporates prior knowledge. In particular, we have the following

hierarchical formulation,

pðO jλ;p;κ;G0Þ ¼ pðOjλÞpðλjp;κÞpðpjκ;G0Þ;

pðOjλÞ /
Yp

i¼1

Expðoii; liiÞ
Y

i<j

DEðoij; lijÞ1ðO 2 M
þÞ;

pðlijjp; κÞ ¼ ð1 � pijÞGaðkij þ al; blÞ þ pijGaðal; blÞ;

pðpijjκ;G0Þ ¼ Beða0;ijkij þ ap; ð1 � a0;ijÞkij þ bpÞ; i 6¼ j; i; j ¼ 1; . . . ; p;

ð2Þ

where p = {pij: i 6¼ j, i, j = 1, . . ., p} are mixture weights, M+ is the set of positive definite matri-

ces, λ is the vector of shrinkage parameters with dimension p(p + 1)/2, and κij is the belief

parameter for edge (i,j), for i 6¼ j (κij = κji under an undirected graph). In (2), the shrinkage

parameters λ shrinks the precision off-diagonals corresponding to absent edges towards zero,

and is modulated by the prior graph information via the mixing proportions p. These mixing

proportions are modulated by prior graph knowledge, and involve belief parameters which

control the degree of fidelity to such knowledge.

Role of belief parameter: To understand the role of the belief parameter in prior specifica-

tion, observe that E(pij) = (a0,ij κij + ap)/(κij + ap + bp), which implies that for large κij>> bp,
E(pij)� 1 when a0,ij = 1, and E(pij)� 0, when a0,ij = 0. In extreme case when κij!1, we have

pij! 1 when a0,ij = 1, and pij! 0 when a0,ij = 0, which encourages small and large values of

λij respectively, for small values of aλ/bλ. This suggests that as κij!1, the prior realizations of

|ωij| will be away from zero when G0 suggests the edge (i, j), and they will be very close to zero

otherwise.

Through the use of a belief parameter, we can control the degree of confidence we place on

the available prior graph information. This is a useful feature in enabling investigators to be

flexible i.e. either skeptical or fairly confident about the prior knowledge, as the situation

demands. In practice, we expect the belief parameter to be calibrated based on domain knowl-

edge, by assigning large values of the belief when investigators are reasonably certain of the

prior knowledge, and near zero values when such knowledge is absent or doubtful. For exam-

ple, in many genomic applications (including ours), there is sufficient prior knowledge on

within pathway interactions, but scant information about between pathway dependencies.

When one is not sure about the choice of the belief parameter, we can let the data determine

it’s value under a griddy Gibbs approach. More details about calibration of the belief parame-

ter, as well as the griddy Gibbs approach, can be found in the sequel.

Second stage: Regression and structured variable selection

In the second step, called structured variable selection, we incorporate the structural knowl-

edge represented by the estimated graph Ĝ in regressing the outcome of interest on covariates.

Bayesian variable selection with graphical structure learning: Applications in integrative genomics
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Although we consider continuous outcomes, it is straightforward to extend our approach to

binary or ordinal outcomes via thresholding the latent continuous variables. We consider the

following linear regression model

y ¼ a1n þ Xγβγ þ ϵ; �i � Nð0; Z� 1Þ; i ¼ 1; . . . ; n;

bj � DEðbj; Z1Þ; γ � pðγjĜÞ; j ¼ 1; . . . ; p:
ð3Þ

Here γ = { γj, j = 1, . . ., p} 2 Γ (the model space) is the vector of variable inclusion indicators,

with γj = 1 if the jth candidate predictor is included in the model and γj = 0 otherwise,

βγ = {βj: γj = 1, j = 1, . . ., p} is the pγ × 1 vector of the regression coefficients with pγ ¼
Pp

j¼1
gj

being the size of model γ, Xγ is the n × pγ covariate matrix (excluding an intercept) containing

the predictors in model γ and having the i-th row as xγ,i. Further, we have a � Nðma; s
2
a
Þ; Z �

GaðaZ; bZÞ; as the intercept and residual precision, respectively, while η1 is the shrinkage

parameter for the double exponential (DE) prior on the fixed effects. We address uncertainty

in subset selection through pðγjĜÞ depending on the estimated graph structure on the covari-

ates, while π(βj) characterizes the prior knowledge of the size of the coefficients for the j-th

predictor, j = 1, . . ., p.

Priors on model space: The prior on the model space γ � pðγjĜÞ is defined using clique

indicators. Let C1, . . ., Cq, denote the cliques identified by the estimated graph Ĝ. The cliques

are indicative of (potentially overlapping) groups of associated genetic features within and

across platforms and gene locations. Denote the clique inclusion indicators as gCk , k = 1, . . ., q,

and let us define the prior on the model space as follows

PðgCk ¼ 1jĜÞ ¼ p; p � Beðap; bpÞ; ð4Þ

where π controls the sparsity of clique inclusions, under a multiplicity adjusted prior [24].

We call the resulting approach in (3) and (4) Bayesian variable selection with structure learning
(BVS-SL), a schematic representation of which is presented in Fig 2. We note that when all the

cliques are disjoint with q< p, the model loosely resembles a clustering approach allowing for

different magnitudes of effects within a selected cluster. In the special case when q = p, our

method reduces to the usual stochastic search variable selection (SSVS) approach, with Laplace

priors on the fixed effects.

We focus on cliques as a building block in our structured variable selection approach, since

(a) it is a systematic way of defining sub-groups of connected nodes in the graph which makes

them intuitively appealing to work with, in structured variable selection problems involving

correlated groups of predictors; and (b) cliques represent foundational blocks in a graph which

have been used successfully in literature, to define probability distributions for Markov ran-

dom fields under the Hammersley-Clifford Theorem [25], as well as to define likelihoods

under decomposable graphs [21]. Although we focus on cliques, we note that the proposed

approach can be generalized in a straightforward manner to alternate sub-groups of nodes

having incomplete relationships. However, it is not immediately clear how one would define

such incomplete subgroups in a manner which will facilitate variable selection, and this issue

warrants a more thorough investigation.

Variable selection, clique identification and multiplicity controls: Variable selection pro-

ceeds by first identifying important cliques by computing the clique specific marginal inclu-

sion probabilities. Individual significant covariates are then identified by including all

covariates residing in significant cliques, and subsequently eliminating unimportant covariates

which have near zero effect sizes from this set. This elimination proceeds via a post-MCMC

approach which computes point-wise 95% credible intervals for βj using MCMC iterations

Bayesian variable selection with graphical structure learning: Applications in integrative genomics
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for which the j-th covariate was present in one or more significant cliques, and excluding all

covariates for which the credible interval spans zero. This step, in addition to the multiplicity

adjusted priors over cliques, enables control over false positives. Finally, non-zero effect

sizes of all variables in a selected clique is expected to provide protection against collinearity

Fig 2. Directed acyclic graph of proposed model. The indices run: i 6¼ j = 1, . . ., p, k = 1, . . ., q, with q being number of cliques in the estimated graph.

Solid boxes, circles, dashed boxes, represent observed data, model parameters, and model hyperparameters respectively.

https://doi.org/10.1371/journal.pone.0195070.g002
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for members within a clique. Thus, our approach is designed to attain a desirable balance

between detecting true positives and true negatives, a claim which is supported by our simula-

tion studies.

The variable selection approach espouses the philosophy that features in each clique are

indicative of functional modules which work in coordination to drive the outcome. This

assumption is somewhat similar to graph constrained penalized regression approaches [10]

which assume that two neighboring genes in a network should be more likely to (or not to)

participate in the same biological process simultaneously. These articles smooth the covariate

effects for connected variables in the graph while encouraging sparsity and similar fixed

effects, whereas no such assumptions are made under our approach. The proposed approach

encourages covariates residing in important and unimportant cliques to be simultaneously

included and excluded from the model respectively in order to tackle collinearity. However,

the variables belonging to important cliques may not end up being included together in

the final estimated model under the post-processing step which is designed to control false

positives.

We examine if the inherent collinearity in the variables within a clique will potentially

hamper the post-processing step desgined to exclude unimportant variables using 95%

point-wise credible intervals. Letting γ denote the model involving all covariates belonging

to at least one significant clique, the corresponding regression coefficients are drawn from

the posterior distribution which is multivariate Gaussian with mean A� 1XT
γ ~y and covariance

matrix η−1 A−1, where A ¼ ðXT
γ Xγ þ diagðt2

1
; . . . ; t2

pÞÞ, and τ is the latent scale parameter

under a scale mixture of Gaussians representation for the double exponential priors (see the

posterior computation section for more details). Clearly, the posterior mean and variance

are well-defined as long as ðXT
γ Xγ þ diagðt2

1
; . . . ; t2

pÞÞ
� 1

is non-singular, which is the case in

most practical scenarios where the latent scale parameter values are learnt in a data driven

manner. Note that the invertibility of the covariance matrix A is assured due to the term

diagðt2
1
; . . . ; t2

pÞ which adds to the diagonals of XT X, ensuring positive definiteness. The

above facts imply stable estimates for the variance for the estimated regression coefficients

corresponding to the variables included via important cliques, which results in a successful

elimination of false positives in the post-processing step, as evidenced in our extensive

numerical studies.

Posterior computation

The posterior computation for the proposed approach contains two independent sets of steps,

corresponding to the two stages, as described below.

Computation for Graphical Model Estimation: The graphical model estimation for mixed

covariates proceeds via sampling the latent underlying continuous variables corresponding

to the ordered discrete covariates, followed by drawing the joint precision matrix of (xC, zO)

under formulation (2). We adapt the procedure in Johnson and Albert (2001) to the case of

dependent covariates, for posterior updates of the latent continuous covariates under the fol-

lowing posterior distributions

zOij jx
O
ij ¼ l;Dl� 1;j;Dl;j � NðDl� 1;j ;Dl;j �

ðzOj jx
C
i ; z

O
i ð� jÞÞ; Dl;jjzOj � UnifðzLl;j; z

U
l;jÞ;

where zOi ð� jÞ represents the vector of latent underlying variables for the i-th subject and

excluding the j-th measurement, zLl;j ¼ max
i:xOij ¼l

zOij and zUl;j ¼ min
i:xOij ¼lþ1

zOij for l = 1, . . .,M − 1. Once

the latent variables have been updated at each MCMC iteration, we sample O using the method
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described in Wang [26], while λij is updated using the posterior

pðlijj� Þ � Gað1þ al; joijj þ blÞ1ðdij ¼ 1Þ þ Gað1þ kij þ al; joijj þ blÞ1ðdij ¼ 0Þ;

where 1(�) is an indicator function, δij� Bernoulli(pij) and pij is drawn from a Beta posterior.

Following Wang [26], the point estimate of the graph is obtained as a post–MCMC step by

including the (i,j)-th edge if and only if r̂ij=EWðrijjXÞ > 0:5, where r̂ ij is the posterior partial

correlation estimate under the continuous shrinkage approach, and EWðrijjXÞ represents the

posterior mean of the partial correlation under the reference distribution W ¼Wishartð3; IPÞ.
Note that the belief parameter is either chosen apriori or it can be updated using a griddy

Gibbs sampling step as well.

Computation for Structured Variable Selection: The computation strategy described above

yields an estimate of the graph, which is used to inform the variable selection approach in the

second step as described here. The Gibbs sampling alternates as follows

Step 1: Sample gCj ; j ¼ 1; . . . ; p, from Bernoulli(pþj ) posterior distributions where pþj is the pos-

terior inclusion probability for the j-th variable.

Step 2: Given γ, sample the fixed effects βγ under a scale mixture of Gaussians representation

for the double exponential distribution, as in [27].

Step 3: Sample the residual precision using

pðZj� Þ ¼ Gaðn=2þ aZ;
P

i
ðYn � XγβγÞ

T
ðYn � XγβγÞ=2þ bZÞ.

Step 4: Letting q� = the number of cliques selected using Step 1, sample clique prior inclusion

probabilities using f(π|−) = Beta(q� + aπ, q − q� + bπ).

Step 5: Sample η1 under the Gamma hyperpriors for Z2
1

as in [27].

Step 6: Sample the intercept α from a posterior distribution which is Gaussian.

Hyperparameter Choices: Below, we list the hyper-parameters used in the model, and eluci-

date the values we use for them, along with the justifications for such choices.

• The belief parameter κ is edge specific and chosen to have a high or low value according to

whether we have high confidence on the prior graph knowledge or not. In the event where

one is unsure about the level of confidence, a griddy Gibbs approach can be used, as outlined

in S1 Appendix.

• We chose ωii� Exp(ωiijλii), λii� Ga(10−2, 10−6), as recommended in the original Bayesian

graphical lasso approach [26].

• Hyperparameters ap, bp, for π(pij) in Eq (2) are chosen such that the ratio ap/bp is small

(we choose ap/bp� 0.1). This is because the prior mean for the edge inclusion probability

is given by E(pij) = (a0,ij κij + ap)/(κij + ap + bp), which implies that E(pijja0,ij = 1)� 1, and

E(pijja0,ij = 0)� 0, for large values of the belief parameter, and a small value of ap/bp. In the

case of no prior information (i.e. when κij = 0,) we have E(pij) = ap/(ap + bp), which is small

for small values of ap/bp, resulting in sparse graphs.

• We choose hyperparameters aλ, bλ for π(λ) in Eq (2) such that aλ/bλ is small. As explained

previously, this encourages |ωij| to be close to zero or away from it, depending on whether

the prior information suggests the absence or presence of the corresponding edge.
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• In Eq (3), we chose the prior on the residual precision as η� Ga(0.1, 1) in the linear regres-

sion model, so as to encourage a residual distribution with thick tails corresponding to a

non-informative prior which can accommodate large errors.

• The shrinkage parameter in the Laplace prior for the regression coefficients in Eq (3) is mod-

eled under a conjugate Gamma distribution as Z2
1
� Gað1; 2Þ, which is close to the choice in

the seminal Park and Casella (2008) [27] paper, and works well in a variety of simulation sce-

narios. The prior density is designed such that it approaches 0 sufficiently fast as Z2
1
!1

(to avoid mixing problems), and it is relatively flat and places high probability near the maxi-

mum likelihood estimate, as recommended in [27].

• We choose the hyperparameters aπ = 0.1, bπ = 1 for the prior on clique inclusion probabili-

ties in Eq (4), to encourage a small number of cliques to be included in the regression model,

which facilitates multiplicity control. This choice works well for controlling false positives

for a wide variety of numerical experiments, in our experience.

Results

Simulation studies

We perform simulation studies to assess the variable selection and prediction performance

for the proposed approach under several scenarios with varying dimensions and association

structures for the covariates. The goal of our simulations is to examine the performance of

our approach with existing unstructured variable selection approaches which do not take into

account underlying structure information, by either assuming independence among covari-

ates, or accounting for dependence in a way which is not tailored towards underlying network

knowledge.

We implement the proposed approach both without and with prior knowledge correspond-

ing to κ = 0 and κ = 50 respectively. In the first case, the graph is estimated completely from

the data, and in the second case, the prior graph is taken to be the true graph G0 used to gener-

ate the data. The same value of the belief parameter (50) was used for all edges corresponding

to strong confidence; however, we also examine the effect of varying the belief parameter

as well as prior mis-specification as elaborated in S2 Appendix. We compare the proposed

approach to stochastic search variable selection (SSVS) [28] assuming independence of predic-

tors, the penalized joint credible regions approach (PenCred) by Bondell and Reich [29], and

the spike and slab approach or SSL [30] which fuses the Bayesian spike and slab approach with

elements of penalized likelihood estimation. We also compared the performance with penal-

ized approaches such as Lasso [31], elastic net [32], and smoothly clipped absolute deviation

or SCAD [33], using R packages ‘lars’, ‘elasticnet’ in CRAN, and ‘SSL’ in the authors’ website,

respectively. The PenCred approach accounts for dependence within predictors, while the

other approaches do not explicitly account for any such dependence but are they are widely

used variable selection approaches. In addition, results were also included under a sparse

fused lasso approach (Flasso) similar to the one described in [18], which encourages the

coefficients of related features to share similar magnitudes under the penalized criteria
1

2

Pn
i¼1
ðyi � xiβÞ

2
þ l
P
ði;jÞ2Ejbi � bjj þ gl

Pp
j¼1
jbjj, where γ and λ are penalty parameters

controlling the sparsity and the similarity between coefficients for connected variables in the

graph, respectively, and E denotes the edge set in the given graph. This approach was imple-

mented via the fusedlasso function in the genlasso package in R (https://cran.r-project.org/

web/packages/genlasso/index.html). For the proposed approach, the cliques under the esti-

mated graph Ĝ was determined via the ‘igraph’ package in R, and 10,000 MCMC iterations
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were run with a burn in of 3000. The training and test sample sizes were 100 each, and we con-

sider p = 40, 80. All results are reported over 50 replicates.

For Cases I(a)-(d) stated below, the data was generated from a linear regression model hav-

ing p covariates out of which nine were ordinal (generated by thresholding the continuous

latent variables) and taking values 0-4, and the rest were continuous. The true inclusion status

is set to g0
j ¼ 1; j ¼ 1; . . . ; 8; 23; 24; with four discrete variables included, and g0

j ¼ 0 other-

wise. The continuous covariates and the continuous latent variables for discrete covariates

were generated using a multivariate Gaussian distribution with covariance ST. We consider

different block-diagonal structures for ST (listed hereafter), specifying subgroups of predictors

with varying partial correlations. The true graph G0 which was used for BVS-SL with κ = 20,

was obtained by including all edges (i, j) with jS� 1

T ði; jÞj > 0:0001.

Case I(a): This case corresponds to high partial correlations with the precision matrix having

four sub-blocks and all precision diagonals being 1. The first sub-block (4 × 4) has off-diag-

onals as 0.95, the second and third sub-blocks (4 × 4 each) have precision off-diagonals as

0.7, and the fourth sub-block (p � 12 � p � 12) is identity. The true coefficient vector was

(0.3, −0.7, 1.1, −0.05, 0.1, 0.2, −1.2, 1.5, 0, . . ., 0, 1, −1).

Case I(b): This case corresponds to high correlations with ST having the same structure as S� 1

T

in Case I(a). The coefficients were (0.3, 0.7, 1.1, 0.05, −0.1, −0.2, −1.2, −1.5, 0, . . ., 0, 1, −1).

Pair-wise positively correlated covariates have the same signs in both Case I(a) and I(b).

Case I(c): This case corresponds to a block diagonal with two sub-blocks—one having an

AR(1) structure for the precision matrix with S� 1

T ði; jÞ ¼ 0:95ji� jj; i; j ¼ 1; . . . ; 8; and the

other sub-block being identity. The coefficients were same as those in Case I(a).

Case I(d): This case corresponds to ST having the same structure as S� 1

T in Case I(c). The coef-

ficients were same as those in Case I(b).

Case II: We used the network for 48 genes in the TCGA data analysis to construct the inverse

covariance matrix. In particular p was chosen as 48 × 2 and the inverse covariance matrix

has a block diagonal form with sparse associations across two equally sized sub-blocks of

dimension 48 × 48 each, and the associations within each sub-block being determined by

the gene network information provided in [34]. Data was generated from a Gaussian graph-

ical model having the true coefficient vector as (0.3, −0.7, 1.1, −0.05, 0.1, 0.2, −1.2, 1.5, 038,

1, −1, 0.3, −0.7, 1.1, −0.05, 0.1, 0.2, −1.2, 1.5, 038, 1, −1), where 038 is a vector of zeros of

dimension 38, which resembles the coefficient vector in Case I(a).

Cases I(a)-(d) capture the different simulation scenarios with distinct platforms, where

measurements within platforms are captured via an auto-regressive structure or they are

uncorrelated, and there are no connections across platforms. The unequal sized sub-blocks

represent measurements which are available on only one platform but are not available on

others. On the other hand, Case II resembles the TCGA data example with two equally sized

platforms, where the associations within each platform is determined via prior network knowl-

edge [34] and there being sparse associations across platforms.

Performance evaluation: One can obtain an ordered sequence of regression models by vary-

ing the cut-off for the marginal inclusion probability under Bayesian approaches and varying

the penalty parameter for frequentist approaches. To evaluate the ordering of the models, we

look at receiver operating characteristic (ROC) curves which plot the sensitivity versus 1-speci-

ficity, and precision recall characteristic (PRC) curves which plot the precision (ratio of true

positives to the total number declared as positive) versus sensitivity. From the ROC and PRC
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curves presented in Figs 3–6, it is clear that BVS-SL with and without prior graph knowledge

essentially always dominate the competing curves, while also having a significantly higher area

under the curve as shown in columns 2 and 3 in Tables 1–4. Moreover, BVS-SL demonstrates

a significantly and uniformly higher power when the false discovery rate is controlled at 10%,

which points towards a superior performance in tackling collinearity for a given multiplicity

level, as shown in column 4 in Tables 1–4.

Prediction and Variable Selection: In addition to looking at the ordered sequence, we also

investigated the predictive performance of each approach, as well as to assess the point esti-

mate under the optimal model. The point estimate is selected using the Bayesian information

criterion under PenCred, Lasso, and elastic net, while the median probability rule along with

subsequent thresholding (using credible intervals) is used for BVS-SL, and the median proba-

bility rule is used for SSVS. We report the model size (MS) and false positives (FP) under the

point estimate. This point estimate is also used for prediction under PenCred, Lasso, and elas-

tic net, while the posterior predictive distribution is used under BVS-SL and SSVS. We look

at the predictive performance in terms of out of sample mean squared error (RMSPE) and out

of sample coverage of 95% predictive intervals (COV95). The coverage refers to the proportion

of test sample values contained within predictive intervals. The predictive intervals correspond

to credible intervals for the Bayesian approaches BVS-SL and SSVS, whereas for PenCred, as

well as the frequentist approaches, they correspond to pseudo confidence intervals that are

constructed as ðxβ̂ � 1:96s0; xβ̂ þ 1:96s0Þ, where σ0 is the true residual variance.

It is seen from the first and last columns in Tables 1–4 that the proposed approach has supe-

rior performance in terms of out of sample prediction and 95% coverage with respect to com-

petitors for almost all cases. The number of true covariates (MS—FP) detected under the

proposed approach, as well as the coverage, is essentially always the best or the second best

among all the approaches considered. We also see from the second last column that while the

SSVS may have an advantage compared to BVS-SL with no structural information in terms of

controlling false positives, the BVS-SL with κ = 20 essentially has similar or better multiplicity

control compared to SSVS, thus demonstrating the advantages of incorporating prior informa-

tion. On the other hand, the SSVS demonstrates drawbacks in terms of collinearity, as evi-

denced by smaller model sizes, and poor power to detect true positives for a given level of false

discovery. Moreover, it is also evident that the SSL approach may have a lower FP rate in some

cases; however this is possibly due overly sparse models reported by SSL (evident from the

small model sizes) which can also result in a poor overall performance under the method.

Finally, we note that the fused lasso approach may result in some improvements in variable

selection performance over alternate approaches not incorporating prior knowledge, but it

essentially always has less accurate performance compared to the proposed method. Moreover,

the predictive performance under the fused lasso approach may not be optimal and even lower

than generic approaches assuming independence between predictors. In summary, it is clear

that the proposed approach seems to perform well both in terms of variable selection and pre-

diction, while simultaneously tackling the conflicting issues of collinearity and multiplicity in

the presence of correlated predictors.

Sensitivity to link function: In order to examine the performance of our approach when

the link function which is used to relate the latent underlying variable to the discrete variables

is mis-specified, we performed additional experiments where the ordinal variables in Cases

I(a)-(d) were replaced with binary variables generated via a logit link. In particular, we modi-

fied model (1) as follows

xOij ¼ IðzOij > 0Þ; ðzOi ; x
C
i Þ � N½D�ð0;O

� 1

T Þ; OT � pðOT j G0Þ; i ¼ 1; . . . ; n; ð5Þ

Bayesian variable selection with graphical structure learning: Applications in integrative genomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0195070 July 30, 2018 13 / 29

https://doi.org/10.1371/journal.pone.0195070


Fig 3. Receiver operating characteristic plots for p = 40 under Models 1(a)-(d). BVS-SL + G0_κ represents the Bayes variable selection with structure

learning with belief parameter κ for all edges. Pencred, SSVS, Lasso, ENET, represent the penalized credible regions approach, stochastic search variable

selection, L1 penalized regression, and elastic net, respectively. The curves for SSL and SCAD are not presented to ensure greater clarity of the plot.

https://doi.org/10.1371/journal.pone.0195070.g003
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Fig 4. Receiver operating characteristic plots for p = 80 under Models 1(a)-(d). BVS-SL + G0_κ represents the Bayes variable selection with structure

learning with belief parameter κ for all edges. Pencred, SSVS, Lasso, ENET, represent the penalized credible regions approach, stochastic search variable

selection, L1 penalized regression, and elastic net, respectively. The curves for SSL and SCAD are not presented to ensure greater clarity of the plot.

https://doi.org/10.1371/journal.pone.0195070.g004
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Fig 5. Precision recall characteristic plots for p = 40 under Models 1(a)-(d). BVS-SL + G0_κ represents the Bayes variable selection with structure

learning with belief parameter κ for all edges. Pencred, SSVS, Lasso, ENET, represent the penalized credible regions approach, stochastic search variable

selection, L1 penalized regression, and elastic net, respectively. The curves for SSL and SCAD are not presented to ensure greater clarity of the plot.

https://doi.org/10.1371/journal.pone.0195070.g005

Bayesian variable selection with graphical structure learning: Applications in integrative genomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0195070 July 30, 2018 16 / 29

https://doi.org/10.1371/journal.pone.0195070.g005
https://doi.org/10.1371/journal.pone.0195070


Fig 6. Precision recall characteristic plots for p = 80 under Models 1(a)-(d). BVS-SL + G0_κ represents the Bayes variable selection with structure

learning with belief parameter κ for all edges. Pencred, SSVS, Lasso, ENET, represent the penalized credible regions approach, stochastic search variable

selection, L1 penalized regression, and elastic net, respectively. The curves for SSL and SCAD are not presented to ensure greater clarity of the plot.

https://doi.org/10.1371/journal.pone.0195070.g006
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Table 1. Simulations for Case I(a)-I(b), training sample size = 100, test sample size = 100. BVS-SL(κ) represents the Bayes variable selection with belief parameter κ for

all edges. Pencred, SSVS, Lasso, EL, SCAD, SSL, and Flasso represent the penalized joint credible regions approach, stochastic search variable selection, L1 penalized regres-

sion, and elastic net, the smooth clipped absolute deviation, the spike and slab lasso, and sparse fused lasso respectively. MSPE: out of sample predictive MSE; Pwr(10%

FDR) is sensitivity controlling for 90% specificity; MS: estimated model size; FP: false positives, and Cov95 is coverage under 95% predictive intervals. The true model size

for Cases I(a)-(b) is 10.

Method MSPE ROC PRC Pwr(10% FDR) MS FP Cov95

Case I(a) p = 40

BVS-SL(κ = 0) 1.103 0.997 0.996 1.000 10.000 0.444 0.922

BVS-SL(κ = 20) 1.100 1.000 1.000 1.000 10.250 0.250 0.921

PenCred 1.153 0.890 0.869 0.802 9.400 1.700 0.912

SSVS 1.123 0.954 0.921 0.880 7.650 0.200 0.917

Lasso 1.206 0.894 0.870 0.815 10.950 2.900 0.893

EL 1.218 0.906 0.874 0.815 11.150 3.050 0.893

SCAD 1.310 0.707 0.714 0.824 9.64 1.72 0.915

SSL 1.309 0.855 0.825 0.762 7.36 0.46 0.908

Flasso 1.228 0.912 0.894 0.851 9.258 0.623 0.895

Case I(a) p = 80

BVS-SL(κ = 0) 1.093 0.999 0.996 1.000 9.800 0.250 0.928

BVS-SL(κ = 20) 1.092 1.000 1.000 1.000 10.600 0.600 0.930

PenCred 1.270 0.888 0.790 0.740 13.700 6.150 0.880

SSVS 1.128 0.965 0.897 0.895 8.050 0.750 0.926

Lasso 1.288 0.879 0.770 0.800 10.700 3.100 0.883

EL 1.300 0.890 0.773 0.790 11.050 3.450 0.879

SCAD 1.370 0.697 0.680 0.746 9.12 1.70 0.905

SSL 1.364 0.887 0.834 0.732 7.08 0.36 0.908

FLasso 1.155 0.938 0.912 0.854 9.190 0.428 0.904

Case I(b) p = 40

BVS-SL(κ = 0) 1.108 0.971 0.947 0.955 9.100 1.000 0.924

BVS-SL(κ = 20) 1.111 0.987 0.981 0.985 9.550 0.650 0.923

PenCred 1.156 0.749 0.679 0.550 6.200 1.200 0.912

SSVS 1.107 0.842 0.785 0.695 6.400 0.650 0.925

Lasso 1.251 0.630 0.563 0.423 8.650 4.050 0.885

EL 1.265 0.648 0.598 0.465 8.300 3.450 0.881

SCAD 1.287 0.664 0.632 0.662 8.64 1.78 0.912

SSL 1.274 0.831 0.792 0.652 6.34 0.28 0.914

Flasso 1.114 0.851 0.827 0.792 9.59 0.90 0.898

Case I(b) p = 80

BVS-SL(κ = 0) 1.089 0.960 0.927 0.950 8.200 0.500 0.922

BVS-SL(κ = 20) 1.082 0.975 0.963 0.965 8.600 0.400 0.927

PenCred 1.212 0.738 0.561 0.518 9.450 4.450 0.888

SSVS 1.093 0.863 0.730 0.725 6.050 0.600 0.924

Lasso 1.290 0.609 0.473 0.450 6.100 2.200 0.861

EL 1.295 0.628 0.536 0.530 7.250 2.750 0.861

SCAD 1.408 0.655 0.599 0.658 10.80 4.06 0.901

SSL 1.305 0.816 0.740 0.632 6.28 0.18 0.912

Flasso 1.182 0.885 0.851 0.802 9.24 0.73 0.901

https://doi.org/10.1371/journal.pone.0195070.t001
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Table 2. Simulations for Cases I(c)-(d) and Case II, training sample size = 100, test sample size = 100. BVS-SL(κ) represents the Bayes variable selection with belief

parameter κ for all edges. Pencred, SSVS, Lasso, EL, SCAD, SSL, and Flasso represent the penalized joint credible regions approach, stochastic search variable selection, L1

penalized regression, and elastic net, the smooth clipped absolute deviation, the spike and slab lasso, and sparse fused lasso respectively. MSPE: out of sample predictive

MSE; Pwr(10% FDR) is sensitivity controlling for 90% specificity; MS: estimated model size; FP: false positives, and Cov95 is coverage under 95% predictive intervals. The

true model size for Cases I(a)-(b) is 10.

Method MSPE ROC PRC Pwr(10% FDR) MS FP Cov95

Case I(c) p = 40

BVS-SL(κ = 0) 1.071 0.969 0.929 0.965 7.941 0.529 0.936

BVS-SL(κ = 20) 1.066 0.986 0.978 0.980 8.000 0.100 0.936

PenCred 1.118 0.879 0.860 0.780 9.150 1.750 0.921

SSVS 1.086 0.880 0.894 0.825 7.150 0.250 0.932

Lasso 1.142 0.857 0.787 0.808 11.550 3.550 0.918

EL 1.145 0.895 0.847 0.820 11.250 2.950 0.917

SCAD 1.338 0.615 0.579 0.646 0.822 1.84 0.914

SSL 1.240 0.866 0.830 0.638 6.34 0.22 0.927

FLasso 1.128 0.917 0.894 0.903 8.68 0.610 0.924

Case I(c) p = 80

BVS-SL(κ = 0) 1.092 0.951 0.927 0.935 8.000 0.316 0.928

BVS-SL(κ = 20) 1.084 0.992 0.988 0.990 7.650 0.050 0.928

PenCred 1.253 0.867 0.770 0.735 12.650 5.750 0.889

SSVS 1.109 0.895 0.796 0.745 6.600 0.200 0.921

Lasso 1.179 0.814 0.729 0.695 10.650 3.800 0.909

EL 1.189 0.861 0.770 0.738 9.900 3.100 0.910

SCAD 1.343 0.644 0.637 0.658 7.16 0.70 0.901

SSL 1.330 0.867 0.789 0.654 6.22 0.08 0.908

FLasso 1.193 0.892 0.886 0.814 8.92 0.250 0.906

Case I(d) p = 40

BVS-SL(κ = 0) 1.072 0.922 0.851 0.845 6.850 0.850 0.934

BVS-SL(κ = 20) 1.065 0.893 0.857 0.825 6.250 0.400 0.935

PenCred 1.126 0.691 0.622 0.480 6.450 1.700 0.915

SSVS 1.071 0.855 0.767 0.645 5.500 0.500 0.933

Lasso 1.218 0.556 0.475 0.340 5.000 1.750 0.891

EL 1.225 0.594 0.516 0.390 5.100 1.550 0.893

SCAD 1.262 0.653 0.599 0.568 7.90 1.78 0.921

SSL 1.247 0.792 0.742 0.590 5.74 0.14 0.924

Flasso 1.118 0.863 0.838 0.0.791 7.46 0.842 0.902

Case I(d) p = 80

BVS-SL(κ = 0) 1.109 0.937 0.788 0.865 5.900 0.900 0.919

BVS-SL(κ = 20) 1.105 0.894 0.798 0.815 5.800 0.400 0.918

PenCred 1.226 0.633 0.419 0.358 7.850 4.150 0.897

SSVS 1.124 0.840 0.655 0.628 4.600 0.400 0.914

Lasso 1.239 0.509 0.354 0.320 4.650 1.700 0.886

EL 1.248 0.596 0.406 0.355 4.800 1.700 0.881

SCAD 1.488 0.619 0.517 0.448 12.78 6.60 0.892

SSL 1.253 0.787 0.683 0.574 5.82 0.400 0.917

FLasso 1.182 0.849 0.722 0.694 6.81 0.88 0.912

https://doi.org/10.1371/journal.pone.0195070.t002
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where

OT ¼
~s2�

� 1

i O
O

O
O
12

O
O
21

O22

2

4

3

5;

and �i � Gað~n=2; ~n=2Þ, ~s2 ¼ p2ð~n � 2Þ=ð3~nÞ, with ~n ¼ 7:3. We note that varðzOij Þ ¼ ~s2�
� 1

i

and the off-diagonal elements of OT encode within and between platform interactions. The

latent variables zO are thresholded at zero to yield binary predictors which marginally follow

a logistic distribution. We considered different structures for OT similar to Cases I(a)-(d),

incorporating prior graph information G0 on the mixed covariates via the inverse covariance

matrix. The true inclusion status is set to g0
j ¼ 1; j ¼ 1; . . . ; 8; 23; 24; with four binary variables

included, and g0
j ¼ 0 otherwise.

We examine the graph estimation performance of our method when the mixed covariates

are generated as above, and compare these results with the scenario when a probit link is used

to generate the latent variables which can be implemented by setting ~s2 ¼ �
� 1

i ¼ 1 in (5). The

results presented in Table 4 clearly suggest that (a) irrespective of the link used to generate the

binary variables, a higher value of the belief parameter results in better graphical model estima-

tion performance; and (b) the sensitivity and the specificity of the estimated graphs are very

similar under both the links, even though there may be possible differences in the precision

matrix estimation accuracy. Based on the above findings, we conclude that there are no sys-

tematic differences in terms of graphical model estimation, when the latent variables are gener-

ated under different links, which illustrates the robustness of the proposed approach.

Integrative network analysis of TCGA glioblastoma data

Our motivating dataset arises from a TCGA-based study in glioblastoma multiforme (GBM),

which is the most common and aggressive form of primary brain cancer in human adults. The

TCGA data portal provides multiple levels of molecular data for a large cohort of GBM tumor

specimens. Each qualified specimen was assayed using multiple assays among which we con-

centrate on the following: messenger RNA (mRNA) expression using HT-HG-U133A (Affy-

metrix) arrays, DNA methylation (METH) using HumanMethylation27K (Illumina) and

Table 3. Simulations for Case II, training sample size = 100, test sample size = 100. BVS-SL(κ) represents the Bayes variable selection with belief parameter κ for all

edges. Pencred, SSVS, Lasso, EL, SCAD, SSL, and Flasso represent the penalized joint credible regions approach, stochastic search variable selection, L1 penalized regres-

sion, and elastic net, the smooth clipped absolute deviation, the spike and slab lasso, and sparse fused lasso respectively. MSPE: out of sample predictive MSE; Pwr(10%

FDR) is sensitivity controlling for 90% specificity; MS: estimated model size; FP: false positives, and Cov95 is coverage under 95% predictive intervals. The true model size is

10.

Method MSPE ROC PRC Pwr(10% FDR) MS FP Cov95

Case II

BVS-SL(κ = 0) 1.26 0.89 0.79 0.78 17.85 1.55 0.901

BVS-SL(κ = 20) 1.15 0.86 0.83 0.72 17.10 0.80 0.912

PenCred 1.22 0.66 0.55 0.42 17.45 2.10 0.880

SSVS 1.30 0.81 0.72 0.69 15.90 0.75 0.905

Lasso 1.38 0.59 0.47 0.39 13.90 2.85 0.892

EL 1.39 0.63 0.58 0.40 14.10 2.55 0.895

SCAD 1.38 0.63 0.59 0.59 12.72 2.5 0.901

SSL 1.32 0.78 0.73 0.68 10.72 1.70 0.866

FLasso 1.22 0.83 0.81 0.70 15.10 1.05 0.896

https://doi.org/10.1371/journal.pone.0195070.t003
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DNA copy number (CN) HG-CGH-244A (Agilent) arrays. All the resulting data from the

three platforms are pre-processed, normalized and annotated to the gene level. We focus our

analysis on 48 genes that overlap with the three critical signaling pathways—RTK/PI3K, p53,

and Rb, which are involved in migration, survival and apoptosis progression of cell cycles in

cancer [23]. These pathways are dominantly dis-regulated in GBMs, as confirmed by integra-

tive analyses of TCGA GBM samples [35]. Furthermore, the activity of these pathways is seen

to vary across molecular subtypes, suggesting potential for therapeutic targeting (via inhibition

of receptor tyrosine kinase activity) and prognostic assessment [23]. Thus reconstructing the

topology and connectivity of these genes and pathways and evaluating the downstream impact

on GBM prognostic time can shed light into the underlying cellular and biological mecha-

nisms involved in the evolution of the GBM disease process. Thus our covariate matrix con-

sists of 48 genes mapped to these core pathways from D� = 3 platforms (mRNA, METH, CN)

resulting in p = 48 × 3 = 144 regressors. Note that mRNA and METH are continuous, while

CN is discrete having three categories corresponding to loss, gain, or neutral. The outcome is

log-transformed survival times for 233 patients which is regressed on the covariates using an

accelerated failure time model. Among 233 patients, 70 were censored, whose survival times

were imputed using Kaplan-Meier imputation.

Prior knowledge: The prior knowledge on the graphical structure between these 48 genes is

based on previous studies in GBM [34], and is denoted as G0,pr (shown in panel (b) of Fig 1).

This prior graph is obtained by assessing sequence mutations, copy number alterations and

proteins and confirm and extend the observation that GBM alterations tend to occur within

specific functional modules. The prior graph in our analysis comprises 144 nodes, across the 3

Table 4. Graphical model estimation performance of the proposed method (BVS-SL) approach under different values of the belief parameter, in the case where the

mixed covariates consist of continuous and binary variables, where the binary predictors are generated as in Eq (5) under logit and probit links. The results for differ-

ent precision matrices structures as in Cases I(a)-(d), are presented in terms of specificity and sensitivity under the estimated graph, and the error in estimating the preci-

sion matrix in terms of the Frobenius norm.

Method Link Sensitivity Specificity Fnorm

Case I(a)

BVS-SL(κ = 0) logit 1.00 0.778 3.678

BVS-SL(κ = 50) logit 0.98 1.00 2.024

BVS-SL(κ = 0) probit 1.00 0.775 3.678

BVS-SL(κ = 50) probit 0.99 1.00 1.877

Case I(b)

BVS-SL(κ = 0) logit 0.99 0.79 3.711

BVS-SL(κ = 50) logit 0.96 1.00 1.979

BVS-SL(κ = 0) probit 0.99 0.79 3.687

BVS-SL(κ = 50) probit 0.97 1.00 1.912

Case I(c)

BVS-SL(κ = 0) logit 0.60 0.78 5.98

BVS-SL(κ = 50) logit 0.58 1.00 5.24

BVS-SL(κ = 0) probit 0.59 0.78 6.06

BVS-SL(κ = 50) probit 0.56 1.00 5.34

Case I(d)

BVS-SL(κ = 0) logit 0.63 0.76 5.87

BVS-SL(κ = 50) logit 0.57 1.00 5.23

BVS-SL(κ = 0) probit 0.66 0.77 5.78

BVS-SL(κ = 50) probit 0.56 1.00 5.14

https://doi.org/10.1371/journal.pone.0195070.t004
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platforms, and is constructed so as to preserve the prior graphical structure G0,pr within the

platforms, while allowing the data to infer interactions between two different platforms. Thus

the prior graph can be concisely written as: G0 = G0,pr
 I3, where
 represents the Kronecker

product of the two matrices. Since we have strong prior knowledge about within platform

interactions, we choose a high value for the belief parameter (κ = 50) within platforms. How-

ever we are unsure of the between platform associations and hence we choose a near zero κ
value corresponding to these interactions, so that we learn these interactions directly from the

raw data without imposing a strict prior belief.

Results for survival-time association: We first surveyed the main prognostic (multi-plat-

form) markers that were associated with the survival time of the GBM patients. The marginal

inclusion probabilities of the variables using our analysis are presented in Table 5, with a corre-

sponding plot in Fig 7 in the manuscript. We select the posterior probability threshold to infer

important features under a false discovery rate criteria controlled at a pre-specified level, simi-

lar to the method described in [36]. In particular, we can choose a threshold ϕθ for posterior

probabilities so as to control the average Bayesian FDR at level θ, which essentially implies that

Table 5. Analysis results for integrative genomics application for features having marginal inclusion probability greater than 0.5. MIP is marginal inclusion probabil-

ity, and degree is the number of edges for a particular node.

Gene (platform) MIP Effect size Degree Gene name MIP Effect size Degree

HRAS(CN) 0.91 -1.22 1 AKT2(METH) 0.55 0.04 4

TP53(CN) 0.89 -0.39 1 PIK3R2(CN) 0.55 -0.09 1

CCND1(CN) 0.81 -0.37 1 ARAF(METH) 0.55 0.004 2

CDKN2C(CN) 0.74 0.22 2 IRS1(CN) 0.54 0.13 2

GRB2(METH) 0.73 0.07 9 PIK3R1(CN) 0.54 0.04 2

BRAF(CN) 0.73 -0.13 3 NF1(mRNA) 0.54 0.01 8

MDM2(mRNA) 0.71 -0.07 7 AKT3(METH) 0.54 0.04 15

ERBB3(METH) 0.68 -0.07 9 IRS1(METH) 0.544 -0.03 8

TP53(METH) 0.68 0.14 5 FGFR2(CN) 0.54 0.05 8

CDK6(CN) 0.67 0.09 4 CDK4(CN) 0.53 -0.02 5

IGF1R(mRNA) 0.66 -0.07 10 CDKN2A(CN) 0.53 -0.07 7

TP53(mRNA) 0.65 0.07 5 CDK6(mRNA) 0.53 0.01 7

MDM2(CN) 0.64 -0.01 2 PIK3CG(mRNA) 0.53 -0.04 6

RAF1(mRNA) 0.63 -0.09 12 PIK3C2B(CN) 0.53 0.04 4

AKT1(mRNA) 0.63 -0.08 6 NRAS(CN) 0.53 0.1 1

SRC(mRNA) 0.63 0.06 6 FOXO3A(mRNA) 0.53 0.03 7

ERBB2(METH) 0.62 -0.07 15 CDKN2C(mRNA) 0.53 0.03 11

PDGFRB(METH) 0.61 -0.06 11 AKT2(CN) 0.52 -0.07 1

RB1(mRNA) 0.61 0.06 8 MLLT7(METH) 0.522 -0.04 3

GRB2(CN) 0.60 0.14 2 RB1(CN) 0.52 -0.03 4

NRAS(mRNA) 0.60 0.06 9 PIK3CB(mRNA) 0.51 -0.03 5

PDGFRB(mRNA) 0.59 0.05 6 FOXO3A(METH) 0.51 0.01 12

MDM2(METH) 0.59 -0.06 14 FGFR2(mRNA) 0.51 -0.01 3

FOXO1A(CN) 0.58 0.07 5 SPRY2(mRNA) 0.51 0.01 11

SPRY2(CN) 0.58 0.1 1 PIK3C2B(METH) 0.51 -0.05 6

HRAS(mRNA) 0.58 -0.05 11 KRAS(METH) 0.50 -0.05 5

ERBB2(mRNA) 0.58 0.04 6 PTEN(mRNA) 0.50 0.03 5

NF1(METH) 0.56 -0.04 4 SRC(CN) 0.50 -0.06 1

EGFR(CN) 0.55 0.07 5 MET(METH) 0.50 -0.01 9

https://doi.org/10.1371/journal.pone.0195070.t005

Bayesian variable selection with graphical structure learning: Applications in integrative genomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0195070 July 30, 2018 22 / 29

https://doi.org/10.1371/journal.pone.0195070.t005
https://doi.org/10.1371/journal.pone.0195070


we expect 100θ% of the significant markers to be false positives. To obtain such an estimate,

first sort the posterior probabilities for all markers in ascending order to yield pr(j), j = 1, . . ., p.

Then ϕθ = pr(z), where z ¼ maxfj� : j�� 1
Pj�

j¼1
prðzÞ � yg.

Under a level 0.2 (corresponding to a posterior probability threshold of 0.7), and after

thresholding, seven genes are significantly associated with progression through various mecha-

nisms. They are (a) HRAS, TP53, CCND1, BRAF and CDKN2C, through copy number, (b)

GRB2 through methylation, and (c) MDM2 through mRNA. Of these CDKN2C and GRB2

are positive drivers of progression, while the remaining genes are negatively associated with

progression. HRAS is a member of the RAS oncogene family, whose negative effect on

Fig 7. Marginal inclusion probabilities for each gene over three platforms. The probabilities are presented for the three platforms grouped by genes,

with blue, red and black, implying copy number, mRNA expression, and methylation, respectively.

https://doi.org/10.1371/journal.pone.0195070.g007
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Glioblastoma is previously observed on the overall and progression-free survival [37]. CCND1

belongs to the Cyclin D family of cell cycle regulators, which are known to be up-regulated

and amplified in malignant glioma [38]. Similarly, MDM2 the inhibitor of the tumor suppres-

sor TP53, is established to be a candidate gene associated with short progression [39]. TP53

copy-number itself is associated with poor progression of GBM via deletion [40]. Although,

there is no evidence of BRAF amplification in GBM, a previous study established that BRAF

amplification via gene duplication event activates the MAPK signaling in low-grade glioma

[41]. Moreover, CDKN2C is a well characterized tumor suppressor gene associated with many

cancers and known to be deleted in Glioblastoma [42]. On the other hand, GRB2 is a key pro-

tein in epidermal growth factor receptor signaling in the Glioblastoma tumoroginesis pathway

[43].

Clique analysis: The important cliques are identified ass those which have significant mar-

ginal clique inclusion probabilities. The clique analysis depicted multiple interesting two-way

interactions. In certain cases, the multiple cliques containing the same molecular probe but

with different partners have highly significant marginal inclusion probabilities. For instance

AKT1 (METH) clique interaction with many different molecular probes is significant

(Table 6). These cliques constitute both tumor suppressing as well as activating interactions.

The cliques involving AKT1 (METH), PTEN (mRNA) and AKT1 (METH), PIK3R2 (mRNA)

can be construed as tumor suppressing, while cliques involving AKT1 (METH), CCND1

(mRNA) and AKT1 (METH), GRB2 (CN) probably are tumor activating. The diverse biologi-

cal functionality of the cliques represent the inherent biological subtypes within GBM [44].

Neighborhood analysis: In addition to detecting important prognostic markers for GBM,

we also examine the estimated graph (panel (c) of Fig 1) within and across platforms. We take

a closer look at the neighborhood of GRB2, which plays a central biological role in this molecu-

lar network as a trigger of the RAS signaling upon the activation of upstream receptor tyrosine

kinase family members. The presence of three important tumor suppressor genes of GBM in

the neighborhood of GRB2 (RB1, CDKN2B and PIK3CG) is interesting, although they have

no direct interaction with GRB2. RB1 and PIK3CG seem to lose their functionality through

DNA methylation, while CDKN2B through copy number loss, enabling the RTK/RAS activa-

tion cascade via GRB2. These events reinforce the previous illustration in GBM that hyper-

methylation and deletion of RB1 and CDKN2B respectively contribute to the loss of tumor

suppressor function [45]. The partial correlations of genes between the platforms is demon-

strated via clustering heatmaps in Fig 8. From the Figure, it is clear that there is a enrichment

of positive correlations between the mRNA and copy number data, and an enrichment of neg-

ative correlations between the mRNA and DNA methylation data, which further supports our

biological–hypothesis driven integrative models.

We performed additional data analysis where (a) no graph information was used (κ = 0);

and (b) only 75% confidence was placed on the prior graph knowledge for within platform

interactions, which was implemented by setting (κ + ap)/(κ + ap + bp) = 0.75. The results are

presented in detail in S2 Appendix and point to considerable overlap between the different

analyses results.

Table 6. Cliques containing AKT1(METH). MIP stands for marginal inclusion probability.

Clique members MIP Clique members MIP

AKT1(METH) CCND1(mRNA) 0.86 CDKN2A(METH) AKT1(METH) 0.69

AKT1(METH) PTEN(mRNA) 0.84 AKT1(METH) TP53(mRNA) 0.68

AKT1(METH) PIK3R2(mRNA) 0.81 AKT1(METH) RAF1(mRNA) 0.68

AKT1(METH) GRB2(cn) 0.71 AKT2(METH) AKT1(METH) 0.67

https://doi.org/10.1371/journal.pone.0195070.t006
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Discussion

We propose a novel multi-scale Bayesian structured variable selection approach, which is

equipped to simultaneously learn the graphical structure from mixed-scale data sources in the

presence of prior knowledge, and subsequently uses such structure learning to inform variable

selection in a manner that controls for collinearity and multiple testing. In this paper, we

focused on integrating (more upstream) copy number, mRNA expression and methylation

markers associated with cancer progression; a future task is to extend our methods to account

for downstream post-transcription and translational events such microRNA and proteomics

markers. This will provide vital clues towards understanding the complete genomic landscape

of cancer development and progression. Although we consider a cancer genomics application

in this paper, we note that the application of this work is very general and can be applied to

any regression setting with heterogeneous covariates lying on a graph.

In this paper, we worked with Level 3 TCGA data, where all the genomic platforms have

been a priorimatched at the gene-level which was used in all our downstream analyses. While

this suffices for most genomic platforms, it might be useful to look at the more granular intra-

genic correlations e.g. CpG sites for DNA methylation and SNPs for copy number data. For

example, for methylation data we can choose the CpG islands within the gene body as well as

the “shores” (say +/- few kilobase pairs outside the gene body) that might be better representa-

tive of the methylation profile for a gene, especially in assessing associations with other geno-

mic platforms e.g. expression [46]. However, this would increase our covariate space and

graphical model parameters considerably, given multiple CpG sites per gene. In addition, we

can use the genomic locations for inform our prior edge calibration parameter—that we pre-

sume might induce some sparsity. We leave this task for future consideration.

Fig 8. Left heatmap: Hierarchical clustering of correlation between the mRNA and copy number data; right heatmap: Hierarchical clustering of

correlation between the mRNA and DNA methylation data. Green and red pertains to positive and negative partial correlations respectively.

https://doi.org/10.1371/journal.pone.0195070.g008
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The proposed approach could be further improved by accounting for non-linear graphical

connections, as well as non-linear relationships between the outcome and predictors. Although

the proposed method relies on cliques in the estimated graphical structure to account for col-

linearity, the approach can be generalized more incomplete connections between variables if it

is possible to define such subgroups in a meaningful manner. Moreover, in practical applica-

tions where tumor heterogeneity is present, it is reasonable to expect subgroups of subjects cor-

responding to different but unknown tumor types to have different gene networks. In such

cases, the proposed approach needs to be extended to unsupervised clustering approach incor-

porating a distinct gene network for each cluster. In addition, another potential improvement

would be to propose a more efficient computational strategy which allows for greater scalability

in terms of the number of covariates, which would enable us to construct genome-wide net-

works. In summary, network science is a rapidly evolving field with the main focus on the

exploration of structural properties and dynamical behaviors of complex networked systems

[47]–[49], and the proposed approach makes an important and timely contribution to this

research area.
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