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Abstract

Lolium perenne L. (perennial ryegrass) is the most important pasture grass species in tem-

perate regions of the world. However, its growth is restricted in summer dry environments.

Germplasm screening can be used to identify accessions or individual plants for incorpo-

ration into breeding programs for drought tolerance. We selected nine perennial ryegrass

accessions from different global origins and from a range of climatic and environmental con-

ditions. In addition, the perennial ryegrass cultivar ‘Grasslands Impact’ was chosen as a ref-

erence. The accessions were grown for 360 days in a controlled environment through six

consecutive drought stress and recovery cycles. We observed intraspecific differences in

drought stress responsiveness for shoot biomass and survival from the third stress cycle.

An accession from Norway had 50% more shoot dry matter than the next best-performing

accession after six drought cycles. Compared with the reference cultivar ‘Grasslands

Impact’, shoot dry matter of the accession from Norway was more than seven times higher

after six drought cycles, indicating superior performance of this ecotype under drought

stress. Drought tolerance was characterized by osmotic adjustment and higher relative leaf

water content at low soil moisture levels. Furthermore, the findings of this study identify sol-

ute potential as an early predictor of drought stress tolerance. These intraspecific differ-

ences can be used in breeding programs for the development of drought-tolerant perennial

ryegrass cultivars.

Introduction

A high proportion of milk and meat production in the world is supported by temperate grazed

forage grasses dominated by perennial ryegrass [1]. This cool season, self-incompatible diploid

(2n = 2x = 14) outcrossing species from the Poaceae family is native to Europe, Asia and north-

ern Africa [2]. It is broadly adapted and cultivated as a forage species in the temperate regions

of the world due to its high growth rate under fertile conditions. It is easy to establish and to

manage with tolerance to animal treading and hard grazing and has comparatively high palat-

ability and digestibility [1, 3]. However, perennial ryegrass fails to thrive under hot dry sum-

mer conditions [4–6], which limits its range of adaptation. Moisture limitation is the major
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environmental stress in agriculture worldwide and in a changing climate is expected to inten-

sify in the future, which may constrain the yield and quality of perennial ryegrass [7].

Improvement of stress tolerance in perennial ryegrass is important for sustainable temper-

ate forage production [8]. There are numerous tolerance mechanisms in plants under water

deficit conditions [9]. Leaf responses to water deficit are initially characterised by a reduction

in leaf length and width, followed by leaf abscission to reduce water loss via transpiration [10].

Osmotic adjustment may occur, whereby turgor potential is maintained to a degree by active

accumulation of organic and inorganic solutes in cells. This reduces the osmotic potential and

improves water retention in the cells under desiccation stress, which enables plants to continue

to grow. Accumulation of compatible solutes protects enzymes and plasma membranes in the

cytoplasm, whereas inorganic ions regulate the osmotic potential of the vacuole [9–11].

Osmotic adjustment under water deficit conditions benefits cell elongation and stomatal open-

ing during the day. Several studies have linked osmotic adjustment to yield protection under

drought stress [12–16]. A recent review of 12 crops reported osmotic adjustment as a prime

adaptive trait under water deficit conditions [17].

Perennial ryegrass responses to soil moisture deficit have been extensively studied because of

the economic importance of this species. Studies have investigated soil water extraction and

water use [18, 19], the relationship between leaf ridging and desiccation stress [20], responses to

sudden or gradual exposure to water deficits [21], the importance of spring management to

improve drought tolerance [22] and recovery growth after severe soil moisture deficits [23]. The

symbiotic relationship of endophytes and perennial ryegrass has been investigated in the context

of drought stress, with some indications of possible stress-protective effects for perennial ryegrass

by the endophyte [24–28]. Other studies used a transgenic approach to examine drought stress

responses in perennial ryegrass [29–31]. Selection based on drought recovery has also been iden-

tified as a promising trait for breeding tolerance in this species [32]. However, effective drought

tolerance in perennial ryegrass is difficult to achieve and detailed studies of physiological acclima-

tization to soil moisture deficits are needed, especially under long-term drought stress exposure.

Despite extensive research in perennial ryegrass breeding [33], currently there are no iden-

tified traits linked to drought tolerance in this species. Introgression with deeper rooting Medi-

terranean germplasm has been suggested as a means of introducing drought tolerance, to

provide rapid regrowth in autumn into the winter season and high quality vegetative growth

until late spring [34, 35]. However there is potential to identify suitable traits within ecotypes

for plant breeders to develop drought-tolerant cultivars [36]. One difficulty is the need to

screen large numbers of germplasm or ecotypes under multiple drought cycles, which requires

time and resources. If this could be minimized by the identification of potential mechanisms

early in the screening process, then faster progress to identify plants with superior perfor-

mance under water deficit conditions could be made.

The aims of this study were to (i) identify germplasm with potential drought-tolerant phe-

notypes and (ii) to discern physiological attributes in such germplasm. This was done during

multiple drought and irrigation cycles to examine the relative performance of phenotypes and

physiological markers over time. Experimentally, accessions selected from a wide climatic and

geographic range were established in two rhizotrons. Their agronomic and physiological per-

formance were assessed during six drought cycles over 360 days.

Materials and methods

Germplasm accessions

Nine accessions from the Margot Forde Forage Germplasm Centre, New Zealand, were

selected to evaluate germplasm from a range of climatic and environmental conditions. The
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accessions were A6889 (‘Otago/Southland’, New Zealand), A6932 (‘Portugal’), A7798

(’France’), A14499 (’Turkey’), A14542 (‘Italy’), A15323 (‘Algeria’), A15334 (‘Cyprus’), A15369

(‘Tunisia’), A17183 (‘Norway’). In addition, the cultivar ‘Grasslands Impact’ (‘Impact’) was

chosen as a reference. Detailed information about their acquisition and inclusion in the collec-

tion is given in the supporting information (S1 Appendix).

Growth room and media

The experiment was conducted in a 5.0 X 2.4 m Conviron BDW120 growth chamber (Lincoln

University Biotron facility, New Zealand) equipped with metal halide lamps (Model MS400W/

HOR, Venture) and incandescent bulbs (100W, Philips). Lights were mounted above a clear

Perspex barrier, and a downward airflow distribution system maintained the ambient (350–

400 ppm) CO2 conditions. Underneath the growth room, two rhizotrons (107 cm length X 80

cm width) provided the soil environment for the plants in the growth room. The rhizotrons

were filled with soil to form the top soil horizon “A” (24 cm) and the subsoil horizon “B” (24

cm) with a layer of sand (2 cm) under horizon “B”. A Templeton silt loam soil or Udic Haplus-

tept [37] was sieved to remove stones and large pieces of plant material. It was then processed

through a soil shredder. Horizon “A” was blended with sand in a 4:1 ratio (soil: sand by vol-

ume) and horizon “B” at a 5:2 ratio. Each horizon was recreated within each rhizotron to

reflect bulk density equivalent to that found in the field. The resulting rhizotrons were placed

in the controlled environment and the soil profiles were stabilized for more than 11 weeks by

watering the rhizotrons until drainage occurred.

Germination of accessions

To establish seedlings for transplanting into the rhizotrons, a single seed was sown into each

cell plug of cell trays and these trays were watered and germinated in containment in the Bio-

tron. After emergence, the seedlings were regularly watered to ensure there was no soil mois-

ture deficit at any point in the seedling stage. Hoagland’s solution [38] was added at least every

two weeks to ensure seedlings were never nutrient-deficient. The environmental conditions

within the growth room during seedling and initial sward establishment were set to 15˚C air

temperature and 8˚C soil temperature to obtain 99% seed germination [39]. The photoperiod

was 16/8 h (day/night) and the relative humidity was maintained at 70%. A 30 min ramped

twilight was applied either side of the daylight hours. The light intensity at plant level was

463 μmol.m-2.s-1 measured with a LI-COR1 Radiation Sensor (LI-250A Light Meter,

Turfschipper 114, 2292 JB Wateringen, Netherlands).

Microsward establishment

Seedlings selected for transplanting were trimmed to a uniform height of 2mm and contained

2–3 tillers. They were then planted in microswards of six plants per swards in two rhizotrons

in which each contained 20 plots. The perennial ryegrass accessions were arranged in random-

ized blocks. The rhizotrons accommodated 2 X 185 plants, including “Fill” plants, which pro-

vided four replicates across the two rhizotrons. Time Domain Reflectometry rods of 20 cm

length were inserted to measure soil moisture content (Trace systems, Model 6050X1, Santa

Barbara, California, USA).

Drought cycles

The rhizotrons were watered continuously during the 45 days of establishment phase to ensure

vigorous seedling growth. The duration of the experiment, soil moisture profile, drought
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cycles, irrigation applied over the experiment period and harvest dates are shown in Fig 1 and

a detailed summary in S1 Table. The study has six drought cycles. These are defined as the

period between the last day of irrigation until the final shoot biomass harvest at the end of each

regrowth period.

The duration of drought cycles ranged from 15 to 58 days. This reflects the variability of

drought periods experienced in temperate regions such as the dairy growing areas of New Zea-

land, which rely on perennial ryegrass as their base pasture for grass-fed milk production [40].

In these regions the frequency of drought events lasting more than 30 days is expected to

increase under future climate scenarios [41, 42]. Accordingly, the duration of drought stress

was further extended to simulate such scenarios. The first harvest was carried out before onset

of the first drought cycle on 18/9/2013. Drought Cycle 1 was initiated on 20/09/2013, with soil

temperature set at 25˚C and air temperature maintained at 15/25˚C (night/day) in all six

drought cycles (S1 Table). During the first cycle, the plants were harvested on 3/10/2013, after

which the plants were not re-watered. A final harvest for Cycle 1 occurred on 4/11/2013 at

approximately 5% V/V soil moisture content. The rhizotrons were then re-watered to field

capacity (30% V/V) over 14 days. Drought Cycle 2 was commenced on 20/11/2013. Field

Fig 1. Description of the experiment, including soil moisture, irrigation application, drought cycles and harvest dates of microswards of

perennial ryegrass accessions. Plants were grown in rhizotrons under controlled environmental conditions at Lincoln University, New Zealand. The

shaded area represents the establishment phase; ‘l’ bars represent irrigation application rates. Drought cycles are shown as horizontal lines marked

above the figure. Arrows (#) represent harvest dates during and at the end of each stress cycle. Duration of establishment periods and stress cycles are

shown below each stress cycle (---).

https://doi.org/10.1371/journal.pone.0194977.g001
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capacity was identified as irrigating the rhizotrons with 3 Litres of water at 2–3 hour inter-

vals until drainage of water through the bottom of the rhizotrons was detected. The re-

growth phase lasted 58 days until harvest on 17/01/2014. Following this harvest, rhizotrons

were left without watering for four days at ~4% V/V soil moisture. Then the rhizotrons

were re-watered to field capacity over a 19-day period. Drought Cycle 3 was initiated on 11/

2/2014 and ended on 24/3/2014 with a final harvest. The rhizotrons were re-watered to field

capacity before initiating drought stress on 20/04/2014. Due to infestation with thrips,

Cycle 4 was completed after 22 days with a shoot dry matter harvest on 12/05/2014. The rhi-

zotrons were watered to field capacity before initiating the fifth drought cycle on 28/5/2014.

This cycle was suspended after the rhizotrons were flooded due to the breakdown of the

growth room facility on 13/6/2014. This caused a delay in initiating the next drought cycle,

because it took a prolonged period to re-water the rhizotrons back to comparable soil mois-

ture levels. The watering continued at a low rate until 14/08/2014 to maintain both rhizo-

trons at similar moisture levels. The final drought cycle, Cycle 6 was initiated on 14/08/2014

and was completed on 15/9/2014, which ended the experiment 360 days after establishment.

Hoagland’s solution was added during every drought cycle to ensure adequate nutrient sup-

ply to the plants [38].

Measurements

Dry matter from plants from each plot was harvested at the end of each drought cycle. The har-

vested plants were subsequently dried at 65˚C to constant weight and total dry matter from

each accession was calculated. Plant survival rate was also calculated at the end of each drought

cycle, based on regrowth and dry matter production. Based on the criteria in Table 1, visual

appearance of plants was used as a non-destructive measure to record the performance of

plants from each accession during each drought cycle. The leaf extension rate was measured

weekly on two tagged tillers of two different plants of each plot. Measurements were taken

until the appearance of the ligule, which indicated that the leaf was fully expanded. The mea-

surement was then shifted to the next newly emerging leaf on the same tiller. The marked til-

lers were replaced with new tillers in each irrigation period.

Two fully expanded leaves per plant were harvested to measure relative water content

(RWC) and leaf area (LA) to minimise destructive measurements during the drought cycles.

The harvest of leaves for different measurements coupled with senescence meant that there

were fewer leaves towards the end of each drought cycle available for physiological measure-

ments. Therefore, length and width of leaves harvested for RWC were measured each time and

recorded to quantify the leaf area.

To calculate leaf area (LA), a fully expanded leaf from each plant was excised from the plant

and the lamina area was scanned using a Leaf Area Meter (AM 300, 12 Spurling Works, Pindar

Road, Hoddesdon, Herts EN110DB,UK). The values obtained from the leaf scanner were used

to determine the relationship between leaf length and leaf width to estimate leaf area [43].

Table 1. Definitions of the plant grading scores used.

Grade Definition

0 Dead

1 One or few live tillers

2 More live tillers but growth less than 25% of best performing plants

3 Plant growth 25%-50% of best performing plants

4 Plant growth 50%-75% of best performing plants

5 Plant growth 75%-100% of best performing plants

https://doi.org/10.1371/journal.pone.0194977.t001
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RWC was calculated using the following equation,

RWC ¼
ðFM � DMÞ
ðSM � DMÞ

� �

x100 ð1Þ

FM is leaf fresh Mass (g), DM is leaf dry mass (g), and SM is the saturated leaf mass (g) [44].

Leaf samples were collected for osmotic potential determination [45] were collected in 1.7

mL microfuge tubes. These were prepared by placing a metal mesh in the bottom of each tube.

The leaves were placed on top of the metal mesh, so that the leaf sap could be collected at the

bottom of the tube for measurements of cell sap osmolality (vapor pressure osmometer, WES-

COR, Utah, USA). These microfuge tubes with leaf samples were snap frozen using liquid

nitrogen. The tubes were subsequently spun at 12,200 g for 5 minutes to extract the leaf cell

sap immediately upon thawing. Solute potential (Cπ) was calculated from the osmolality of

the leaf sap (mmol.kg-1) using the following equation,

Cp ¼ � RTcj ð2Þ

where, RT = -0.002437 m3 MPa.mol-1 at 20˚C and cj is the total solute concentration or osmo-

lality (mmol.kg-1) [46]

To understand the active accumulation of compatible solutes, adjusted solute potential was

calculated. For this, the adjusted solute potential (CS100) was estimated using the following

equation,

Cs100 ¼ Cs
RWC � 0:1

1 � 0:1
ð3Þ

where Cs is solute potential and 0.1 is the estimated water content in apoplast tissue [47].

Endophyte detection was carried out following established methods [48]. Due to insuffi-

cient seed numbers, endophyte presence could not be tested in A6932 (Portugal) and A15334

(Cyprus). Seeds from the other accessions were sown in small black pots (7 cm x 7 cm x 8 cm).

The plants were grown to the 3–4 tiller stage, then removed from the soil and the main tiller

was cut from the base. Necrotic sheaths were carefully removed from the main tiller. The tillers

were cut transversely and the cut end was pressed onto a nitrocellulose membrane (NCM)

(0.45 mm) [48]. This results in a circular moist mark on the NCM. The blotted paper was

stored at 4˚C until processing. Ryegrass tillers of known endophyte status were blotted as posi-

tive and negative controls. The NCM was developed and endophyte detection was carried out

as described previously [48].

Statistical analysis

Dry matter production from repeated harvesting of the same plants over the period of the

experiment was analysed by REML (Restricted Maximum Likelihood) in Genstat Version

Release 16.1 (Copyright 2013, VSN International Ltd.) to examine the interaction of accessions

and harvest dates over time. Furthermore, dry matter production was analysed with REML

using residuals from the previous harvest as the covariate to examine the contribution of plant

death to dry matter production and the variation among residuals. Subsequently, total accu-

mulated dry matter and dry matter production from individual harvests were analysed by one-

way Anova in randomized blocks to compare the performance of each accession individually

at each time point. Best subset regression was carried out using the Minitab 17 Statistical Soft-

ware (2010), with the area as the response variable using length and width as predictors to gen-

erate leaf area. All physiology measurements were analysed by one-way Anova, and Fisher’s

protected LSD was used for means separation when significant. Two-way Anova using
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accessions and date was used to analyse adjusted solute potential from the final drought cycle.

As the drought progressed, some accessions died. Accessions with only 0, 1 or 2 remaining live

replicates were removed from the analysis at each time point. SEMs from one-way Anova anal-

yses are shown where differences among accessions (α = 0.05) were detected at a given date,

and the highest SEM across dates is shown in figures where no date-specific differences among

accessions were detected in the Anova. Relationships between parameters were tested using

regression analysis and Pearson correlation coefficients in Minitab 17 (2010).

Results

Shoot dry matter accumulation

There was an interaction (P<0.001) between accessions and harvest date for plant dry matter

production (Fig 2). Analysis using residuals from the previous harvest as a co-variate showed

differences in dry matter production on 3/10/2013 and 28/03/2014 to 15/9/2014 (P<0.001).

The accession ‘Norway’ had the highest (P<0.001) mean shoot biomass accumulation

(11 ± 1.20 g/plant) after six stress cycles, whereas ‘Impact’ only had 1.5± 1.20 g/plant. The dry

matter accumulation of ’Turkey’ was second-highest (7.3 ± 1.20 g/plant, Fig 2).

Plant survival

Plant survival (Fig 3) after the first two harvests, before imposing drought stress at Cycle 1,

was 100% across all accessions. No difference in plant survival rate was observed after Cycle 1

Fig 2. Shoot dry matter accumulation of 10 perennial ryegrass accessions at nine harvest dates. Error bars are LSDs for accessions (a),

harvest date (b) and accessions x harvest date (c) from REML analysis. Bars with letters in common are not different (α = 0.05) in the Anova.

https://doi.org/10.1371/journal.pone.0194977.g002
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(P = 0.45), Cycle 2 (P = 0.71) and Cycle 3 (P = 0.27). However a trend for differences in plant

survival was observed after Cycle 3 (P = 0.06) and differences (P<0.05) were observed during

Cycle 4, where the ‘Otago/Southland’ accession (68.8 ± 9.23%) had the highest survival rate.

The lowest survival rate was observed in the ‘Portugal’ (16.67 ± 9.23%) accession. The plant

survival rate of the ‘Norway’ accession remained stable from Cycle 3 (37.5 ± 10.64%) to the

end of Cycle 6 (37.5 ± 8.95%).

Physiology

Initial grading (Table 1 and Fig 4) at the middle of Cycle 2 showed ‘Norway’ had the highest

(P<0.05) size score (4.3 ± 0.44) and ‘Tunisia’ the lowest (2 ± 0.44). The size grades of the acces-

sions were not different (P = 0.13) at the beginning of Cycle 2, whereas ‘Norway’ had a high

score (3± 0.51) by the end of Cycle 2. The highest (P<0.05) grading values during Cycles 4, 5

and 6 were shown by the ‘Norway’, ‘Otago/Southland’, ‘Turkey’ and ‘Italy’ accessions. At the

end of Cycle 6, ‘Norway’, ‘Otago/Southland’, ‘Turkey’ and ‘Italy’ had the highest size scores

(p<0.001) and ‘Tunisia’, ‘Cyprus’, ‘Impact’, and ‘Portugal’ the lowest (P<0.01, 0.25 to

1 ± 0.54).

By the end of Cycle 5, ‘Norway’ tended to have the longest (P = 0.07) leaf extension

(443 ± 49.8) and ‘Impact’ the shortest (Fig 4B). This pattern continued through Cycle 6 with

an indication of longer (P = 0.06) leaf extension (226 ± 25.6) also shown for ‘Norway’.

Fig 3. Plant survival of perennial ryegrass accessions at the end of each drought cycle. Error bars for plant survival are SEMs from one-way

Anova in randomized blocks and are shown where differences (α = 0.05) were detected at a given date. # indicates shoot harvest date.

https://doi.org/10.1371/journal.pone.0194977.g003
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The highest adjusted R2 (R2
adj = 0.82) for leaf area per leaf was generated using length as a

predictor (Eq 4). The constant (-147) resulted in negative leaf area when leaf length was less

than 46 mm. However, this equation was accepted because the adjusted R2 decreased (R2
adj =

0.75) when the intercept was forced through the origin.

Area ¼ � 147þ 3:2ð�0:27Þ � Length ð4Þ

The leaf area of these accessions were not different (P = 0.35) at the end of Cycle 1 (Fig 4C).

‘Norway’ had the largest leaf area (502 ± 49.8 mm2, P<0.05) at the beginning of Cycle 2 and

‘Algeria’, ‘Impact’ and ‘Turkey’ were not different to ‘Norway’. At the end of Cycle 3, the leaf

areas of the accessions ranged from 265 to 457 ± 43.6 mm3 and there was a trend (P = 0.055)

for ‘Norway’ to have the largest area. At the beginning of Cycle 4, ‘Norway’ had the largest

(P<0.05) leaf area of 545 ± 55 mm3, whereas ‘Turkey’ had the largest leaf area of 254 ± 21.2

mm3 at the beginning of Cycle 5. There was no difference in leaf area during Cycle 6 among

the surviving accessions.

‘Turkey’ had the highest (P<0.001) RWC (35 ± 1.7%) at the end of Cycle 1 and accessions

‘France’, ‘Norway’ and ‘Algeria’ were not different to Turkey (Fig 4D). ‘Portugal’ and ‘Otago/

Southland’ had the lowest RWC (18% and 17 ± 1.7%). During Cycle 2, RWC was measured at

three time points under progressive drought, and accessions were not different (P = 0.87) from

each other. At the end of Cycle 3, the accessions that showed the highest (P<0.05) RWC were

‘Algeria’, ‘Norway’, ‘Turkey’, ‘Otago/Southland’ and ‘Italy’ and this ranged from 70% to

75 ± 8%. ‘Cyprus’ had the lowest RWC (20 ± 8%) at the end of Cycle 3. At the end of Cycle 4,

RWC ranged from 54% in Cyprus to 76 ± 7% in ‘Norway’. In Cycles 5 and 6, the only surviving

accessions were ‘Norway’, ‘Otago/Southland’, ‘Turkey’ and ‘Italy’ and these were not different

to each other in their RWC (P = 0.96) at any time point.

Solute potential was not different (P = 0.75) among accessions during Cycle 2 (Fig 4E).

‘Norway’, ‘Italy’, ‘Turkey’ and ‘Otago Southland’ had similar solute potentials from Cycles 3 to

6. The solute potential ranged from (-1.6 and -1.3 ± 0.05 MPa) at the beginning of Cycle 6. The

solute potential at the end of Cycle 6 ranged between -4.2 and -3.7 ± 0.17 MPa among the sur-

viving accessions.

Adjusted solute potential

The adjusted solute potential of the surviving accessions in Cycle 6 became more negative

(P<0.001) as the drought stress progressed from 12/8/2014 to 9/9/2014. There was no differ-

ence (P = 0.35) in this response among the accessions (Fig 5).

Relationships

There was an association between accumulated shoot dry matter at the end of Cycle 6 and

relative water content (r = 0.72, P<0.0.5) after 26 days of drought in Cycle 6 (Fig 6A). Accu-

mulated shoot biomass after six drought cycles was inversely related to adjusted solute

potential (r = -0.75, P<0.05) after 26 days of drought in Cycle 6 (Fig 6B). Furthermore,

there was a tentative relationship (r = -0.56, P = 0.08) of the amount of dry matter that had

accumulated after six drought cycles with solute potential after the recovery of the plants

from Cycle 1 (Fig 6C).

Fig 4. Fig 4A: Plant grades (growth scores), Fig 4B: Accumulated leaf extension (mm/rotation), Fig 4C: Leaf size (area per leaf), Fig 4D: Relative water

content (%), and Fig 4E: Solute potential (MPa) of perennial ryegrass accessions during six drought cycles. Error bars are SEMs for accessions at a

given date (Fig 4A, 4C and 4D) or across harvest dates (Fig 4B and 4E) from one-way Anova. # indicates shoot harvest dates.

https://doi.org/10.1371/journal.pone.0194977.g004
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Discussion

Accessions of perennial ryegrass selected from a wide climatic and geographical range were

successfully established in two rhizotrons, which enabled six drought cycles to be imposed to

evaluate plant performance over 360 days. The extent of the desiccation stress and range of

plant material chosen resulted in the identification of ecotypes with superior survival. This

material provides opportunities for plant breeders to improve drought tolerance in perennial

ryegrass. Similarly, ecotype germplasm has been used in the development of drought-tolerant

intraspecific pair crosses of white clover, which is frequently grown as companion species with

perennial ryegrass [49]. Wild or landrace germplasm has also been proposed for the improve-

ment of winter hardiness in perennial ryegrass [50]. Future studies could investigate the

genetic distances between the accessions used.

By the end of the experiment, the highest total shoot dry matter accumulated in the acces-

sion from ‘Norway’ (A17183). As expected, the accessions with high shoot dry matter accumu-

lation at the end of the experiment were those with the highest survival rate and plant grades.

Plant survival represented the number of regenerated plants, but this does not indicate their

vigour or morphological status. ‘Norway’ had the highest yield but lower survival than the

New Zealand accession ‘Otago/Southland’ at the end of Cycle 6. However its growth was more

vigorous as indicated by higher plant size grades (Fig 4A), leaf extension (Fig 4B) and leaf area

(Fig 4C) from drought cycle 3 onwards. At the end of Cycle 2, RWC was low (Fig 4D) in all

accessions, indicating that the severity of water deficit used in this experiment was high when

compared with other studies [26, 51, 52]. The severe drought stress experienced in Cycle 2 and

Fig 5. Adjusted solute potential of surviving perennial ryegrass accessions in the final drought cycle. Error bars are SEMs for date (a) accession

(b) from two-way Anova.

https://doi.org/10.1371/journal.pone.0194977.g005
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duration of re-watering are characteristic of drought stress post-grazing. This appeared to con-

tribute to the death of plants and caused a delay in the recovery phase of Cycle 3 in which

plant loss was also high. It is possible that dry matter accumulation of ‘Norway’ benefitted

Fig 6. Relationships of accumulated shoot dry matter of perennial ryegrass accessions at the end of six drought cycles with relative water content

(Fig 6A) and with adjusted solute potential after 26 days of drought in Cycle 6 (Fig 6B), as well as with solute potential after recovery from Cycle 1 (Fig

6C).

https://doi.org/10.1371/journal.pone.0194977.g006
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from the shorter drought cycles that inadvertently occurred in Cycles 4 and 5 (Fig 2) which

lasted 22 and 15 days, respectively. However, the availability of water was similar for all the

accessions and it is notable that ‘Norway’ had comparatively longer leaves and more vigorous

tiller regeneration. This is consistent with previous research for tiller survival ranking through

winter, where ‘Norway’ had a similar ranking to the top eight superior performing accessions

[50]. The dry matter accumulation of ‘Norway’ was also characterised by generally high levels

of RWC (Fig 4D) and of solute accumulation (Fig 5) during the drought cycles. Taken

together, this suggests morphological and physiological acclimation to drought in ‘Norway’.

High RWC and unchanged solute potential indicates the absence of osmotic stress during the

initial exposure to water deficit in ‘Norway’. High RWC levels from drought cycles 3 to 6

enabled ‘Norway’ to maintain a degree of leaf growth and protection of cellular components.

Osmotic adjustment is a drought tolerance strategy in plants in which active accumulation

of compatible solutes decreases the solute potential and therefore promotes water uptake [26,

45]. The solute potential values (Fig 4E) after 30 days of water withdrawal were consistent with

solute potential values observed elsewhere after 20 to 40 days of water withdrawal in perennial

ryegrass [53]. At that stage, the leaf water content (Fig 4D) was only ~40% in most accessions.

The results suggest that the surviving accessions preserved their meristems and the integrity of

metabolic functions by tolerating decreased leaf water content via accumulation of compatible

solutes that acted as osmolytes and osmoprotectants and supported their recovery after water

was withdrawn. This is reflected by the reduced adjusted solute potentials in these accessions

(Fig 5). The accumulation of compatible solutes protects the protein-synthesizing machinery

against the damage caused by water withdrawal. This in turn helps to repair the stress induced

damage more efficiently and rapidly than the rate of damage occurring [54].

Dry matter accumulation was related to relative water content (Fig 6A) and adjusted solute

potential (Fig 6B), illustrating that sustained drought tolerance in perennial ryegrass was

effected by osmotic adjustment. Osmotic adjustment can be the prime adaptive trait that sup-

ports plant yield under soil water deficit conditions [17]. This is further substantiated by the

observation that the drought-resistant perennial ryegrass accessions were able to retain more

water in their leaves during periods of water deficit (Fig 6B). These relationships suggest that

reduced adjusted solute potential could be a potential screening method to identify high yield-

ing ecotypes in the field after experiencing drought stress during summer. A further relation-

ship (Fig 6C) gave an indication that stress responsiveness after six drought cycles was linked

to plant solute potential after Cycle 1 highlighting solute potential as possible early predictor of

long-term drought tolerance. This method could thus be incorporated into germplasm screens

for drought tolerance, using exposure to a single drought stress period.

Perennial ryegrass accessions sourced from the Mediterranean (‘Italy’, ‘Portugal’, ‘Turkey’,

‘Tunisia’ and ‘Algeria’) experience in their natural habitat mild winters and dry and warm

summers [55]. In contrast to the Mediterranean zone, the significantly colder provenance of

the ‘Norway’ accession includes frozen ground for extended periods of the year [56]. These

conditions also mean that plants experience freezing-induced dehydration [57]. The Norwe-

gian accession was able to survive and remain relatively productive in this study, and this

could be due to cross talk between stress signalling pathways, providing cross-tolerance for

improved physiological function to survive and maintain relative productivity under sustained

drought exposure [58–61]. Finally, the involvement of the endophyte symbiosis in drought tol-

erance [24–26, 62–64] deserves consideration. Analysis of the endophyte symbiosis of these

accessions (S2 Table) showed no infection in ‘Norway’, which gives confidence to exclude

endophyte symbiosis as a potential drought tolerance mechanism in ‘Norway’. One possible

explanation for our findings could be that ‘Norway’ is late flowering and thus could have

invested more carbon into vegetative growth compared to the other accessions. However, in
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this experiment, flowering was prevented in all accessions by removal of flowering buds. Fur-

thermore, and similar to conditions under grazing in the field, the plant material was removed

by cutting at regular intervals, thus bringing the accessions to a common starting point at each

treatment cycle [65].

Conclusion

Differential plant desiccation responses only became apparent after several drought cycles. If

the study had finished after the first few cycles, such differences would not have been mea-

sured. The results from this work suggest that analysing accessions under multiple drought

cycles for an extended period is required to identify drought-tolerant phenotypes. Further,

screening ecotypes from cold climate backgrounds could potentially identify other drought-

tolerant perennial ryegrass phenotypes. Collectively, ‘Norway’ showed highest productivity

from drought Cycles 3 to 6, which highlights its superior performance under repeated drought

stress due to its plant survival rate, leaf extension, RWC and osmotic potential. These results

suggest merit for using such ecotype accessions as potential candidates for further investiga-

tion in breeding programmes towards drought tolerance in perennial ryegrass. Further, RWC

and adjusted solute potential were identified as particularly relevant predictors of plant perfor-

mance under drought.
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ture Science. 2017; 68(2):176–87.

26. He L, Hatier JHB, Matthew C. Drought tolerance of two perennial ryegrass cultivars with and without

AR37 endophyte. New Zealand Journal of Agricultural Research. 2017:1–16.

27. Kane KH. Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions

from the Mediterranean region. Environmental and Experimental Botany. 2011; 71(3):337–44.

28. Cheplick GP. Recovery from drought stress in Lolium perenne (Poaceae): Are fungal endophytes detri-

mental. American Journal of Botany. 2004; 91(12):1960–8. https://doi.org/10.3732/ajb.91.12.1960

PMID: 21652344

29. Han L, Li X, Liu J, Zeng H. Drought-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained

via particle bombardment gene transformation of CBF3/DREB1A gene. Acta Horticulturae. 2008;

783:273.

30. Zhang Z-X, Zheng Y-Z. Overexpression of nicotianamine synthase (NAS) gene results in enhanced

drought tolerance in perennial ryegrass. Biotechnology & Biotechnological Equipment. 2008; 22

(4):938–41.

31. Patel M, Milla-Lewis S, Zhang W, Templeton K, Reynolds WC, Richardson K, et al. Overexpression of

ubiquitin-like LpHUB1 gene confers drought tolerance in perennial ryegrass. Plant Biotechnology Jour-

nal. 2015; 13(5):689–99. https://doi.org/10.1111/pbi.12291 PMID: 25487628

32. Westermeier P, Hartmann S, editors. Varying growth behavior of Lolium perenne L. clones under

drought conditions and after rewatering. The multiple roles of grassland in the European bioeconomy

Proceedings of the 26th General Meeting of the European Grassland Federation, 4–8 September 2016;

2016; Trondheim, Norway,: NIBIO.

33. Brummer EC, Bouton JH, Casier MD, McCaslin MH, Waldron BL. Grasses and legumes: genetics and

plant breeding. In: Wedin WF, Fales S. L, editor: Grassland: Quietness and Strength for a new Ameri-

can Agriculture. Madison, Wisconsin: ASA-CSSS-SSSA.; 2009. p. 157–71.

34. Lelièvre F, Volaire F. Current and potential development of perennial grasses in rainfed Mediterranean

farming systems. Crop Science. 2009; 49(6):2371–8.

35. Matthew C, van der Linden A, Hussain S, Easton HS, Hatier JHB, Horne DJ. Which way forward in the

quest for drought tolerance in perennial ryegrass? Proceedings of the New Zealand Grassland. Pro-

ceedings of the New Zealand Grassland Association 2012. p. 195–200.

36. Humphreys M, editor The contribution of conventional plant breeding to forage crop improvement. Pro-

ceedings 18th International Grassland Congress (Association Management Centre: Calgary, Canada);

1997.

37. Cox JE. Soils and agriculture of part Paparua County, Canterbury, New Zealand. Soil Bureau bulletin.

1978; 34.

38. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circular California

Agricultural Experiment Station. 1950; 347(2nd edit).

39. Moot D, Scott W, Roy A, Nicholls A. Base temperature and thermal time requirements for germination

and emergence of temperate pasture species. New Zealand Journal of Agricultural Research. 2000; 43

(1):15–25.

40. Verkerk G. Pasture-based dairying: challenges and rewards for New Zealand producers. Theriogenol-

ogy. 2003; 59(2):553–61. PMID: 12499003

41. Chappel PR. The climate and weather of Waikato. NIWA Science and Technology ND; 61( 2 edi-

tion):1–40.

42. Salinger J, editor Climate reality-actual and expected. Legumes for Dryland Pastures 2003; Lincoln

University.

Drought tolerance in perennial ryegrass

PLOS ONE | https://doi.org/10.1371/journal.pone.0194977 April 4, 2018 16 / 17

https://doi.org/10.3732/ajb.91.12.1960
http://www.ncbi.nlm.nih.gov/pubmed/21652344
https://doi.org/10.1111/pbi.12291
http://www.ncbi.nlm.nih.gov/pubmed/25487628
http://www.ncbi.nlm.nih.gov/pubmed/12499003
https://doi.org/10.1371/journal.pone.0194977


43. Kosgey J. Elucidating the physiological mechanism of ’stay green’ in maize hybrids-crop growth pro-

cesses and nitrogen economy: electronic, scholarly journal PhD Thesis, Lincoln University 2011, Avalil-

able from: http://researcharchive.lincoln.ac.nz/handle/10182/4150

44. Shepherd W. Temperature effects in determinations of leaf relative water content. Grass and Forage

Science. 1977; 32(4):225–6.

45. Esperón-Rodrı́guez M, Curran TJ, Camac JS, Hofmann RW, Correa-Metrio A, Barradas VL. Correlation

of drought traits and the predictability of osmotic potential at full leaf turgor in vegetation from New Zea-

land. Austral Ecology. 2018.

46. Blum A. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Science.

1989; 29(1):230–3.

47. Wilson J, Fisher M, Schulze E-D, Dolby G, Ludlow M. Comparison between pressure-volume and dew-

point-hygrometry techniques for determining the water relations characteristics of grass and legume

leaves. Oecologia. 1979; 41(1):77–88. https://doi.org/10.1007/BF00344838 PMID: 28310361

48. Simpson WR, Schmid J, Singh J, Faville MJ, Johnson RD. A morphological change in the fungal symbi-

ont Neotyphodium lolii induces dwarfing in its host plant Lolium perenne. Fungal Biology. 2012; 116

(2):234–40. https://doi.org/10.1016/j.funbio.2011.11.006 PMID: 22289769

49. Ballizany WL, Hofmann RW, Jahufer MZZ, Barrett BA. Multivariate associations of flavonoid and bio-

mass accumulation in white clover (Trifolium repens) under drought. Functional Plant Biology. 2012; 39

(2):167–77.

50. Hulke, Eric Watkins, Donald Wyse, Ehlke N. Winterhardiness and turf quality of accessions of perennial

ryegrass (Lolium perenne L.) from public collections. Crop Science 2007; 47:1596–608.

51. Liu J, Xie X, Du J, Sun J, Bai X. Effects of simultaneous drought and heat stress on Kentucky bluegrass.

Scientia Horticulturae. 2008; 115(2):190–5.

52. Mohammadi MHS, Etemadi N, Arab MM, Aalifar M, Arab M, Pessarakli M. Molecular and physiological

responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic

acid under drought stress. Plant Physiology and Biochemistry. 2017; 111:129–43. https://doi.org/10.

1016/j.plaphy.2016.11.014 PMID: 27915174

53. Volaire F, Thomas H, Bertagne N, Bourgeois E, Gautier M-F, Lelievre F. Survival and recovery of peren-

nial forage grasses under prolonged Mediterranean drought: II. Water status, solute accumulation,

abscisic acid concentration and accumulation of dehydrin transcripts in bases of immature leaves. New

Phytologist. 1998; 140(3):451–60.

54. Chen TH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines

and other compatible solutes. Current Opinion in Plant Biology. 2002; 5(3):250–7. PMID: 11960744

55. Bouma E. Development of comparable agro-climatic zones for the international exchange of data on

the efficacy and crop safety of plant protection products. EPPO Bulletin. 2005; 35(2):233–8.

56. Tveito OE, Bjørdal I, Skjelvåg AO, Aune B. A GIS-based agro-ecological decision system based on

gridded climatology. Meteorological Applications. 2005; 12(1):57–68.

57. Guy CL. Freezing tolerance of plants: current understanding and selected emerging concepts. Cana-

dian Journal of Botany. 2003; 81(12):1216–23.

58. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A

gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in

tobacco by gene transfer. Plant and Cell Physiology. 2004; 45(3):346–50. PMID: 15047884

59. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress

responses. Biochimica et Biophysica Acta—Gene Regulatory Mechanisms. 2012; 1819(2):86–96.

60. Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and

cold-stress-responsive promoters. Trends in Plant Science. 2005; 10(2):88–94. https://doi.org/10.1016/

j.tplants.2004.12.012 PMID: 15708346

61. Albrecht V, Weinl S, Blazevic D, D’angelo C, Batistic O, Kolukisaoglu Ü, et al. The calcium sensor CBL1
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