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Abstract

The Aedes aegyptimosquito is the principal vector of arboviruses such as dengue, chikun-
gunya, yellow fever, and Zika virus. These arboviruses are transmitted during adult female
mosquito bloodfeeding. While these viruses must transverse the midgut to replicate, the
blood meal must also reach the midgut to be digested, absorbed, or excreted, as aggrega-
tion of blood meal metabolites can be toxic to the female mosquito midgut. The midgut
peritrophic matrix (PM), a semipermeable extracellular layer comprised of chitin fibrils, gly-
coproteins, and proteoglycans, is one such mechanism of protection for the mosquito mid-
gut. However, this structure has not been characterized for adult female Ae. aegypti. We
conducted a mass spectrometry based proteomic analysis to identify proteins that comprise
or are associated with the adult female Ae. aegypti early midgut PM. Altogether, 474 unique
proteins were identified, with 115 predicted as secreted. GO-term enrichment analysis
revealed an abundance of serine-type proteases and several known and novel intestinal
mucins. In addition, approximately 10% of the peptides identified corresponded to known
salivary proteins, indicating Ae. aegypti mosquitoes extensively swallow their own salivary
secretions. However, the physiological relevance of this remains unclear, and further stud-
ies are needed to determine PM proteins integral for midgut protection from blood meal
derived toxicity and pathogen protection. Finally, we describe substantial discordance
between previously described transcriptionally changes observed in the midgut in response
to a bloodmeal and the presence of the corresponding protein in the PM. Data are available
via ProteomeXchange with identifier PXD007627.

Introduction

The Aedes aegypti mosquito is the principle vector of arboviruses throughout the tropics and
subtropics worldwide [1]. In these regions, Ae. aegypti transmit dengue, chikungunya, yellow
fever, and Zika viruses to humans, resulting in substantial morbidity and mortality worldwide
[1-3]. Dengue is the most important mosquito-borne viral disease with more than 200 million
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reported cases per year [4]. Dengue has been reported in over 90 countries, and alarmingly,
dengue incidences have increased more than 30-fold in the last 40 years [5]. Most importantly,
dengue has recently been reported in nonendemic areas of the world such as the United States,
Southern Europe, and Australia [5].

When adult female mosquitoes take a blood meal, they consume two to three times their
normal body weight [6]. Digestion of the blood meal releases a large amount of free heme into
the midgut lumen [7, 8]. Free heme can result in the oxidation of nucleic acids [9], lipids [10,
11], and proteins [12, 13]. Therefore, understanding the physiological mechanisms adult female
mosquitoes use to process the potentially toxic blood meal and metabolites is needed. In partic-
ular, the midgut peritrophic matrix (PM) may serve as protective lining that separates the single
cell-layered midgut epithelium from pathogens, abrasion and toxic compounds [7, 14, 15].

The type I PM of the adult mosquito is comprised of proteins, proteoglycans and chitin
fibrils [8, 16]. PM proteins, commonly referred to as peritrophins are characterized by the
presence of a secretory signal peptide, multiple chitin-binding domains containing cysteine-
proline dipeptides and intervening mucin-like domains rich in proline, serine and threonine
[17]. The multiple chitin-binding domains of PM peritrophins function as cross-linkers for
chitin fibrils, thereby providing structure and support for the PM [18, 19]. Two-dimensional
polyacrylamide gel electrophoresis and lectin-binding assays suggest the adult female Ae.
aegypti PM may contain 20-40 major proteins [20]. However, only two proteins have been
identified and characterized as adult Ae. aegypti peritrophins: intestinal mucin 1 (AeIMUCI)
[21] and adult peritrophin 50 (AeAper50) [22]. Therefore, we conducted a mass spectrometry
based proteomic analysis to obtain a comprehensive understanding of the adult female Ae.
aegypti early PM, with particular interest in adult female PM proteins containing structural
features characteristic of peritrophins. Our efforts resulted in the identification of more than
6000 peptides derived from the early PM, corresponding to 474 unique proteins, 115 of which
are predicted to be secreted. We identified additional peritrophins and confirm that a substan-
tial number of salivary proteins are delivered to the midgut and may potentially assist in blood
meal detoxification and/or digestion.

Materials and methods
Mosquito rearing

Aedes aegypti (Liverpool strain) mosquitoes were reared under standard insectary conditions
at 28 °C and 60-70% relative humidity with a 14:10 light:dark photoperiod. Adult mosquitoes
were provided 10% sucrose solution and water. Mosquitoes were starved of 10% sucrose 12
hours prior to experiments.

Preparation of peritrophic matrix samples for analysis

PMs were dissected from 3-5 day old adult female Ae. aegypti that were fed a protein-free artifi-
cial meal (Fig 1). The protein-free artificial meal consisted of 150 mM NaCl, 20 mM NaHCOs,
and 20 mM ATP as a phagostimulant [20, 23-25]. The protein-free artificial meal also contained
0.2% low melting agarose to provide bulk and induce distension of the midgut [25]. Six hours
post-feeding [20], the mosquitoes were immobilized and PMs dissected in 50% EtOH and 50%
PBS solution [25]. The dissected PMs were transferred to a 1.5 ml Eppendorf tube and snap-fro-
zen with liquid nitrogen. All 1.5 ml Eppendorf tubes were stored at -80 °C until a total of 1,020
PMs were collected. The 1.5 ml Eppendorf tubes containing PMs were removed from -80 C and
placed in liquid nitrogen. Extraction buffer (50 mM Tris-HCI, pH 8.5) was added to the first
tube and sample homogenized with a plastic pestle. The homogenized sample was transferred
to the next tube and PM samples were homogenized. This was repeated for all subsequent tubes
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Fig 1. Analysis of Aedes aegypti peritrophic matrix proteins. (A) Experimental flowchart detailing the feeding of 3-5
day old adult female Ae. aegypti with protein-free artificial meal containing low melting agarose to produce a rigid PM.
Proteomic analysis was conducted (LC-MS). (B) Adult female post feeding with protein-free artificial meal containing
low melting agarose. (C) Six hours post feeding with protein-free artificial meal containing low melting agarose, PMs
were dissected in 50% PBS and 50% ethanol solution.

https://doi.org/10.1371/journal.pone.0194734.9001

until all homogenized samples (800 ul) were combined in a single tube. The pipette tips and
plastic pestle were also washed with the extraction buffer. This was referred to as the “Wash”
sample. To each of the final tubes, 5 ul of Benzonase was added to remove excess DNA or RNA
and then samples were vortexed. Proteins from the 1,020 PMs were sequentially extracted in
200 pl buffer containing either Buffer A (50 mM Tris-HCI, pH 8.5), Buffer B (Buffer A+ 0.5%
Triton X-100), or Buffer C (Buffer A+ 2% SDS). The initial Tris fraction and Tris “Wash” frac-
tion were quantified by Bradford assay (0.25 pg/ul and 0.09 ug/ul, respectively). The samples
were vortexed, incubated on ice for 1.5 hrs, and then centrifuged in a microcentrifuge at 12,000
x g for 15 minutes. The supernatant containing the extracted proteins was transferred to indi-
vidual 1.5 Eppendorf tubes (tubes were washed with acetyl nitrile and pre-chilled). For sequen-
tial extractions, either Buffer B or Buffer C was added to the pellet fraction and the above
extraction procedure was repeated.

Mass spectrometry based proteomic analysis

The adult female Ae. aegypti PM proteins were sequentially extracted with i) Buffer A (“Tris”
fraction); ii) Buffer B (“Tris-Triton” fraction); iii) Buffer C (“Tris-SDS” fraction). The leftover
pellets were washed twice with an excess of Buffer A to remove any excess detergent. This “Pel-
let” fraction was then analyzed, but no unique proteins were identified. Therefore, this fraction
was not considered further. The fractions (“Tris”, “Tris-Triton”, and “Tris-SDS”) were then
prepared for digestion with trypsin.

The “Tris”, “Tris-Triton”, and “Tris-SDS” fractions and their respective “Wash” samples
were TCA precipitated, and proteins solubilized in 30 yL of 100 mM Tris-HCI, pH 8.5, 8 M
urea, reduced with 5 mM TCEP (Tris(2-carboxylethyl)phosphine hydrochloride, Pierce),
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alkylated with 10 mM IAM (iodoacetamide, Sigma), and deactivated with 10 mM dithiothrei-
tol (DTT). Samples were diluted to 4 M urea with 100 mM Tris-HCI, pH 8.5. Endoproteinase
Lys-C (Roche) was added to 0.5 ug [26], and samples were incubated overnight at 37 °C. The
next morning, samples were diluted to 1.5 M urea with 100 mM Tris-HCI, pH 8.5. Calcium
chloride was added to 2 mM and samples digested with trypsin overnight at 37°C while shak-
ing. The digestion was quenched by adding formic acid to a final concentration of 5%.

The insoluble pellets (“pellet” fractions) from the PM sample and “wash” sample were dried
under vacuum, solubilized in 100 ul cyanogen bromide at 500 mg/ml in 88% formic acid, and
left in fume hood overnight in the dark [26]. The samples were neutralized by adding 30%
ammonium hydroxide drop by drop. To adjust the pH to 8.5, IM Tris-HCl was added to 100
mM. The samples were then denatured with 8 M urea, reduced with 5 mM TCEP, alkylated
with 20 mM IAM, deactivated with 20 mM DTT (1,4-dithiothreitol). The samples were then
digested with endoproteinase Lys-C and trypsin as described above. All peptides were cleaned-
up using Agilent Bond Elute OMIX pipette tips.

Ten microliters of each resolubilized peptide sample was separated using an Acquity I-class
UPLC system (Waters). The mobile phases were solvent A (0.1% (v/v) formic acid (Sigma) in
LC/MS grade water (Spectrum Chemicals) and solvent B (0.1% (v/v) formic acid (Sigma) in
LC/MS grade acetonitrile (Spectrum Chemicals). The separation was performed using a
CSH130 C18 1.7 um, 1.0 x 150 mm column (Waters) at 50 uL/min using a 110-minute gradi-
ent from 3-40% solvent B. The column temperature was maintained at 45°C.

Column effluent was analyzed using a Synapt G2-S mass spectrometer (Waters) using an
HDMS" (high-definition mass spectrometry with alternating scans utilizing low and elevated
collision energies) acquisition method in continuum positive ion “resolution” MS mode.
Source conditions were as follows: capillary voltage, 2.9 kV; source temperature, 125°C; sam-
pling cone, 40 V; desolvation temperature, 350°C; cone gas flow, 50 l/hr; desolvation gas flow,
500 1/hr; and nebulizer gas, 6 bar. Both low energy (no collision energy in either the trap or
transfer region) and elevated energy (no collision energy in the trap region and the collision
energy ramped based on the bin number exiting the ion mobility cell in the transfer region, see
below and Ref. 1) scans were 0.8 seconds each for the m/z range of 100 to 1800. For ion mobil-
ity separation, the IMS wave velocity was ramped from 800 to 500 m/sec over the full IMS
cycle and the IMS wave height was 40 V. Wave velocity and height in the trap region were 313
m/s and 8 V. Wave velocity and height in the transfer region were 190 m/sec and 4 V. Mobility
trapping utilized auto release and mobility separation was delayed 450 ys after trapping.

Collision energy in the transfer region was dependent upon the drift time (bin) within the
ion mobility cell as described by Distler et al. (2014) [27]. The CE was ramped from 16-23 V
for bins 1 to 40, from 24-47 V for bins 41 to 120, and from 48-60 V for bins 121 to 200.

For lock-mass correction, a 1.2 second low energy scan was acquired every 30 seconds of a
100 fmol/pl [Glul]-fibrinopeptide B (Waters) solution (50:50 acetonitrile: water supplemented
with 0.1% formic acid) infused at 5 ul/min introduced into the mass spectrometer through a
different source which was maintained at a capillary voltage of 3.0 kV. The data for lock-mass
correction was collected but not applied to sample data until data processing.

Mass spectrometric data from each chromatographic run were processed and analyzed uti-
lizing ProteinLynx Global Server version 3.0.2 (Waters). The software automatically deter-
mined average chromatographic and mass spectrometric peak width resolution. Mass values
were lock-mass corrected based on the exact m/z value of the +2 charge state of [Glul]-fibrino-
peptide B (785.842). Peaks were defined based on the low energy, elevated energy and bin
intensity thresholds of 100, 15 and 750 counts, respectively. The MS and MSMS tolerances for
the peptide searches were 24 ppm and 24 ppm, respectively (automatically determined by the
Waters PLGS search engine). The final peak list for each sample was then searched against a
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protein database containing the complete Ae. aegypti proteome downloaded from VectorBase
and 3 randomized decoy entries for each real entry appended using PLGS. Workflow parame-
ters for the protein identification searches were 2 possible missed cleavages utilizing Lys-C and
trypsin as the protease combination, a fixed modification of carbamidomethylation of cysteine,
possible modifications of glutamine to pyroglutamate when glutamine is present at the N-ter-
minus of a peptide and oxidation of methionine. The software automatically determined pep-
tide and peptide fragment mass tolerances. Protein identification searches using PLGS had a
false discovery rate of no more than 5%.

Results for two technical replicates were tabulated utilizing IsoQuant [28]. The final data
summary lists only proteins identified by at least 2 unique peptides at a false discovery rate
(FDR) less than 3% in both replicates. Proteins were quantified using the Top3 method. Pep-
tides with a minimum replication rate of 2 and a minimum score of 2 per EMRT (exact mass
and retention time) cluster, including in-source fragments and those exhibiting a neutral loss
of either water or ammonia, were considered valid for protein identification. Only peptides
identified as either unique or razor were used for protein quantitation. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE
[29] partner repository with the dataset identifier PXD007627.

Bioinformatic analyses

The VectorBase Biomart tool was used to obtain predicted structural features for the 474
unique proteins that resulted from our proteomic analysis (AaegL3.3). Previously published
RNA-seq transcriptomics data comparing sugarfed and bloodfed adult female Ae. aegypti [30]
was accessed and downloaded to determine proteins isolated in our proteomic analysis with
transcripts upregulated five hours after a blood meal. We compared our list of 474 VectorBase
Gene Stable IDs for the proteins identified by LC-MS to transcripts found in blood fed females
only and transcripts upregulated in bloodfed or sugarfed females.

g: GOSt—gene group functional profiling (version: r1709_e87_eg34) was used to conduct a
hypergeometric enrichment analysis for the 115 secreted proteins isolated in our LC-MS based
proteomic analysis with a predicted secretory signal peptide [31, 32]. The unordered list of
VectorBase Gene Stable IDs was entered in the g: GOSt user interface. Parameters used for the
enrichment analysis included: 1) significant values only and 2) hierarchical sorting. The
enriched data was output in an Excel spreadsheet (XLSX), and further custom sorted based on
p-value. Only results with p-value <0.001 were considered significant.

Secreted midgut proteins were searched for repetitive cysteine-proline dipeptides which are
a hallmark characteristic of PM peritophins [7]. The results were then entered into UniProt
database and Center for Biological Sequence Analysis (CBS) prediction services database to
determine secreted midgut proteins with: 1) two or more chitin-binding domains and 2) O-
glycosylation and N-glycosylation status.

The adult female Anopheles gambiae PM proteome list was accesses and downloaded [33]
and the VectorBase Gene Stable IDs for the 209 Anopheles gambiae PM proteins were entered
in VectorBase Biomart. The data was output as a comma separated value (csv) file. We then
compared this data with our list of 474 VectorBase Gene Stable IDs. Only one to one orthologs
for the two species were kept for further analyses.

Results
Proteomic analysis

Following a protein-free artificial bloodmeal, Ae. aegypti peritrophic matrices were dissected
and proteins were sequentially extracted according to solubility in buffers and detergents (Fig
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1). The extracted proteins were then prepared for LC-MS analysis, resulting in the identifica-
tion of 6292 peptide sequences (4300 unique peptides) corresponding to 474 unique proteins
identified with two or more peptides (S1 Table). Given the parent database searched was anno-
tated to encode 15,796 possible proteins, this amounts to exactly 3% of the known protein-cod-
ing capacity of Ae. aegypti being potentially associated with the PM. Recovered peptides
ranged from 6-52 amino acids in length, with a mean of 14.4 and a mode of 12 (S1 Fig). Each
protein was identified with between 2-61 unique peptides (defined as having distinct coordi-
nates on the matched protein), with a mean/median of 9.1/6.0 peptides per identified protein
(Fig 2A). As we observed a weak but significant (and unsurprising) correlation between pre-
dicted protein length and the number of unique peptides obtained (Fig 2B), we also calculated
the number of peptides obtained per 100 amino acids of protein (Fig 2C). When normalized
for protein length, we recovered an average of 3.1 total peptides and 2.3 unique peptides per
protein per 100 amino acids (Fig 2D).

To assess the completeness of our dataset, we computationally re-sampled an increasing
number of random peptides from the full dataset and calculated how many unique proteins
were represented. As shown in Fig 3A, the number of unique proteins identified in our dataset
is essentially at saturation for unique proteins identified by 1 or more, or 2 or more peptides.
Based on these curves, the number of unique proteins that could be identified with 2+ peptides
is expected to plateau between 483-491 (95% confidence intervals), indicating we have recov-
ered 96.5-98.1% of the proteins present in the adult PM ~6 hrs after an artificial meal. In
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Fig 2. Frequency distribution of the number of peptides recovered per protein. Frequency distribution of the number (No.) of
recovered peptides per protein (A) or normalized for protein length (B). (C) Relationship between the predicted length of each
protein (Vectorbase AaegL3.3) and the number of unique peptides recovered; dotted line represents the linear regression. (D)
Box and whisker plot of the number of peptides recovered per protein. Boxes represent the middle quartiles, errors bars the 95%
confidence intervals.

https://doi.org/10.1371/journal.pone.0194734.9002

PLOS ONE | https://doi.org/10.1371/journal.pone.0194734 March 23,2018

6/17


https://doi.org/10.1371/journal.pone.0194734.g002
https://doi.org/10.1371/journal.pone.0194734

@° PLOS | ONE

The adult Aedes aegypti midgut peritrophic matrix proteome

2 550- R?=0994 o
‘s 500 - ® e
B 450 ¥ R2=0.999
400, ° o
o 350 @
o}

= 300- ©

.E{ 250- g
C

|-|6 1501 , O 1+ peptides

) 100_0 9’7 @ 2+ peptides
o 50' [}
Z ke

1000 2000 3000 4000 5000 6000
Total peptides sampled (n=10 draws)

0
e

R?=0.98; p <0.0001

»
(=]
]

(0]

O
Og©

B
0°
0

Unique peptides
N S
e 2

o

20 40 60 80 100
Total peptides

Fig 3. Proteomic analysis of the Aedes aegypti peritrophic matrix and contents. (A) Each point represents the mean
number (No.) of unique proteins identified (with 1+ or 2+ peptides) after 10 random draws from the total dataset of
the indicated magnitude. Curves were fit to a one-phase association curve using Graphpad Prism v5.04. (B) Linear
regression between the total number of peptides recovered and the number of unique peptides.

https://doi.org/10.1371/journal.pone.0194734.g003

o

contrast, the number of unique peptides per protein had a strong linear relationship with the
total number of peptides per protein, indicating our dataset did not reach saturation at the
level of coverage of individual proteins (Fig 3B). Taken together, we conclude that identifying
more peptides using this methodology is very unlikely to uncover new proteins, but very likely
to uncover additional unique peptides from proteins already identified.

Despite the stepwise extraction method, eighty-eight percent (n = 421) of the unique pro-
teins identified were present in all three fractions (Fig 4A). Thirteen proteins were present in

PLOS ONE | https://doi.org/10.1371/journal.pone.0194734 March 23,2018 7/17


https://doi.org/10.1371/journal.pone.0194734.g003
https://doi.org/10.1371/journal.pone.0194734

@' PLOS | ONE

The adult Aedes aegypti midgut peritrophic matrix proteome

A Buffer B B

Buffer A + 0.5% Triton X-100
SP and TM
n=37

SP Only
n=115

No SP or
™

n= 285 TM Only

n=37

Buffer A Buffer C
50 mM Tris, pH Buffer A + 2%
8.5 SDS
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buffers and detergents; a total of 474 unique proteins were identified by mass spectrometry. (B) Categorization of
peritrophic matrix proteins identified by mass spectrometry based on predicted structural features; signal peptide
without transmembrane domain (SP), transmembrane domain without SP (TM), those that contain both SP and TM,
and the remaining isolated proteins (No SP or TM).

https://doi.org/10.1371/journal.pone.0194734.9004

both fractions A and B. Eight proteins were present in both fractions A and C. Thirteen pro-
teins were present in fractions A and B. Fourteen proteins were present in both fractions B and
C. While 19 proteins were found only in fraction C, none were unique to fraction B, and only
one protein was unique to fraction A (Fig 4A). Predicted structural features were used to cate-
gorize the 474 unique proteins identified by LC-MS based proteomic analysis. Of the 474
unique proteins, thirty-two percent (n = 152 proteins) contained predicted secretory signal
peptides (S1 Table). Thirty-seven of the 152 proteins containing predicted signal peptides also
contained predicted transmembrane domains (Fig 4B; S1 Table), and thus are potential mid-
gut surface proteins as opposed to candidate PM proteins [33]. Of most interest were the
remaining 115 proteins that contained predicted signal peptides without predicted transmem-
brane domains (Fig 4B; S1 Table).

Aedes aegypti salivary gland proteins

One of the most striking findings was the presence of many of the best-characterized Ae.
aegypti salivary proteins, including D7 (AAEL006424), which was the most abundant protein
in our dataset (S1 Table). In total, 415 unique peptides were identified corresponding to sali-
vary-specific or salivary-enriched gene products by comparing our protein list with previously
described salivary gland transcriptomics data, saliva and salivary gland proteomics data [34-
36]. Thus, about 10% of the protein content of the early PM is potentially salivary-derived. Spe-
cifically, we identified proteins encoded by 35/183 (19%) salivary-enriched and 14/40 (35%) of
the salivary-specific transcripts described by Ribeiro et al [34]. Potentially, these proteins were
transferred to the midgut during ingestion of the protein-free artificial meal and were trapped
by the low-melt agarose. In addition to the D7 protein listed above, we recovered aegyptin
(AAEL010235), D7 longl (AAEL006417), two C-type lectins (AAEL000533 and AAEL000556),
antigen-5 (AAEL003053), two apyrases (AAEL006347 and AAEL006333), and the three serpins
(AAEL007420, AAEL003182, AAEL002704).

Aedes aegyptiblood meal-regulated genes

Several RN Aseq studies have been performed to identify transcripts that are differentially regu-
lated following a blood meal in Ae. aegypti [30]. To determine whether transcripts that are
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differentially regulated at 5 h following a blood meal were more or less likely to result in pro-
teins detected in our dataset, we compared the log, ratio of transcript abundance between
bloodfed vs. sugarfed mosquitoes from Bonizzoni et al. [30] with the length-normalized num-
ber of peptides recovered per protein for all 474 proteins in our dataset. Interestingly, there
appeared to be no global relationship between the direction (up or down-regulated) or magni-
tude of gene expression change following a blood meal and the number of peptides that we
subsequently recovered from the early PM (Fig 5A). This lack of predictive power held when
considering only predicted secreted proteins (Fig 5B), peptidases or salivary proteins (Fig 5C).
Likewise, the absolute abundance of transcripts from sugarfed or bloodfed mosquitoes had lit-
tle to no relationship with our ability to recover the corresponding proteins (S2 Fig).

GO term enrichment of predicted secreted proteins

A gene ontology enrichment analysis for the predicted secreted proteins [31, 32] revealed that the
largest number (n = 57) were associated with catalytic activity (GO:0003824) (Fig 6A and 6B). As
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o Peptidase Activity
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Fig 6. Adult Aedes aegyptisecreted proteins isolated in this female peritrophic matric LC-MS proteomic analysis. (A) Bar graph
detailing different groupings of the secreted proteins isolated in our proteomic analysis. (B) Secreted proteins with catalytic activity,
hydrolase activity, peptidase activity, serine-type peptidase activity, and serine-type endopeptidase activity. Hierarchical sorting based on
gProfiler g: GOSt—gene group functional profiling (p<0.001).

https://doi.org/10.1371/journal.pone.0194734.g006
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expected, the serine-type peptidases involved in blood digestion were the largest group of secreted
midgut proteins isolated in our analysis [37]. In particular, we isolated early trypsin (AaET,
AAEL007818), late trypsin (AaLT, AAEL013284), serine collagenase (AAEL007432, AaSP1), and
AAFEL013628 (AaSP4) along with 19 other serine-type peptidases [38-40] (S1 Table).

The mosquito midgut is the first site of contact for pathogens ingested during bloodfeeding.
Correspondingly, we identified a number of secreted immune-related proteins, including
four fibrinogen and fibronectin proteins (AAEL004156, AAEL000726, AAEL006704,
AAFEL007942), two transferrins (AAEL015458, AAEL011641), five serpins (AAEL002704,
AAEL002720, AAEL003182, AAEL003686 and AAEL007420), two Niemann-pick type C-2
proteins (AAEL015136 and AAEL009760), four clip-domain serine proteases (AAEL000028,
AAFEL006674, AAEL003625, AAEL006576), cathepsin B and L (AAEL009637 and AAEL002833),
three galectins (AAEL012135, AAEL005293, AAEL009842), prophenoloxidase (AAEL013498),
and lysosomal aspartic protease (AAEL006169) [30, 41-44]. Finally, six of the 115 secreted pro-
teins without transmembrane domains isolated in our proteomic analysis were novel proteins
with unknown function (S1 Table).

Chitin-binding proteins

Only two adult female Ae. aegypti PM proteins have been identified and characterized previously,
Aedes aegypti intestinal mucin 1 (AeIMUC1) [21] and Aedes aegypti adult peritrophin 50 (Ae-
Aper50) [22]. We identified both Ae-Aper50 (AAEL002467) and AeIMUCI1 (AAEL002495), as
well as a closely related gene (AAEL004798) and a fourth unrelated peritrophin gene AAEL006953
(Table 1).

Orthologs to Anopheles gambiae PM proteomic analysis

A similar adult female PM proteomic analysis was conducted for Anopheles gambiae [33].
Therefore, we compared our midgut PM proteomic results to determine conserved proteins
present in both Aedes and Anopheles PMs. Of the 209 unique An. gambiae PM proteins iden-
tified by Dinglasan et al. [33], 49 have one to one orthologs present in our Ae. aegypti PM
proteomic analysis (Fig 7; S1 Table). More specifically, just ten were classified as 1:1 orthologs
and were predicted secreted proteins without transmembrane domains (Table 2). Overall, this
suggests a potentially important physiological role for these proteins, as they have been con-
served in two species that diverged more than 150 million years ago [45].

Discussion
Ae. aegypti feed on blood multiple times during their lifespan. While critical for adult repro-

duction, this leaves the midgut, a tissue not protected by chitinous cuticle, exposed to potential

Table 1. Known and putative adult Ae. aegypti peritrophic matrix proteins identified by LC-MS with predicted chitin-binding domains. The mass is based on the
primary amino acid sequence and does not account for glycosylation.

Gene Stable ID * Gene Name Predicted MW ° Annotation/Comments >4

AAEL002495 AeIMUC1 30.6 3 CBD; Peritrophin-A domain; Mucin domain; O-glycosylated; SP; UF
AAEL002467 AeAper50 54.2 5 CBD; Peritrophin-A domain; N- and O-glycosylated; SP; UF
AAEL006953 - 31.3 2 CBD; Peritrophin-A domain; N-glycosylated; SP; UF

AAEL004798 - 39.6 3 CBD; Peritrophin-A domain; Mucin domain; O-glycosylated; SP; TM; UF

*VectorBase, Ae. aegyti mosquito database, August 2017.
® The Universal Protein Resource (UniProt), August 2017.
¢ Center for Biological Sequence Analysis (CBS) prediction services used to determine O-glycosylation and N-glycosylation status, August 2017.

4 CBD, chitin-binding domain; SP, signal peptide; TM, transmembrane domain; UF, unknown function.

https://doi.org/10.1371/journal.pone.0194734.t001
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Fig 7. Adult Ae. aegypti peritrophic matrix proteins with An. gambiae orthologs isolated in Dinglasan et al. [33]
midgut peritrophic matrix proteomic analysis.

https://doi.org/10.1371/journal.pone.0194734.g007

toxins, pathogens, and other abrasive compounds during blood digestion [14, 16, 46]. It has
been hypothesized that the peritrophic matrix- an acellular sheath comprised of proteins, pro-
teoglycans and chitin fibrils, may serve as a protective lining that separates the single cell-lay-
ered midgut epithelium from these hazards [7, 8, 14, 15]. Therefore, we conducted a mass
spectrometry based proteomic analysis to obtain a comprehensive understanding of the adult
female Ae. aegypti PM. A protein-based analysis of a tissue such as the PM, which is normally
induced following a blood meal, is complicated by the large excess of protein present in the
blood. Dinglasan et al. [33] overcame this in An. gambiae by performing an artificial feed
using a protein-free solution containing latex beads to aid in midgut distension. Our substitu-
tion of low-melt agarose into the protein-free solution simplified the dissection procedure, as
once solidified the agarose provided internal rigidity to an otherwise fragile structure. Fortu-
itously, this also allowed the capture of both structural components of the PM as well as soluble
proteins secreted and trapped in the lumen of the midgut. Based on two-dimensional poly-
acrylamide gel electrophoresis, Moskalyk et al. [20] determined that the adult female Ae.

Table 2. Adult female Ae. aegyptisecreted proteins and one to one orthologs isolated in Dinglasan et al. [33] An. gambiae adult female LC-MS peritrophic matrix

proteomic analysis.

Ae. aegypti Gene ID* An. gambiae Gene ID* Description® % Identity
AAEL006347 AGAP011026 Apyrase Precursor 55.8
AAEL003066 AGAP006414 Brain chitinase and chia protein 56.6
AAEL008485 AGAP007663 DUF1397 62.0
AAEL010338 AGAP009313 DUF725 29.6
AAEL013775 AGAP007745 - 37.0
AAELO015136 AGAP002851 Niemann-Pick Type C-2, putative protein 50.3
AAEL012359 AGAP007120 Nucleoside-diphosphate kinase NBR-A, putative protein 87.5
AAEL007926 AGAP011442 Retinoid-inducible serine carboxypeptidase (serine carboxypeptidase protein 71.1
AAEL003046 AGAP001082 Saposin protein 62.1
AAEL008784 AGAP004900 Serine-type enodpeptidase, protein 60.8

*VectorBase, Ae. aegyti mosquito database, August 2017.

https://doi.org/10.1371/journal.pone.0194734.t002
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aegypti PM may contain 20-40 major proteins [20]. In contrast, our LC-MS based proteomic
analysis resulted in the identification of 474 unique proteins. Computational resampling indi-
cated this is very close to saturation, suggesting we have achieved a substantially complete (96-
98%) view of the early PM. At the same time, it is possible that some proteins were missed due
to extensive glycosylation or other post-translational modifications that no peptides could be
recognized. In addition, we cannot rule out that some components of the PM are selectively
produced only following an authentic blood meal, but not from our protein-free meal. How-
ever, we consider this unlikely to substantially reduce the completeness of our dataset for sev-
eral reasons. First, the PM is known to form rapidly based solely on distension of the midgut
[14, 47]. Second, we identified a large number of digestive enzymes including early trypsin
known to be secreted into the midgut lumen and responsible for a preliminary tasting of the
meal [37-40, 48-50]. Third, we identified both previously characterized Ae. aegypti PM peri-
trophins, AeIMUCI [21] and AeAper50 [22].

In addition to chitin, peritrophins have also been shown to bind blood meal derived heme
[8]. Pascoa et al. [8] demonstrated the heme binding capacity of the adult Ae. aegypti PM. They
found that by the end of digestion the adult Ae. aegypti PM could bind 18 nmol of heme,
which is an equivalent to the amount of heme present in a normal blood meal. AeIMUCl is a
275-amino acid glycoprotein with a 19-amino acid secretory signal peptide sequence [7, 21]
and contains three chitin-binding domains and a mucin domain between CBD 1 and CBD 2.
Rayms-Keller et al. [21] first reported AeIMUC1 RNA expression in metal exposed Ae. aegypti
mosquito larvae, metal fed adult females and blood-fed adult females [21]. Devenport et al. [7],
found that AeIMUCI could bind chitin and heme, suggesting a role in blood meal detoxifica-
tion. Through deletion analysis, Devenport et al [7] also determined that the heme-binding
activity of AaIMUCI1 was associated with its 3 CBDs. Finally, AeIMUCI was confirmed as an
integral PM peritrophin associated with the PM 12 to 24 hours post bloodfeeding, and that
this protein is translationally regulated by bloodfeeding [7].

AeAper50 is a 486-amino acid protein that contains 18-amino acid secretory signal peptide
[22]. AeAper50 is localized in the midgut of blood-fed adult females, and the protein is present
within just one hour of adult female feeding [22]. In contrast to AeIMUCI [7], mRNA for
AeAper50 was not shown to be present prior to adult female bloodfeeding, but rapidly accu-
mulated after the blood meal [22]. Shao et al. [22] also confirmed chitin-binding for AeAper50.
More specifically, through site-directed mutagenesis (cysteine to alanine) of AeAper50 CBD 5,
Shao et al. [22] demonstrated the importance of peritrophin-A domain (PAD) (six cysteine
residues) conserved cysteine residues for disulfide bridge formation. These results suggest that
the disulfide bridges position AeAper50 for chitin fibril binding [17, 22, 51].

We identified two additional putative PM peritrophins with structural features similar to
known peritrophins: AAEL006953 is predicted to encode a 31.4 kDa protein with two pre-
dicted chitin-binding domains and N-glycosylation, while AAEL004798 is predicted to encode
a 39.6 kDa protein with three predicted chitin-binding domains, a mucin domain and O-gly-
cosylation. Additional work is needed to confirm if these Ae. aegypti PM peritrophins also
bind chitin and/or heme, as RNAi mediated knockdown of Anopheles gambiae adult peritro-
phin 1 (AgAperl) resulted in bacterial proliferation and a corresponding immune response
suggesting the heme-binding function of the PM may both protect the midgut from toxicity
as well as sequester the heme to prevent microbial overproliferation [52]. The presence of
multiple peritrophins in the PM complicates reverse genetic approaches such as RNAi, but
ultimately such studies will be essential to clarifying the role of the four Ae. aegypti PM peritro-
phins in blood digestion, heme sequestration and immunity.

Although salivary proteins are primarily thought of in terms of blood meal acquisition, 10%
of the PM protein content appears to be salivary-derived and we identified a substantial
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number of secreted salivary proteins associated with the PM, with the salivary D7 proteins
being the most abundant protein when normalized by length (most peptides per 100 amino
acids of protein). The simplest explanation is the ingestion of salivary proteins during feeding;
Anopheline mosquitoes have been known to ingest malaria parasites originating from their
salivary glands during the act of bloodfeeding [53, 54]. However, we cannot exclude the possi-
bility that some of these proteins may also be produced to some extent by the midgut, as other
PM proteomic studies have also isolated proteins traditionally ascribed to the salivary glands
and saliva [55]. While several early studies found that severing of the salivary ducts of Ae.
aegypti had little to no effect on blood meal digestion and subsequent egg production [56, 57],
the difficulty and low survivorship associated with these microsurgeries resulted in extremely
low sample sizes and thus limited the statistical power of these data. Genetic lesions in impor-
tant salivary protein genes made possible now through Cas9-based gene editing will allow fur-
ther investigation as to the physiological importance of salivary proteins and their relationship
to the PM, blood digestion and mosquito reproduction.

Similar to our findings, Dinglasan et al. [33] also isolated salivary-associated proteins [33].
Interestingly, the authors isolated An. gambiae apyrase (Table 2), an enzyme known to inhibit
ADP-dependent platelet aggregation [58] and whose expression is specific to secretory cells of the
distal-lateral lobes of adult female Ae. aegypti [59]. Given, that previous studies have also shown
large amounts of saliva are ingested during feeding in hematophagous insects [57, 60], these sali-
vary-associated proteins may have been trapped in the lumen when ingested, as our artificial meal
included low melting agarose. However, further studies are needed to determine if apyrase is also
functional in midgut blood meal digestion across hematophagous arthropods as it was one of the
ten proteins found associated with the PM in both An. gambiae and Ae. aegypti.

As the first comprehensive proteomic analysis for the adult female Ae. aegypti midgut PM,
our findings provide a foundation for future studies which are needed to better understand the
physiological role of the PM after adult female bloodfeeding. While further strides have been
taken to determine physiological function and importance of the PM in other hematophagous
arthropods [52, 55, 61], reverse genetic analyses (RNAi mediated knockdown) are needed to
confirm physiological function for known and putative Ae. aegypti PM proteins [61]. Likewise,
in vitro heme-binding assays are needed to confirm heme-binding for known and putative PM
proteins. Furthermore, an enrichment proteomic analysis comparing our current artificial
meal to that of an artificial meal enriched with heme provides the ideal avenue for identifying
additional PM heme-binding proteins, which were not isolated in our current proteomic anal-
ysis. Overall, understanding the PM and its components has the potential to provide novel tar-
gets for molecular based vector and vector-borne disease control, as well as understanding the
adaptations required for efficient blood digestion/detoxification.

Supporting information

S1 Fig. Peptide length distribution. Frequency distribution of peptide length versus abun-
dance for all 6319 peptides obtained from Ae. aegypti peritrophic matrix and contents.
(TIF)

S2 Fig. Peptide recovery from peritrophic matrix is only weakly correlated with transcript
abundance. Relationship between the length-normalized transcript abundance in bloodfed
(A) or sugar-fed (B) mosquitoes.

(TIF)

S1 Table. Aedes aegypti early peritrophic matrix proteome full dataset. Master counts (Tab
1) for 474 PM-associated proteins. Column headings include: Vectorbase gene ID (AaegL3.3),
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Interpro description, Interpro ID, GO terms, isoelectic point (IEP), predicted molecular
weight (mw), max score, protein ID, # unique peptides, # total peptides, % sequence coverage,
false discovery rate level (FDR), predicted cleavage site (SignalP), Total intensity and intensity
in extracts A, B and C, bloodfed (BF) and sugar-fed (SF) mRNAseq counts from Bonizonni
etal (2011). Table also includes raw peptide data (Peptide IDs; Tab 2), identified proteins per
fraction (Tab 3), as well as subsets of predicted secreted proteins (Tab 3), salivary proteins
(Tab 4) and An. gambiae 1:1 orthologs (Tab 5).
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