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Abstract

Background

In practical research, it was found that most people made health-related decisions not

based on numerical data but on perceptions. Examples include the perceptions and their

corresponding linguistic values of health risks such as, smoking, syringe sharing, eating

energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understand-

ing the mechanisms that affect the implementations of health-related interventions, we

employ fuzzy variables to quantify linguistic variable in healthcare modeling where we

employ an integrated system dynamics and agent-based model.

Methodology

In a nonlinear causal-driven simulation environment driven by feedback loops, we mathe-

matically demonstrate how interventions at an aggregate level affect the dynamics of lin-

guistic variables that are captured by fuzzy agents and how interactions among fuzzy

agents, at the same time, affect the formation of different clusters(groups) that are targeted

by specific interventions.

Results

In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties

manifested among interacting heterogeneous agents (individuals) and intervention deci-

sions that affect homogeneous agents (groups of individuals) in a hybrid model that com-

bines an agent-based simulation model (ABM) and a system dynamics models (SDM).

Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model,

this paper demonstrates how one can obtain the state variable behaviors in the SDM and

the corresponding values of linguistic variables in the ABM.
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Conclusions

This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM

model. This research not only enriches the application of fuzzy set theory by capturing the

dynamics of variables associated with interacting fuzzy agents that lead to aggregate

behaviors but also informs implementation research by enabling the incorporation of linguis-

tic variables at both individual and institutional levels, which makes unstructured linguistic

data meaningful and quantifiable in a simulation environment. This research can help practi-

tioners and decision makers to gain better understanding on the dynamics and complexities

of precision intervention in healthcare. It can aid the improvement of the optimal allocation of

resources for targeted group (s) and the achievement of maximum utility. As this technology

becomes more mature, one can design policy flight simulators by which policy/intervention

designers can test a variety of assumptions when they evaluate different alternatives

interventions.

Introduction: Background and motivation

Implementation research has become popular since the beginning of the 21st century. It trans-

lates research findings into sustainable interventions [1]. Policy design and the implementa-

tion of interventions were traditionally based on evidence-based research (with limited data)

along with the feedback from implementation efforts. When using this approach, the obtained

"evidence" is typically not sufficient to fully implement a designed policy that leads to health

interventions. It has to go through the three steps, i.e., principle adoption, early implementa-

tion, and implementation persistence [2]. However, there are multi-stage uncertainties in

stakeholder decision making during implementation (Fig 1).

However, data obtained from different sources of socioeconomic systems, especially at the

individual level, contain enormous amounts of unstructured data that depict people’s deci-

sion-making process and consequently their behaviors [3, 4]. It was found that most people

made health-related decisions not based on numerical data but based on perceptions [5–8].

Examples include the perceptions and their corresponding linguistic values of health risks

such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened bever-

ages etc. Therefore, to better understand the mechanisms that affect the continued implemen-

tation of health interventions, we employ fuzzy variables to quantify linguistic variables in

healthcare modeling [9–12].

In traditional evidence-based research (e.g., randomized clinical trial-RCT) and the ensuing

modeling processes, structured data allow researchers and policy makers to define individuals’

perceptions and behaviors using crisp variables. These crisp variables result in coarser granu-

larity when identifying target intervention groups. The design of relevant interventions might

ignore the needs of individuals or small groups that cannot be identified in the large groups

that are defined under the coarse-granularity screening. In this case, the policy implementa-

tion can cause social exclusion (where people are worse off as their needs are not identified

and addressed) and policy resistance. With the help of linguistic variables that portray indivi-

dual’s characteristics and behaviors, researchers and policy makers can identify groups (clus-

ters) and their needs with the finer-granularity screening. Therefore, customized precise

interventions can be implemented on targeted groups [1, 2] (refer to Fig 1).

In the domain of policy implementation research, two simulation approaches, i.e., system

dynamics modeling (SD) and agent-based modeling (ABM) are widely employed to better
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understand the structure of complicated socioeconomic systems and the impact of relevant

policies. The major differences between the two simulation approaches are the assumptions on

which they are based. ABM focuses on evolution and heterogeneity of interacting agents, and

how certain interventions can influence the characteristics, preferences, and behaviors of indi-

viduals. No consistent mathematical formalism characterizes ABMs [13]. SD models, on the

contrary, have their foundation in ordinary differential equations. A very important feature of

Fig 1. Multi-stage uncertainties manifested in stakeholder decision-making processes during implementation.

https://doi.org/10.1371/journal.pone.0194687.g001
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the SD approach is that the state variables (stock aggregating homogeneous agents) and flow

(to and from) the stock are homogenous. SD is generally used to understand the how decisions

or policies such as resource allocations might impact system structure and consequently the

behaviors of key variables characterizing the system [14].

During the past two decades, more scholars started to explore the integration of SDM and

ABM [15, 16]. Applications in different field have been addressed such as transportation [17],

health-related research [18–21], psychology [22], work environment [23], ecological modeling

[24–27]. In order to simultaneously capture characteristics of heterogeneity and homogeneity

in modeling complex socioeconomic systems in dynamic simulation environment, two types

of hybrid models that combine ABM and SD were explored. In the first type, ABM is used to

create the aggregate construct and then SD uses the aggregate structure to generate dynamic

behaviors. Specifically, dynamic agents (automata), under given rules, interact with each other

in a random manner and change their characteristics (or utility) under the influence of peer

agents. As a result, agents with similar features or behaviors will aggregate into a cluster. This

constitutes a phase transition from heterogeneity to homogeneity. Based on the cluster charac-

teristics, resource allocation strategies for different interventions are initiated on the homoge-

neous clusters and system dynamic behaviors are hence explored. As for the second type

hybrid model, SD is used at the microscopic level to derive the features (state) of agents (agents

could be institutions, processes, etc.) and ABM deals with the interactions of those agents

under different rules [28]. In this research, we mainly address fuzzy variables (using them to

process unstructured data), their operations, and algorithms with the first type of hybrid

model.

Zimmermann stated that: “Uncertainty implies that in a certain situation a person does not
dispose about information which quantitatively and qualitatively is appropriate to describe, pre-
scribe or predict deterministically and numerically a system, its behavior or other characteristics”
([29], p. 192). In order to better exploring and understand the complex socioeconomic systems

and dynamics of action-reaction of human interventions, many uncertainties have to be cap-

tured and manifested. Many theories have been proposed to enhance the modeling of uncer-

tainties. Hartley [30] employed class set theory to explore the measurement of uncertainty.

Probability theory was used by Shannon [31] to measure uncertainty. Zadeh, in 1965, pro-

posed fuzzy set theory [32–35] to examine the uncertainties related to using linguistic variables

in decision-making process. Shafer [36] used evidence theory and Dubois and Prade [37]

employed possibility theory to investigate the measurement and modeling of uncertainties.

Apparently, fuzzy set theory has been widely recognized and used given the benefits of repre-

senting multiple linguistic values associated with a specific variable or phenomenon. One of

the basic premises of fuzzy set theory is that it can represent the degree of truth or relevance of

a specific phenomenon. The basic definition for fuzzy set is as follows.

Suppose that U is the universe of discourse, for each x 2 U, the function μ = f(x) 2 [0,1]

holds, the value μ is called the degree of membership of x in set A = {(x,μ) | x 2U, μ = f(x), f�

U × [0,1]}, A is called fuzzy set and μ = f(x) is called the membership function of fuzzy set A. If

x 2 U, x is not included in fuzzy set A if μ = 0; x is fully included if μ = 1; x is partially included

(a degree of membership) in the fuzzy set A [32–35].

Thus far, some research has been conducted to apply fuzzy logic to SD models to explore

the use of linguistic variables in resource allocations, institution decisions, and policy evalua-

tion [38–41]. Few applications of fuzzy logic to ABM were also attempted in the literature [42,

43]. Nevertheless, no research has been conducted that incorporates fuzzy logic especially

using high-dimensional data in a hybrid model that combines SD and ABM, let alone provid-

ing a mathematical framework. The objective of this research is to provide the mathematical

formalism for incorporating fuzzy variables at multiple stages of the first type of a hybrid
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AGM and SD model discussed earlier that includes interacting fuzzy agents as well as aggre-

gate level resource allocations. The mathematical formulations for 5 types of dynamics are

exhibited: 1) the agents characterized by linguistic variables are able to transition from being

heterogeneous to homogeneous [44]; 2) differing from a standalone ABM where interventions

are preset, the interventions and their impacts in this model are emergent and are affected by

the dynamics of the resource allocations that are addressed by the SD model; 3) once fuzzy

agents form certain clusters, they are continuously affected by the dynamic allocations until an

optimal status is achieved; 4) the formation of clusters of these fuzzy agents also conversely

affects the resource allocation dynamics by feeding information back to the SD model part; 5)

in the nonlinear-causal loop, the institutional decision-making process that incorporates fuzzy

variables is pivotal in driving the dynamics of whole hybrid model. This helps inform and

advance implementation research and helps achieve the sustainability of policies and the per-

sistence of implementations [45–47].

This research provides three major contributions to the literature and implementation

practice of health policies. First of all, it systematically exhibits the way of integrating ABM

and SD models in a single hybrid simulation model which, for purpose of optimizing resource

allocation in health interventions, helps to simultaneously capture the homogeneity of clus-

tered (segmented) populations at aggregate level and the heterogeneity of agents at individual

level. Secondly, it incorporates unstructured data that portray the perceptions, preferences,

behaviors, and decisions of individuals into the hybrid simulation model. Last but not the

least, this research intends to employ fuzzy set theory to portray linguistic variables that repre-

sent individuals’ decisions and behaviors. It also describes the way of using high dimensional

data in a hybrid simulation model where an individual’s decisions and behaviors resulted from

dynamics of multiples linguistic variables and interactions.

This paper is organized as follows. In Section 1, we present the background and motivation

for conducting this research. Section 2 depicts how linguistic variables are represented as part

of interacting agents that are affected by the dynamics of the interventions that are generated

from resource allocation decisions. Section 3 depicts how linguistic variables are represented

in system dynamics models. The last section concludes this research by discussing issues, chal-

lenges, and future research in terms of theory and applications.

Methodology

Interacting, clustering, and decision-making of fuzzy agents

Definition of fuzzy agents in a simulation environment. In a simulation environment

for a hybrid model that combines ABM and SD, A is a set of agents (e.g., interacting individu-

als) denoted by ai 2 SA, i 2 N, where SA = {sa1,. . .sai,. . .,san},; based on Zadeh’s quintuple defi-

nition of linguistic (fuzzy) variables, i.e., ðX;T;U;G; ~MÞ, U is the universe of discourse U =

{x1, x2,. . .,xn}, X, for example, is perceived "temperature", T is the set of T = {Low,Medium,

High} defined by G which is the syntactic rule for generating linguistic terms, ~M represents the

semantic rule of associating a linguistic term with its meaning.

In this research, let the set A ¼ fðX1;T1;U1;G1;
~M1Þ . . . ; ðXq;Tq;Uq;Gq;

~MqÞg be the set

of q linguistic variables [32–35] characterizing the perceptions of given agents. Here, U = {U1,

U2,. . .,U3} and Uj = {xj1, xj2,. . .,xjn}, Xj is the jth linguistic variable characterizing the ith agent,

where q� j 2 N, q is the number of linguistic variables, Tj = {Low,Medium,High} (Tj is the set

of linguistic terms defining the jth linguistic variable) ranging over a universe of discourse U
associated with the linguistic variable xj(t), where xj(t) is the jth state variable changing over

time in the SD simulation environment. For different linguistic variable, the linguistics term/
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value can be different. For example, if the chosen linguistic variable is "age", the linguistic

terms here {young, middle-aged, old}. In the simulation environment, xj(t) represents the

value of x(t) at time t of the jth state variable. In some cases, two variables are used in SD simu-

lation environment to accomplish the representation of linguistic variable with one as base

variable, i.e., the normal state variable in model and perceived value of base variable. This

means xj(t) is a function of time in the given context, where xj(t) 2 Uj, Uj = {xj1(t),. . .,xji(t),. . .,

xjn(t)}, j,i 2 N, Uj stands for the set of values over time that the jth state variable can take;

among which, xj(t) 2 Uj, μj: Uj! [0,1] is the membership function of A and μj(xj(t)) 2 [0,1] is

the degree of membership/belongingness of xj(t) in A. And in this definition, the membership

function for each linguistic term of the linguistic variable of particular agent are defined as fol-

lows, where for example, μij(xij(t))Low is the "Low" term of jth linguistic variable of ith agent in

the simulation environment (referring to Eqs 1–3 and Fig 2).

mijðxijðtÞÞLow ¼

1 if xijðtÞ 2 ½0; bij�; bij > 0

cij � xijðtÞ
cij � bij

if xijðtÞ 2 ½bij; cij�; 0 < bij < cij

0 other

ð1Þ

8
>>>><

>>>>:

mijðxijðtÞÞMedium ¼

xijðtÞ � bij

cij � bij
if xijðtÞ 2 ½bij; cij�; 0 < bij < cij

dij � xijðtÞ
dij � cij

if xijðtÞ 2 ½cij; dij�; 0 < cij < dij

0 other

ð2Þ

8
>>>>>><

>>>>>>:

Fig 2. Representation of change over time of high-dimensional n fuzzy agents having q linguistic variables.

https://doi.org/10.1371/journal.pone.0194687.g002
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mijðxijðtÞÞHigh ¼

xijðtÞ � cij

dij � cij
if xijðtÞ 2 ½cij; dij�; 0 < cij < dij

1 if xijðtÞ 2 ½dij;þ1�; dij > 0

0 other

ð3Þ

8
>>>><

>>>>:

For the purpose of simplicity and to illustrate the concept, all the membership functions in

this paper are triangular membership functions with three linguistic terms i.e. Low, Medium,

and High. The framework can be easily generalized to use other types of fuzzy membership

functions (e.g. trapezoidal, bell-shaped membership functions, or even more complex mem-

bership functions). The constants bij, cij, and dij denote the constants defining the triangular

membership functions for jth linguistic variable characterizing ith agent in the simulation

environment, which are assumed to follow normal distribution X*N(μ,σ2) denoted by

Bj � Nð�bj ; s
2
jbÞ, Cj � Nð�cj ; s

2
jcÞ, Dj � Nð�dj ; s

2
jdÞ respectively(refer to Fig 3).

There are three types of dynamics generated by the interventions in the hybrid simulation

environment. Impacts exerted by interventions on individuals in the target population gener-

ate one type of dynamics. The values of linguistic terms (Low, Medium, and High) of jth lin-

guistic variable of ith agent are determined by the value xij(t) obtained at a certain time period,

which is one of the variables that characterize the outcomes of the interventions implemented

by institutions (top right of Fig 4). Peer effects driving agents to change their preference and

status create another type of dynamics (top left of Fig 4). The third type of dynamics comes

from the decision-making process where the agent incorporates the linguistic variables (svl(t)
i.e., the capacity of stores serving healthy food in a certain community, svm(t) the capacity of

outdoor activity spaces, etc.) and aggregating the linguistic variables that characterize an agent

[40]. However, from the perspective of precisely targeted intervention, it is not meaningful to

cluster agents with respect to different linguistic variables in all subspaces. The third type of

dynamics is mainly examined at the institutional level decision-making that initiates interven-

tions, which are depicted in the SD model in third part of this paper.

For sake of brevity, in the simulation algorithm, we assume that the generation of the above

three types of dynamics follows the order that we introduce them in.

Fig 3. Normal distribution for the constants defining membership functions of jth linguistic variable of n agents.

https://doi.org/10.1371/journal.pone.0194687.g003
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Impact of interventions on agents—first dynamic behavior. In the simulation environ-

ment, since the linguistic variable does not necessarily change linearly as defined in the stan-

dard definition, the values of the linguistic terms do not exhibit the standard triangular shape.

Two examples are provided to demonstrate how linear and nonlinear changes over time affect

the behavior of linguistic variables over time.

Example 1: Suppose the change of xij over time is characterized by the function of xij: f(t) =

−α � t + β (upper left of Figs 4 and 5) where α,β> 0, the time horizon for the simulation is t4.

We substitute xij(t) with −α � t + β. The corresponding membership functions over time are:

mijðxijðtÞÞLow ¼

1 t 2 ½t3; t4�

cij � bþ a � t
cij � bij

t 2 ½t2; t3�

0 other

ð4Þ

8
>>>><

>>>>:

Fig 4. Portrayal of the dynamics of fuzzy agents acting based on personal decisions, institutional interventions, and impacts of other peer fuzzy

agents.

https://doi.org/10.1371/journal.pone.0194687.g004
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mijðxijðtÞÞMedium ¼

� a � t þ b � bij

cij � bij
t 2 ½t2; t3�

dij � bþ a � t
dij � cij

t 2 ½t1; t2�

0 other

ð5Þ

8
>>>>>><

>>>>>>:

mijðxijðtÞÞHigh ¼

� a � t þ b � cij

dij � cij
t 2 ½t1; t2�

1 t 2 ½t0; t1�

0 other

ð6Þ

8
>>>><

>>>>:

By taking the first and second derivatives for Eqs (4)–(6), we have:

dmijðxijðtÞÞLow

dt
¼

a

cij � bij
> 0 and

dð2ÞmijðxijðtÞÞLow

dt2
¼ 0; t 2 t2; t3½ �

Fig 5. Impacts of interventions on agents.

https://doi.org/10.1371/journal.pone.0194687.g005
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dmijðxijðtÞÞMedium

dt
¼

�
a

cij � bij
< 0; t 2 ½t2; t3�

a

dij � cij
> 0; t 2 ½t1; t2�

and
dð2ÞmijðxijðtÞÞMedium

dt2
¼

0; t 2 ½t2; t3�

0; t 2 ½t1; t2�

(
8
>><

>>:

dmijðxijðtÞÞHigh

dt
¼ �

a

dij � cij
< 0 and

dð2ÞmijðxijðtÞÞHigh

dt2
¼ 0; t 2 t1; t2½ �

Referring to bottom left of Fig 5, for the Low linguistic term μij(xij(t))Low, it is increasing

during the time interval [t2,t3] and approaches 1 in the interval [t3,t4]; as for the Medium lin-

guistic term.

μij(xij(t))Medium, it increases during the interval [t1,t2] and decreases on during the time

interval [t2,t3]; for the High linguistic term μij(xij(t))High, it decreases during the interval [t1,t2]

and approaches 1 during the interval [t0,t1]. Apparently, as xij(t) decreases over time, the Low

and High linguistic terms exchange their relative location in the dynamic simulation environ-

ment, which consequently challenges the clustering of dynamic agents based on their dynamic

membership values. Right side of Fig 5 provides a more complex case.

Example 2: Suppose the change of the linguistic variable xij over time is characterized by the

function of xij: g(t) = (upper right of Fig 4) where α,β> 0, the time horizon for the simulation

is t4. We substitute xij(t) with exp(β − α � t), now the corresponding membership functions

over time are:

mijðxijðtÞÞLow ¼

1 t 2 ½t3; t4�

cij � eðb� a�tÞ

cij � bij
t 2 ½t2; t3�

0 other

ð7Þ

8
>>>><

>>>>:

mijðxijðtÞÞMedium ¼

eðb� a�tÞ � bij

cij � bij
t 2 ½t2; t3�

dij � eðb� a�tÞ

dij � cij
t 2 ½t1; t2�

0 other

ð8Þ

8
>>>>>>><

>>>>>>>:

mijðxijðtÞÞHigh ¼

eðb� a�tÞ � cij

dij � cij
t 2 ½t1; t2�

1 t 2 ½t0; t1�

0 other

ð9Þ

8
>>>><

>>>>:
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By taking the first and second derivatives of Eqs (7)–(9), we have:

dmijðxijðtÞÞLow

dt
¼

aeðb� a�tÞ

cij � bij
> 0 and

dð2ÞmijðxijðtÞÞLow

dt2
¼ �

a2

cij � bij
eðb� a�tÞ < 0; t 2 t2; t3½ �

dmijðxijðtÞÞMedium

dt

� aeðb� a�tÞ

cij � bij
< 0; t 2 ½t2; t3�

aeðb� a�tÞ

dij � cij
> 0; t 2 ½t1; t2�

and

8
>>>><

>>>>:

dð2ÞmijðxijðtÞÞMedium

dt2
¼

a2

cij � bij
eðb� a�tÞ > 0; t 2 t2; t3½ �

�
a2

dij � cij
eðb� a�tÞ < 0; t 2 t1; t2½ �

8
>>><

>>>:

dmijðxijðtÞÞHigh

dt
¼ �

aeðb� a�tÞ

dij � cij
< 0 and

dð2ÞmijðxijðtÞÞHigh

dt2
¼

a2

dij � cij
eðb� a�tÞ > 0; t 2 t1; t2½ �

The linguistic term μij(xij(t))Low increases and is concave downward in the interval [t2,t3]

and approaches 1 in the interval [t3,t4]; μij(xij(t))Medium decreases and is concave upwards dur-

ing the interval [t2,t3] and increases and is concave downwards in the interval [t1,t2];

μij(xij(t))High decreases and is concave upwards in the interval [t1,t2] and approaches 1 in the

interval [t0,t1]. In the system dynamics model, the behavior of the state variables can be more

complicated than what we have shown in examples 1 and 2.

Peer effects on interacting agents—second dynamic behavior. In the proposed hybrid

model, there are generally two types of interactions among agents. One case is that agents ran-

domly make contact with certain (e.g., three persons) agents per day and impact each other by

exchanging information and changing their preference accordingly. The other case is that

agents have a preset relationship with certain agents in a scale-free network [48,49], which

means that in the community or designated population a few agents are at the hub of the net-

work and the rest agents do not have many connections. In a scale-free network, the degree

distribution follows a power law, i.e. P(k)*k − q, where k is degree (1 < k<1) and q is a

parameter with value in the range (2 < q< 3).

Although we demonstrate distinct interacting mechanisms among agents for the above-

mentioned two cases, the operations associated with multiple linguistic variables characteriz-

ing agents in general do not have much difference. For handling the interactions of fuzzy

agents, we need to define the rules, i.e., the way in which agents interact and the results that

will be obtained as a result of the interactions.

Rule 1: Choosing linguistic term to start with. During the intervention implementation pro-

cess, in order to achieve the desired outcomes under scarce resources, it is necessary for deci-

sion makers to allocate resource to those being worse off as a consequence of previous policies

or decisions. For example, minimizing μij(xij(t))Low (e.g., low satisfaction with respect to the

outdoor activity space) with high degree of membership could be the priority. Therefore, we

simplify the operations of multiple linguistic variables by only taking into consideration the

operations of the Low linguistic term of each linguistic variable, which can be easily extended

to include other linguistic terms if necessary.
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Rule 2: Fuzzy inference. It is assumed that on the average agent makes contact with other k

agents per time unit (generally k� 5, time unit = unit of time in the simulation) in a random

manner. And it is assumed that the model is simulated over n time units and the start time is

defined t0 and end time is p � τ. Three inference rules are defined hereby.

Pessimistic case. In this case, the obtained information from the peer agent negatively

affects an agent’s decision. Having communicated with other agents, the agent will choose to

attain the lower value among them, i.e., the updated value of μij(xij(t0))Low should take the

smaller value obtained by them when comparing itself ith agent with the interacting agents (i −
r)th agent (we assume contact for 5 times).

mijðxijðt0ÞÞLow ! mijðxijðt1ÞÞLow ¼ minfmijðxijðt1ÞÞLow; mði� rÞjðxði� rÞjðt1ÞÞLowg

mði� rÞjðxði� rÞjðt0ÞÞLow! mði� rÞjðxði� rÞjðt1ÞÞLow ¼ minfmijðxijðt1ÞÞLow; mði� rÞjðxði� rÞjðt1ÞÞLowg

Please refer to Fig 6 for Algorithm 1.

Optimistic case. In this case, the updated value of μij(xij(t0))Low will take the higher value

obtained by them when comparing itself ith agent to the interacting agents (i − r)th agent (we

assume contact for 5 times).

mijðxijðt0ÞÞLow ! mijðxijðt1ÞÞLow ¼ maxfmijðxijðt1ÞÞLow; mði� rÞjðxði� rÞjðt1ÞÞLowg

mði� rÞjðxði� rÞjðt0ÞÞLow ! mði� rÞjðxði� rÞjðt1ÞÞLow ¼ maxfmijðxijðt1ÞÞLow; mði� rÞjðxði� rÞjðt1ÞÞLowg

Realistic (mediocre) case. In this case, the updated value of μij(xij(t0))Low will take the

weighted sum of both values obtained by them. The assignment of weights φ, ω is determined

by the constants that define the triangular membership functions for the linguistic variables

(Fig 3), which provides the boundary for different the linguistic terms. Based on the defini-

tions, the larger the constants are the less sensitive the agent responds to the change of the state

variables (interventions). Upon an interaction, the agent tends to reduce the gap between itself

and a peer [50]. Therefore, in the realistic case, an agent with smaller constants that define the

linguistic variables attempts to assign larger values to the interacting agent with larger con-

stants for the linguistic variables, i.e. φi < ωi if b(i−r)j > bij.

mijðxijðt0ÞÞLow ! mijðxijðt1ÞÞLow ¼ φimijðxijðt1ÞÞLow þ oimði� rÞjðxði� rÞjðt1ÞÞLow

mði� rÞjðxði� rÞjðt0ÞÞLow! mði� rÞjðxði� rÞjðt1ÞÞLow ¼ φi� rmijðxijðt1ÞÞLow þ oi� rmði� rÞjðxði� rÞjðt1ÞÞLow

Clustering of fuzzy agents in subspaces. Having completed the interactions and in-

formation exchange, agents will be clustered in different subspaces based on the linguistic

variables that characterize them, which is conducted in a virtual manner (shadow variable)

since it is not possible to physically separate an agent into several parts. That is to say, agents

could be virtually located in several subspaces when the clustering operation is completed

(Fig 5).

In the previous discussion, we simplified the use of linguistic variables to the linguistic term

"Low" to reflect how an agent responds to interventions, where μij(x_ij (p � τ))_Low 2 [0,1] is

the final value (after simulation) for the jth linguistic variable of ith agent. It is assumed in fol-

lowing discussion that there are 2 base variables, i.e., two state variables svl(t) and svm(t) that

reflect the intervention results in the SD model. Notwithstanding the simplification, this

Enhancing health policy implementation using hybrid simulation model of ABM and SDM

PLOS ONE | https://doi.org/10.1371/journal.pone.0194687 April 25, 2018 12 / 25

https://doi.org/10.1371/journal.pone.0194687


research still faces the challenge of dealing with operations and the clustering of complex high-

dimensional data.

Given the fact that the input of resources corresponds the membership value that μij(x_ij
(p � τ))_Low actually takes, we use the following intervals to cluster these agents, i.e. 0, (0,0.1],

(0.1,0.2],. . ., (0.8,0.9], (0.9,1.0] (Fig 7).

For agents having linguistic variables falling into the membership range 0, there is no need

to allocate resources to these agents. For those who fall into other ranges, their corresponding

discrepancies will be fed back to the system dynamics model for next stage simulation, i.e.,

from Stage0-Stage1 (Fig 8). With a few iterations, most of the agents will become homoge-

neous (i.e. Stage2 status in Fig 8).

Fig 6. Pseudo code for the interactions among agents and the operations of linguistic variables.

https://doi.org/10.1371/journal.pone.0194687.g006
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Institutional resource allocation decision-making

Incorporating linguistic variable into system dynamics model. The SD model part of

the proposed hybrid model is responsible for the resource allocations. In this part, two linguis-

tic variables with respect two different base variables are investigated. This SD model is built

on two previous mature models [40, 51]. We also borrowed a partial dataset from them since

there is no such implementation for a real case. Fig 9 provides a simplified version that demon-

strates how to incorporate linguistic variables into a system dynamics model.

In Fig 9, two state variables COASF − s1(t) and CSSHF − s2(t) are increased by the inflow of

building the capacity (φ1 and φ2) and are decreased by the outflow of capacity decaying (λ1

and λ2) where the COASF is the “Capacity of Safe Outdoor Activity Space and Facilities” and

CSSHF is the “Capacity of Store Serving Healthy Food”. Intervention implementers make

decision based on the interactions of the perceived values of two state variables, which decide

how much money will be used for building the capacity of stock (state variables) with fraction

p and 1 − p. Based on their expertise and past experiences, they will define a set of rules when

manipulating two linguistic variables while considering their significance.

s1ðtÞ ¼
R t

0
ðφ

1�
l1Þdt ð10Þ

Fig 7. Clustering of fuzzy agents in subspaces.

https://doi.org/10.1371/journal.pone.0194687.g007
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Fig 8. Hybrid simulation model by combining agent-based simulation and system dynamic modeling.

https://doi.org/10.1371/journal.pone.0194687.g008

Fig 9. Simplified system dynamics model with two linguistic variables.

https://doi.org/10.1371/journal.pone.0194687.g009
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s2ðtÞ ¼
R t

0
ðφ

2�
l2Þdt ð11Þ

where l1 ¼
s1ðtÞ
d1

, l2 ¼
s2ðtÞ
d2

, d1 and d2 are life years of built capacities.

The inflows φ1 and φ2 are determined by the allocation fraction p and 1 − p and flow of

"using investment" ω(t).

φ
1
¼ oðtÞ � p ð12Þ

φ
2
¼ oðtÞ � ð1 � pÞ ð13Þ

Flow ω(t) is determined by perceived values of x and y, delay3 (d3), and "Investment for

building capacity ρ(t)". It is assumed that perceived values of x, y are defined by triangular

membership functions as follows

mðxÞLow ¼

1 if x 2 ½0; bi�; bi > 0

ci � x
ci � bi

if x 2 ½bi; ci�; 0 < bi < ci

0 other

ð14Þ

8
>>><

>>>:

mðxÞMedium ¼

x � bi

ci � bi
if x 2 ½bi; ci�; 0 < bi < ci

d � x
di � ci

if x 2 ½ci; di�; 0 < ci < di

0 other

ð15Þ

8
>>>>><

>>>>>:

mðxÞHigh ¼

x � ci

di � ci
if x 2 ½ci; di�; 0 < ci < di

1 if x 2 ½di;þ1�

0 other

ð16Þ

8
>>><

>>>:

In order to incorporate the two linguistic variables, we need to define rules for the opera-

tions of two fuzzy variables (refer to Table 1).

In the system dynamics model, we defined two linguistic variables COASF and CSSHF,

each having three linguistic terms. Therefore, in order to fully consider their mutual

Table 1. Fuzzy rule definition.

Rule no. Perceived

COASF

Perceived CSSHF Perceived impact on investment

Rule1 Low Low Low

Rule2 Low Medium Low

Rule3 Low High Medium

Rule4 Medium Low Low

Rule5 Medium Medium Medium

Rule6 Medium High Medium

Rule7 High Low High

Rule8 High Medium High

Rule9 High High High

https://doi.org/10.1371/journal.pone.0194687.t001
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interaction, nine rules (3 × 3) are evaluated in our model. In the fuzzy logic system, fuzzy rules

defined generally represent the knowledge, experiences, and expertise of decision makers or

policy makers. Those rules are derived through several mechanisms 1) verbalizing decision

maker’s experiences and expertise, 2) conducting a dedicated survey, 3) observing decision

makers’ behaviors, 4) tracing behavior with wearable sensors, and 5) textual analysis. As deci-

sion makers consciously or unconsciously use such rules to respond to particular interventions

and/or actions, rules can be recorded when observing their behaviors [29, 40, 52, 53, 54].

The mechanism of the Mamdani controller [55] is used to get the results based on rule eval-

uations. For instance, two rules apply and are evaluated at certain time τ (referring to Fig 10).

By using the center of gravity (COG), we obtain the value zCOG (z represents the rule conse-

quence of fuzzy variables).

zCOG ¼

Rb

a
zmðzÞdz

Rb

a
mðzÞdz

ð17Þ

rðtÞ ¼ C �
R t

0
oðtÞdt ð18Þ

Fig 10. Consequence of the rule evaluation of the decision-making process.

https://doi.org/10.1371/journal.pone.0194687.g010
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where C is the initial fund in the investment stock,

o tð Þ ¼ zCOG �
rðtÞ
d3

ð19Þ

Substitute (18) into (19) to solve for ω(t),

o tð Þ ¼ e
tþzCOG

d3

� �

ð20Þ

φ
1
¼ e

tþzCOG
d3

� �

� p ð21Þ

φ
2
¼ e

tþzCOG
d3

� �

� 1 � pð Þ ð22Þ

s1 tð Þ ¼
R t

0
ðe

tþCOG
d3

� �

� p�
s1ðtÞ
d1

Þdt ð23Þ

s2 tð Þ ¼
R t

0
ðe

tþzCOG
d3

� �

� ð1 � pÞ �
s2ðtÞ
d2

Þdt ð24Þ

Take the Laplace transform for (23) and (24), we have

s1 tð Þ ¼ d1 1 �
1

ed1

� �

�
R t

0
ðe

tþCOG
d3

� �

� pÞdt ð25Þ

s2 tð Þ ¼ d2 1 �
1

ed2

� �

�
R t

0
ðe

tþCOG
d3

� �

� ðp � 1ÞÞdt ð26Þ

Results

Having discussed all mathematical formulations involved in this hybrid model, Figs 11 and 12

demonstrate the behaviors of two linguistic variables, i.e. COASF and CSSHF (state variables)

and partial values of the different terms of the linguistic variables. As mentioned in the previ-

ous section, the constants defining the linguistic variables of different agents follow the normal

distribution. This is why the obtained values of these linguistic variables behave as represented

in the Figs 11 and 12, i.e., multiple lines representing different linguistic terms of different

agents. As the display of a whole set will make the line unidentifiable, therefore we just show

some typical curves. Based on the aforementioned clustering criteria, these agents could be

grouped into different clusters preparing for further interventions.

Discussion

Due to the unavailability of commercial off-the-shelf simulation tools that can incorporate

fuzzy logic into a hybrid model of SDM and ABM, only partial results were demonstrated,

which makes the objective of capturing multistage fuzzy uncertainties in decision making for

both individuals and institutions very challenging. Although Anylogic1 simulation platform

does provide limited capability of modeling a hybrid ABM/SD model that incorporates fuzzy
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Fig 11. Behaviors of capacity of safe outdoor activity space and facilities (COASF) in the system dynamics model and corresponding

values of the linguistic variables in the agent-based model.

https://doi.org/10.1371/journal.pone.0194687.g011
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Fig 12. Behaviors of capacity of store serving healthy food (CSSHF) in the system dynamics model and corresponding values of the

linguistic variables in agent-based model.

https://doi.org/10.1371/journal.pone.0194687.g012
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logic into the hybrid model, it is not capable of capturing and depicting very complicated

dynamics taking into account the uncertainties represented by the linguistic variables for both

the agent decision making process and the decision making associated with institutions. It is

even harder for the software to carry out optimizations (e.g., resource allocation decisions) in

the hybrid model that takes into account multistage uncertainties.

With respect to the modeling of the intervention path (refer to Fig 8), this framework has

assumed the path starting from implementing interventions on heterogeneous individuals.

These individuals then form different clusters due to the impacts from the interventions and

interaction effects (peer effects and communications). Having allocated the necessary

resources for the designated clusters for precise intervention (i.e., resource allocation is not

evenly distributed to clusters with different characteristics but based on the actual need of a

particular group), distinct clusters converge to a single homogeneous cluster for a set of char-

acteristics for which the policy makers or implementers are concerned with. A second inter-

vention path could start by implementing interventions on population with homogeneous

characteristics and then focus on individuals with heterogeneous interests. With the ensuing

interventions, the impacts on individuals, and influence of agent interactions, the agents form

clusters. Additional resource allocations render the clusters with distinct features homoge-

neous. The last but not the least intervention path could start by implementing interventions

on multiple clusters. In this scenario, two dynamics could be investigated with one focusing on

modeling the impacts of precisely targeted interventions on individuals of a particular cluster

and the other focusing on modeling the dynamic interactions of heterogeneous clusters.

With respect to optimization in the hybrid model, multiple objectives could be considered.

The first consideration is to maximize the implementation effectiveness given certain amount

of resources appropriated for the intervention. The second consideration is to minimize

resources used for interventions by accurately pinpointing pertinent (i.e., satisfying amount of

resources for particular group of agents with certain linguistic characteristics) clusters and using

appropriate resources accordingly. The third consideration is to maximize implementation

effectiveness by optimizing resource allocation for the combination of multiple interventions by

identifying characteristics of clusters and implementing precise interventions accordingly.

The next challenge in using this fuzzy hybrid model is to consider the complexity of obtain-

ing big data and converting big data, especially unstructured data into formats that can be used

in the simulation model. Since Big data-driven research brings important opportunities for the

precise intervention and for customized individual-based healthcare [56–58], it helps inform

implementation research. The biggest challenge lies that how to translate (textual and linguistic

variables) and integrate multiple streams of live population data into simulation environment

and generate meaning outputs for support implementation of policies and interventions. In

order to capture the uncertainties represented by fuzzy variables at different stages for both the

individual and institutional decision making, it is necessary to identify pertinent fuzzy variables

and corresponding linguistic values. The questions that need to be answered include but not

limited to: which fuzzy variables are critical for tracking the effectiveness of the intervention

impact and their use of resources; what are the appropriate dimensions of a fuzzy variable, i.e.,

what are the appropriate states of human perception with respect to a decision variable (e.g., sat-

isfaction with respect to treatment); how should interacting rules (agent interaction, cluster

interaction) be defined when considering multiple fuzzy variables with multiple linguistic val-

ues; how should optimization be explored considering the existence of many states of human

perception with respect to decision variables and their complex combinations?

Even though many challenges exist, it is very promising to use a fuzzy hybrid model to

simultaneously capture heterogeneity and homogeneity and fuzzy uncertainty in the imple-

mentation of interventions in complex socioeconomic systems such as transportation system.
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Conclusions

This research investigates the use of linguistic variables in multiple stages of a hybrid model

that combines an agent-based simulation model and a system dynamics model. We systemati-

cally present how to handle high-dimensional unstructured data associated with the imple-

mentation of public interventions. This research provides a mathematical framework when

modeling and simulating complex socioeconomic systems, and capturing uncertainties using

fuzzy logic. This research raises some challenges for in-depth research to consider system opti-

mization, complex interacting mechanisms (networks), increased agent attributes, and the

tradeoff between the validity of the results and the requisite modeling efforts.
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