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Abstract

Visual assessments are used for evaluating the quality of food products, such as fresh-cut

lettuce packaged in bags with modified atmosphere. We have compared the accuracy and

the reliability of visual evaluations of decay on fresh-cut lettuce performed with experienced

and inexperienced raters. In addition, we have analyzed decay data from over 4.5 thousand

bags to determine the optimum timing for evaluations to detect differences among acces-

sions. Lin’s concordance coefficient (ρc) that takes into consideration both the closeness of

the data and the conformance to the identity line showed high repeatability (intra-rater reli-

ability, ρc = 0.97), reproducibility (inter-rater reliability, ρc = 0.92), and accuracy (ρc = 0.96)

for experienced raters. Inexperienced raters did not perform as well and their ratings

showed decreased repeatability (ρc = 0.93), but even larger reduction in reproducibility (ρc =

0.80) and accuracy (ρc = 0.90). We have detected that 5.3% of ratings were outside of the

95% limits of agreement. These under- or overestimates were predominantly found for bags

with intermediate levels of decay, which corresponds to the middle of the rating scale. This

occurs because intermediate amounts of decay are more difficult to discriminate than

extremes. The frequencies of aberrant ratings for experienced raters ranged from 0.6% to

4.4% (mean = 2.1%), for inexperienced raters the frequencies were substantially higher,

ranging from 6.1% to 15.6% (mean = 9.4%). Therefore, we recommend that new raters

receive training that includes practical examples in this range of decay, use of standard area

diagrams, and continuing interaction with experienced raters (consultation during actual rat-

ing). Very high agreement among experienced raters indicate that visual ratings can be suc-

cessfully used for evaluations of decay, until a more objective, rapid, and affordable method

is developed. We recommend evaluating samples at multiple time points until 42 days after

processing (about 80% decay on average) and then combining these individual ratings into

the area under the decay progress stairs (AUDePS) score. Applying this approach, experi-

enced evaluators can accurately detect difference among lettuce accessions and identify

lettuce cultivars with reduced decay.
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Introduction

Fresh-cut lettuce packaged in salad mixes is a desirable product due to its convenience for con-

sumers [1]. Production in the U.S. increased dramatically during the 1990s, experiencing a

more than six-fold increase in value [1]. While there are no current estimates of the retail value

of fresh-cut lettuce, the segment represents 25–35% of raw product production in Monterey

county of California, which has a farm gate value of approximately 1.5 billion dollars [2]. Most

fresh-cut products involve harvesting whole mature heads of romaine or iceberg type lettuce,

cutting the leaves to a specified size, mixing with other vegetables, and packaging the salad in

clear specialized films with modified atmospheres (modified atmosphere packaging, MAP) [3,

4]. Harvesting, handling and packaging technologies for fresh-cut lettuce have continually

evolved as the market has expanded. However, the cultivars used to make packaged salads

have generally been bred using the same approaches as those used to breed cultivars for mar-

keting as whole heads.

Breeding lettuce cultivars specifically suited for fresh-cut processing can improve the effi-

ciency of production and the quality of the product [5]. Targets for genetic improvement

include pre-processing characters such altered plant architecture, leaf color, slow bolting, and

freedom from internal defects (e.g. tipburn). Post-processing traits are increasingly important

in breeding programs, since the cutting involved can lead to pink or brown discoloration

through wound-induced oxidation and shorten lettuce shelf-life through decay or deteriora-

tion of the leaf pieces. Breeding for reduced discoloration has been conducted [5], though the

wide spread use of MAP by commercial processors in the U.S. results in generally acceptable

control of this problem [3]. Decay of lettuce pieces, seen as darkening, water logging, and dete-

rioration, will eventually still occur in MAP and causes the end of the salad’s shelf-life. Decay

of salad in MAP is a heritable trait of lettuce conditioned by both small and large effect quanti-

tative trait loci (QTL) [6, 7]. As a result, the rate of decay can be manipulated through selective

breeding and lettuce germplasm has been released that was selected or evaluated for the rate of

decay as part of the breeding procedure [8–12].

Improved genotypes that become successful cultivars arise from a rare combination of

numerous genes and the evaluation of large breeding populations is necessary to discover

these genotypes. The likelihood of success in a plant breeding program can be improved by

developing assessment techniques that are fast and accurate, thereby enabling the efficient

assessment of large populations. Pilot scale techniques for making salad in MAP that simulate

commercial processing can be developed for shelf-life experiments, and with simple modi-

fications allow processing of thousands of MAP bags of a breeding population within a few

days. Assessment of lettuce decay in MAP is a critical step in these experiments and several

approaches were previously used. They can be categorized as either destructive, that can be

used for only a single evaluation, or non-destructive, that allow multiple evaluations of the

same sample. Two destructive approaches (manual sorting of leaf pieces and tissue conductiv-

ity) and three non-destructive approaches (hyperspectral imaging, chlorophyll fluorescence

imaging, and visual observations) were previously tested in our laboratory [6, 13–15].

Opening MAP bags with fresh-cut lettuce and manually sorting leaf pieces into categories

provides a good estimate of tissue decay. However, the process is very slow and somewhat sub-

jective. For more rapid evaluations, a piece of a leaf may be considered decayed when any por-

tion of the piece is decayed [13]. This approach speeds up the sorting process, but likely leads

to an overestimate of the percent of decayed tissue. Electrolyte leakage from decayed cells can

be measured by the means of electric conductivity [15]. This approach, though somewhat

faster than manual sorting, is still very slow. Also, conductivity may not always provide an

exact estimate of decay, as decayed tissue may release a different amount of cell lysate; e.g.
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cultivars may differ for total potential leakage and waterlogged tissue with relatively intact cell

walls releases less electrolyte than a tissue with completely ruptured cells.

Non-destructive evaluation of decay in fresh-cut lettuce was successfully performed with

optical sensors using hyperspectral imaging and chlorophyll fluorescence imaging [15]. These

approaches, if automated, could allow for very fast evaluations directly in MAP bags. Their

disadvantage is a substantial initial cost for setting up such automated systems. Also, for the

systems to function properly, it is important to correctly calibrate sensors and determine

thresholds for distinguishing fresh and decayed tissue. Another non-destructive, yet very sim-

ple approach is a visual evaluation of decay directly in MAP bags. Similarly to the approaches

that use optical sensors, this evaluation is performed only on the lettuce pieces visible through

the transparent plastic film, thus considering only a partial sample of processed tissue. We

have previously employed this approach using 0–5 [13] and 0–10 [6, 14] linear rating scales,

and shown that visual evaluations are strongly correlated with the methods that use manual

sorting of leaf pieces into categories, electric conductivity, and optical sensors (hyperspectral

or chlorophyll fluorescence imaging) [15]. A general problem with visual evaluations may be

subjectivity, particularly if ratings are performed by inexperienced raters [16–18]. Therefore,

we have investigated both accuracy and reliability of the visual rating systems, and compared

evaluations performed by experienced- and inexperienced raters. Reliability measures the

extent to which repeated assessments on the same MAP bags yield similar results [19]. Intra-

rater reliability (repeatability) is the closeness between ratings performed by the same rater,

while inter-rater reliability (reproducibility) is the closeness between ratings performed by dif-

ferent raters. Accuracy is defined as the degree of conformity between visual ratings and some

recognized standard value that is presumed to be close to the true treatment value [19].

Initially, all tissue in MAP bags have no decay resulting in no differences between treat-

ments (accessions, cultivars, families, etc.). Treatment differences increase during storage, as

some genotypes decay while others do not. As all MAP bags begin to exhibit extensive decay,

treatment differences again become smaller. Since large treatment differences are easier to

detect, the timing of fresh-cut lettuce evaluations is important. In our previous studies, we

mostly performed evaluations in weekly intervals, starting usually one week after processing

[6, 14, 15]. Because we studied dynamics of the whole decay process, not just the early stages of

decay, the evaluations generally lasted until all (or almost all) of the material was completely

decayed. The wealth of these data (several tens of thousands of MAP bags) can be used to

determine the time when the differences between samples from different accessions are the

most pronounced. Such information can be helpful to other researchers who are looking for

the optimal evaluation time-points.

The objectives of the current study were to compare the accuracy and the reliability of visual

evaluations of decay on fresh-cut lettuce performed with experienced and inexperienced rat-

ers, and to determine the optimum timing for evaluations to detect differences among

accessions.

Material and methods

Lettuce cultivation and processing

Lettuce plants were grown under field conditions typical for lettuce production in the Salinas

Valley of California, USA [20, 21]. Lettuce heads were harvested at market maturity and pro-

cessed one or two days after harvest. Before processing, the harvested heads were kept in cold

storage at 3.5˚C. Processing of heads for fresh-cut salad was done as previously described [6,

13, 14]. The lettuce cores (i.e. stems) were removed from heads, and the remaining leaves were

cut into pieces of about 2.5 cm2. Subsequently, the salad was washed with 0.0016 mol l-1
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NaOCl, dried in a commercial salad centrifuge, and placed into transparent polyethylene bags.

Each plastic bag (22.8 cm × 30.5 cm) contained 340g of tissue. Bags were flushed three times

with N2, sealed, and stored in the dark at 3.5˚C. The N2 flushing has been recommended as the

most effective and economical approach when establishing an initial low oxygen atmosphere

within the packaging, thus reducing enzymatic browning reactions and pinking [22]. Flushing

polyethylene bags that contained fresh-cut lettuce with N2 brings down the O2 level to about

1.5% as was determined on a random sample of 50 bags using PBI Dansensor CheckMate 9900

meter (PBI-Dansensor, Ringsted, Denmark). Five to nine bags were processed per accession in

each of the analyzed experiments. Bags were considered to be assigned at random (completely

randomized design). Visual rating of decay in MAP bags was performed by experienced raters.

Processing and storing of samples was performed according to the approach developed in con-

sultation with the lettuce industry. More detailed information about processing can be found

in our previous publications [6, 13, 14].

Evaluation of decay

The type of lettuce decay evaluated in this study is predominantly caused by genetic determi-

nants [6] and is not substantially affected by concentrations of oxygen (O2) or carbon dioxide

(CO2) [6, 13] in MAP. Evaluations of decay were performed in weekly intervals, starting one

week after processing and continuing until all (or almost all) bags with lettuce showed com-

plete decay. Evaluation of decay was performed on a 0 through 10 scale that corresponds to the

estimated percentage of decayed tissue divided by 10 and rounded to the nearest whole num-

ber. In one of the experiments, 90 bags with a range of decay were randomly selected three

weeks after processing from all evaluated bags. This subset of bags was used to compare evalua-

tions performed by five experienced and four inexperienced raters. This subset of bags was

randomly rated twice by each rater without a time constraint. Raters who previously evaluated

bags on at least 10 occasions were considered to be experienced; while inexperienced raters

previously did not evaluate more than two experiments (a brief training was provided to the

new raters). Decay was recognized as the presence of water-soaked tissue. No other blemishes

on tissue, such as oxidative browning, pinking, or tipburn were considered in these evalua-

tions. Ratings performed by inexperienced raters were used for analyses of accuracy and reli-

ability, but were eliminated from analyses of timing where only ratings of experienced raters

were considered to ensure high uniformity.

Collection of data

Decay progress data were collected from 4,535 bags (including 90 bags described in the previ-

ous paragraph) evaluated in eight independent experiments. These eight experiments were

selected for statistical analyses because comprehensive data were amassed for dynamics of the

whole decay process (Fig 1). Statistical analyses were performed on weekly ratings of decay,

but also on the area under the decay progress stairs (AUDePS) [14] values that combine weekly

ratings into a single index value [23]. Data from weekly ratings were also used to determine

time (measured in days) to 100% decay (T100D) for each bag [6]. Moreover, we also calculated

time needed to reach 10% decay through time needed for 90% decay (T10D, T20D, . . . T80D,

T90D) and used these data for additional statistical analyses.

Statistical analyses

Accuracy, reliability, and bias of visual ratings were determined from the assessments per-

formed on 90 MAP bags that were evaluated twice by nine raters. Intra-rater reliability (repeat-

ability) and inter-rater reliability (reproducibility) indices were determined from both Pearson
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correlation coefficient (r) and Lin’s concordance coefficient (ρc) [24] that were calculated from

the respective pairs of ratings of each bag. Though the index based on Pearson correlation

coefficient provides good information about closeness of the ratings to the best-fitting line, it

was criticized [25–27] because this index does not take into the consideration how the best-fit-

ting line conforms to the identity line (Fig 2, upper row) (identity line represents the perfect

agreement between evaluations). Therefore, Lin’s concordance coefficient (ρc) [24] that

Fig 1. Differences in decay of fresh-cut lettuce stored in modified atmosphere packages (MAP) at 3.5˚C. The decay rating on the 0 to 10 scale corresponds to the

estimated percentage of decayed tissue divided by ten. Note that the tissue samples were removed from MAP bags before photographing them. At times, decay can be

accompanied by a profound cell lysis. The photograph at the lower-right corner shows the tissue sample with most or all of the cells already disrupted. This sample was

photographed while still inside the MAP bag; therefore, a plastic mesh bag can be seen above the cell lysate. The mesh bag was used to keep fresh-cut tissue together

during sample preparation.

https://doi.org/10.1371/journal.pone.0194635.g001
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combines both the closeness of the data and the conformance to the identity line, is preferred

for evaluations of reliability. Coefficient of bias (Cb) that estimates deviation between the best-

fitting line and the identity line (Fig 2, lower row) can be calculated as: Cb = 2/(v+1/ν+u2),

where ν = σ1/σ2, and u = (μ1 - μ2) / (σ1 × σ2)-2. The terms μ1, μ2 and σ 1, σ 2 are the means and

the standard deviations for the two data sets [17]. The relationship between Lin’s concordance

coefficient, Pearson correlation coefficient, and coefficient of bias is defined as: ρc = r × Cb

[17]. In each of these three statistics, higher values indicate a better match, with value of 1

being the maximum.

In the absence of a universal gold standard for rating of decay, we used a composite refer-

ence standard (CRS) for assessing the accuracy of ratings [28]. In this procedure, each rating is

interpreted in the context of all other ratings that are used to calculate the CRS. In our study,

CRS was calculated as a mean of all ratings excluding the two ratings of the rater being ana-

lyzed. Because of this, each rater was compared to a slightly different CRS. Accuracy of the rat-

ing was thus defined as the agreement between the rating and the CRS, and determined from

Lin’s concordance. For comparison, we also calculated Pearson correlation coefficient, and

coefficient of bias for the same data.

Fig 2. Examples of indexes used for evaluations of agreement between pairs of ratings. Pearson correlation coefficient (r) provides good information about the

closeness of the ratings to the best-fitting line (best fitting line is in orange). Lin’s concordance coefficient (ρc) combines both the closeness of the ratings to the best-

fitting line and how the best-fitting line conforms to the identity line. Identity line (also called line of equality, 1:1 line, or x = y line) leads from the origin at

45-degrees (slope of 1) and represents the perfect agreement between evaluations (identity line is in dashed black). Coefficient of bias (Cb) represents the ratio

between the concordance coefficient and the correlation coefficient Cb = ρc /r. Upper row shows pairs of ratings with perfect correlation coefficient, but imperfect

concordance coefficient. Lower row shows pairs of ratings with coefficient of bias = 1, but imperfect concordance coefficient.

https://doi.org/10.1371/journal.pone.0194635.g002
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Values of r were transformed using Fisher’s r–to—z transformation prior to statistical anal-

yses and back-transformed after the analyses. Differences in the performance of experienced

and inexperienced raters (r, ρc, and Cb values) were evaluated with t-tests. Principal component

analysis was performed on rating data to illustrate relationships among individual assessments

and raters. A Bland-Altman plot [29] was constructed to allow visual inspection of differences

in ratings and to identify possible systematic bias. We used a modification of the Bland-Altman

approach that recommends plotting differences against the gold standard [30], in our case,

against CRS.

The optimal evaluation time point for detecting the most significant difference among

accessions was determined using decay progress data on 4,535 bags from eight experiments.

Statistical analyses were performed on weekly ratings, on AUDePS values, and on time needed

for samples to reach a certain percentage of decay (T10D to T100D). Because data from weekly

ratings were not always normally distributed, non-parametric Kruskal-Wallis (KW) test was

used for data analysis. We compared H-statistics from KW tests to find the time when differ-

ence among accessions were most significant.

Pearson correlation coefficient (r), t-test, principal components analysis, and Kruskal-Wal-

lis test were calculated in JMP software v. 11.1.1 (SAS Institute, Cary, NC). Calculations for

coefficient of bias (Cb) and for 95% limits of Bland-Altman plot were done in Microsoft Excel

v.15.30 (Microsoft, Redmond, WA, USA). Lin’s concordance coefficient (ρc) was calculated

with the online calculator provided by the New Zealand National Institute of Water and Atmo-

spheric Research (https://www.niwa.co.nz/node/104318/concordance).

Results and discussion

Accuracy and reliability of visual evaluations

Ratings of 90 bags by nine raters indicated that decay of tissue in the analyzed MAP bags ran-

ged from 0 to 10. Principal components analysis showed that two ratings from the same rater

were usually more similar to each other, than to ratings from other raters (Fig 3). However,

occasionally, ratings from different raters showed similarity that was higher than that within a

rater (e.g. raters R7 and R8). Ratings of experienced raters were more closely clustered together

and to the overall mean than those from inexperienced raters (Fig 3). Intra-rater correlation

(r) ranged from 0.89 to 0.98 (mean of 0.95), and coefficient of bias (Cb) from 0.99 to 1.00

(mean of 1.00). Concordance coefficient (ρc) that is the best indicator of intra-rater reliability

(repeatability) ranged from 0.89 to 0.98 (mean of 0.95) (Fig 4). Accuracy, that was measured as

concordance (ρc) between individual ratings and CRS, ranged from 0.85 to 0.98 (mean = 0.93).

For the same pairs of ratings, correlation coefficient ranged from 0.91 to 0.98 (mean = 0.95)

and coefficient of bias from 0.90 to 1.00 (mean = 0.98) (Fig 4). These data show generally good

agreement in ratings, with the exception of the rater R9 that had the lowest r and ρc values for

both repeatability (0.89) and accuracy (0.93 and 0.85, respectively). This rater, however, was

evaluating lettuce decay for the first time. Similar results were obtained when the percentage of

diseased tissue was visually assessed on plant leaves or fruits [16–18, 31]. In these studies,

intra-rater reliability was estimated with Pearson correlation coefficient (r) and averaged 0.97

[18], 0.96 [16], 0.95 [17], and 0.94 [31]. Accuracy of visual observations based on concordance

coefficient (ρc) was 0.94 (for experienced raters) [16], 0.89 [18], and 0.86 [17].

We detected a substantial difference in repeatability, reproducibility, and accuracy of rat-

ings between experienced and inexperienced raters. Experienced raters had the average repeat-

ability of ρc = 0.97, while the value for inexperienced raters was ρc = 0.93 (Table 1). Though

this difference is not very large in absolute terms, it was significant at p< 0.05. More signifi-

cant (p< 0.001) and larger difference was observed in reproducibility that increased from ρc =
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0.80 for inexperienced raters to ρc = 0.92 for experienced raters. With experience, the accuracy

of ratings increased from ρc = 0.90 to ρc = 0.96 (p< 0.001). Similar p-values for differences

between experienced and inexperienced raters were detected also when correlation coefficient

(r) and coefficient of bias (Cb) were compared (Table 1). The effect of a rater’s experience on

visual assessments is well known. It was reported before that the accuracy of disease ratings

increased with experience from ρc = 0.69 to ρc = 0.86 [18]. Use of standard area diagrams

(SAD) increased accuracy in both groups, particularly in the less experienced one (ρc = 0.88

for inexperienced raters, ρc = 0.89 for experienced raters). Not only experience, but also initial

training significantly improves repeatability and reproducibility of visual ratings. Concordance

coefficient (ρc) for repeatability (intra-rater reliability) of percentage of leaf area with disease

symptoms increased from 0.76 before training to 0.96 after training and additional instruc-

tions [16]. For the same group or raters, reproducibility (inter-rater reliability) of visual assess-

ments increased from ρc = 0.26 before training to ρc = 0.85 after training and instructions.

Previous results and current data show the importance of appropriate training, but also addi-

tional interaction between experienced and inexperienced raters for good agreements of rat-

ings. For our current study, it is important to note that repeatability of ratings was generally

very good even for inexperienced raters (ρc from 0.89 to 0.96). It is accuracy of ratings, how-

ever, that needs to be improved (Figs 3 and 4). This can be done with proper training [32].

To determine if systematic bias in ratings of decay exists, we used a Bland-Altman differ-

ence plot that provides an insight into the agreement between CRS and individual ratings (Fig

5, upper panel). We have detected that 5.3% of ratings were outside of the 95% limits of agree-

ment. These ratings were predominantly found around the middle of the rating scale (3.6 to

7.5 CRS) because differences in decay are more difficult to discriminate in the middle of the

scale than at the extremes. Similar pattern in visual assessment is well known in plant pathol-

ogy, where the scale was designed to compensate for this type of human error [33]. Most of the

ratings that were outside of the 95% limits in the earlier stages of decay (CRS 1.6 to 4.5) overes-

timated the decay, while those that were outside of the limits at the later stages of decay (CRS

5.6 to 9.5) underestimated the decay (Fig 5, lower panel). Again, these observations are in

Fig 3. Results of principal component analysis performed on visual ratings. Decay of fresh-cut lettuce was evaluated

in 90 MAP bags by nine raters; each rater evaluating the set of bags twice. R1 to R5 were experienced raters (blue

color), while R6 to R9 were inexperienced raters (orange color). A pair of ratings from the same rater are connected by

obrounds. The overall mean from all ratings is indicated by the red circle.

https://doi.org/10.1371/journal.pone.0194635.g003
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Fig 4. Relationship between the composite reference standard (CRS) and 18 individual ratings performed by nine raters. Orange and blue lines show the best-fit

between CRS and two sets of ratings. Black dashed lines are identity lines that show the perfect agreement between CRS and individual ratings. Within each panel,

values in the lower right corner show Pearson correlation coefficient (r), Lin’s concordance coefficient (ρc), and coefficient of bias (Cb) between two independent

ratings of the same rater (measurement of repeatability, or intra-rater reliability). Values in the upper left corners show the same coefficients but between CRS and
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agreement with those reported in plant pathology where raters overestimate the percentage of

chlorotic and necrotic leaf area at low severity [34]. A number of factors were suggested that

may influence visual rating of disease severity [35]. Some of these factors may apply for the rat-

ing of lettuce decay in MAP bags, such as rater intrinsic ability, value preferences by raters,

number and size of decayed pieces, leaf structure and color, complexity of symptoms, and

interaction among multiple factors. Other subjective sensory evaluations performed on grow-

ing lettuce plants or processed tissue showed previously good match with objective measure-

ments; e.g., red and green leaf color and spectral analyses [36], tissue decay and chlorophyll

fluorescence imaging or hyperspectral imaging [15], leaf surface browning and colorimetric

measurement [12], and off-odor development and ethanol accumulation [12]. However, nei-

ther one of these studies analyzed samples multiple times to determine repeatability (intra-

rater reliability) of results or compared performance of multiple raters to determine reproduc-

ibility (inter-rater reliability) of sensory evaluations.

When individual raters were compared for the frequency of ratings that fell outside of the

95% limit of agreement, substantial differences were found between experienced and inexperi-

enced raters (Fig 6). The frequencies of aberrant ratings for experienced raters ranged from

0.6% to 4.4% (mean = 2.1%), for inexperienced raters the frequencies were higher, ranging

from 6.1% to 15.6% (mean = 9.4%). Two of the inexperienced raters (R7 and R8) mostly over-

estimated decay scores, while two other raters (R6 and R9) usually underestimated decay

scores (Figs 4 and 6). This shortcoming in accuracy of ratings can be improved by extended

training and instructions [16, 32], use of standard area diagrams [18], and continuing interac-

tion with experienced raters.

Timing of evaluations and combining of ratings

Decay in fresh-cut lettuce is significantly affected by qSL4, an QTL that explained large por-

tions of the phenotypic variation for decay in a bi-parental mapping population [6]. qSL4
is known to be variable in our population and all our experiments included genotypes with

both very rapid and very slow decay. Decay progress was similar in the eight analyzed experi-

ments. The first signs of decay were observed in fast decaying genotypes within a week after

individual raters (measurements of accuracy). Accuracy of a rater is the mean of accuracies calculated for two ratings of the rater. R1 to R5 were experienced raters,

while R6 to R9 were inexperienced raters.

https://doi.org/10.1371/journal.pone.0194635.g004

Table 1. Effect of rater’s experience on accuracy and reliability of visual ratings.

Parameter Intra-rater reliability (repeatability) Inter-rater reliability (reproducibility) Accuracy

E.R.

(95% CI)a
I.R.

(95% CI)a
E.R–I.R.

Diff.

P-

value

E.R.

(95% CI)a
I.R.

(95% CI)a
E.R–I.R.

Diff.

P-

value

E.R.

(95% CI)a
I.R.

(95% CI)a
E.R–I.R.

Diff.

P-

value

Coefficient of bias

(Cb)

0.999

(0.998–

1.000)

0.994

(0.990–

0.997)

0.005 0.015 0.987

(0.984–

0.991)

0.910

(0.881–

0.939)

0.077 <

0.001

0.994

(0.990–

0.998)

0.960

(0.938–

0.983)

0.034 0.005

Pearson correlation

coefficient (r)

0.969

(0.962–

0.976)

0.931

(0.901–

0.961)

0.028 0.038 0.931

(0.927–

0.934)

0.872

(0.861–

0.884)

0.058 <

0.001

0.966

(0.961–

0.970)

0.939

(0.927–

0.951)

0.027 <

0.001

Lin’s concordance

coefficient (ρc)

0.968

(0.961–

0.974)

0.925

(0.895–

0.955)

0.043 0.017 0.919

(0.913–

0.925)

0.795

(0.765–

0.824)

0.124 <

0.001

0.960

(0.954–

0.966)

0.902

(0.876–

0.927)

0.058 <

0.001

a Mean value and 95% confidence intervals

E.R.–experienced raters. I.R.–inexperienced raters

https://doi.org/10.1371/journal.pone.0194635.t001
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Fig 5. Difference between composite reference standard (CRS) and 18 individual ratings performed by nine raters on the

set of 90 MAP bags. Upper panel shows a Bland-Altman plot. Blue line indicates the mean difference between CRS and
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processing (Fig 7). The fist rating of 10 (100% decay) was recorded 14 days after processing

(DAP). An average decay rating of 5 was reached in all experiments around 21 DAP to 28

DAP. The last rating of zero (no decay) was recorded in a slow decaying genotype 42 DAP,

and the last rating of less than 10 was recorded 112 DAP. KW tests performed on weekly rat-

ings showed gradual increase in H-values until they peaked at the mean decay of approxi-

mately 5.5, about 28 DAP (Fig 8). When AUDePS scores were used for KW analyses, the H-

values were almost identical to those from weekly ratings, until H-values from weekly ratings

reached maximum. From that point, the H-values for ratings and AUDePS scores diverged.

While those from weekly ratings declined until they reached zero, H-values calculated from

AUDePS slightly increased and then plateaued. Since H-values using AUDePS plateaued with

increasing numbers of assessments, rather than declined, multiple assessment time points

combined into an index such as AUDePS will typically be preferred to analysis of a single

assessment time points. When the KW tests were performed on data that estimated time to the

certain level of decay (T10D to T100D), H-values differed substantially (Fig 9). H-values calcu-

lated from T10D grew fastest, were first to reach their maximum, but were also the smallest.

Contrary, H-values calculated from T100D had a long lag period (because 100% decay is

needed for the proper estimate of this score), peaked last, but were the largest. Difference

between maximum H-values calculated from T100D, T90D, and T80D were, however, negligi-

ble. When maximum H-values calculated from AUDePS and T100D data were compared, in

five out of eight analyzed experiments those calculated from AUDePS were higher. Compari-

son of these two parameters on 12 additional experiments revealed similar pattern, with the

final ratio of 14:6 in favor of AUDePS scores. Using AUDePS may be preferred to T100D,

because AUDePS scores take into consideration the whole decay progress including early

stages of decay. AUDePS scores thus may find more subtle differences in decay than T100D

scores. As described in the material and methods, all reported statistical analyses were per-

formed with non-parametric KW test, because the distribution of some datasets was highly

ratings. Orange lines show the upper and the lower values for the 95% limit of agreement. Lower panel shows percentage of

ratings for the particular CRS bin that are outside of the 95% limit of agreement. Orange bars show frequency of

overestimates, while blue bars show frequency of underestimates.

https://doi.org/10.1371/journal.pone.0194635.g005

Fig 6. Percentage of ratings for individual raters that are outside of the 95% limit of agreement. The limit of

agreement was calculated from differences between composite reference standard (CRS) and 18 individual ratings

performed by nine raters on the set of 90 MAP bags. R1 to R5 were experienced raters, while R6 to R9 were

inexperienced raters. Orange bars show frequency of overestimates, while blue bars show frequency of underestimates.

https://doi.org/10.1371/journal.pone.0194635.g006
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skewed, thus violating one of the assumptions for proper use of Analysis of variance

(ANOVA).

Fig 7. Decay progress calculated from 4,535 bags evaluated in eight different experiments. Upper panel shows the mean decay and the standard

deviation of decay calculated from means of eight experiments. Lower panel shows the frequency of lettuce samples in five bins. These bins were developed

for simpler presentation of data. They combine visual ratings from the 0 to 10 rating scale, where 0 indicates no decay and 10 indicates complete decay.

https://doi.org/10.1371/journal.pone.0194635.g007
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The objective of this part of the project was to determine the best time for detecting signifi-

cant differences among accessions. When ratings at only a single time point can be performed

(due to labor or another constraints), the best time to find differences is approximately 21

DAP to 28 DAP, when average decay reaches about 50% (rating of 5). Analysis of earlier or

later ratings may lead to less significant results (as indicated by lower H-values). If ratings have

to be done at the specific time point (e.g. due to industry requirements) then the current analy-

ses can indicate a relative size of H-value and related statistical significance. When assessments

at multiple time points are performed, they can be combined into a single value such as

Fig 8. Profiles of H-values from Kruskal-Wallis tests that were calculated from either individual weekly ratings or

from the area under the decay progress stairs (AUDePS) scores. H-values were calculated separately for eight

experiments, scaled to the 0 to 100 scale (where 100 is the maximum H-value for the experiment) and averaged. The

orange and blue horizontal line indicates periods where higher H-values were detected from ratings or AUDePS

scores, respectively.

https://doi.org/10.1371/journal.pone.0194635.g008

Fig 9. Profiles of H-values from Kruskal-Wallis tests that were calculated from estimates of time that is need to

reach a certain level of decay (e.g. T10D is time to 10% decay, T100D is time to 100% decay). H-values were

calculated separately for eight experiments, scaled to the 0 to 100 scale (where 100 is the maximum H-value for the

experiment) and averaged. The orange, green, and blue horizontal line indicates periods where highest H-values were

detected from T10D, T20D to T90D, or T100D, respectively.

https://doi.org/10.1371/journal.pone.0194635.g009
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AUDePS, or other calculated variables such as T100D. Based on our findings, AUDePS and

T100D are expected to detect more significant differences than ratings at individual time

points. It may not be desirable, however, to continue evaluations until tissue in all bags

completely decays, even if H-values for AUDePS and T100D may possibly continue to

increase. The increase in H-value is likely negligible. Our data indicate that it is not necessary

to evaluate samples longer than 42 DAP when on average over 80% of tissue is already decayed.

A minor increase in H-value may not justify additional use of valuable resources, such as labor

for evaluations, or cold storage for keeping samples. In some instances, it may be desirable to

know for how long the samples stay decay-free (fresh). This value is directly related to T10D.

Therefore, to detect differences in longevity of freshness, we recommend evaluating samples

frequently for up to 35 DAP. After this period, H-values plateau.

Conclusions

The objectives of the present study were to compare the accuracy and the reliability of visual

evaluations of decay on fresh-cut lettuce, and to determine the optimum timing for evaluations.

Lin’s concordance coefficient (ρc) that takes into consideration both the closeness of the data

and the conformance to the identity line showed high repeatability (intra-rater reliability, ρc =

0.97), reproducibility (inter-rater reliability, ρc = 0.92), and accuracy (ρc = 0.96) for experienced

raters. Inexperienced raters did not perform as well. Their under- or overestimates lead to

decreased agreement between ratings, particularly reproducibility (ρc = 0.80) and accuracy (ρc =

0.90). Inaccurate ratings were more often observed in the middle of the rating scale than at the

extreme ends. Therefore, we recommend that new raters receive training that includes practical

examples in this range of decay, use of standard area diagrams, and continuing interaction with

experienced raters (consultation during actual rating). Very high agreement among experienced

raters indicate that visual ratings can be successfully used for evaluations of lettuce decay in

MAP bags, until a more objective, rapid, and affordable method is developed.

For growing, processing and storing of samples we used procedures that imitate those used

by the lettuce industry. Of course, multiple factors can nevertheless modify the rate of decay.

This can be particularly problematic when using a single assessment time-point, as the mean

amount and genetic variation for decay at any single time point can be dramatically different

across experiments. To minimize the effects of production environment, the single-evaluation

time-point can be based on a strategy that uses a pre-determined amount of decay in known

check cultivars [13]. Such an approach may also minimize genotype × environment interac-

tions that result from differences in genetic variation.

Prior to processing, evaluators should determine the general goal of the experiment. Many

projects may seek to simply identify lines that are acceptable for commercial use, which are

typically those that meet a minimum standard for performance. The longevity of freshness (or

time to first decay) is typically of most interest in this case. Samples should be evaluated at

multiple time points until 35 DAP (about 70% decay on average). Almost all of the material

will likely start decaying by this time rendering further evaluations unnecessary. Breeding pro-

grams that seek to continually delay decay in successive breeding cycles will typically want to

identify the genotypes with the slowest rate of decay, even among lines considered to be com-

mercially acceptable. The best performing lines will be selected for advanced testing or use as

parents to form new breeding populations. We recommend evaluating samples at multiple

time points until 42 DAP (about 80% decay on average) and then combine these individual

ratings into an AUDePS score.

Our results indicate fresh-cut decay experiments with weekly or more frequent evaluations

that continue to approximately 42 DAP using trained evaluators can commonly detect
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significant difference among lettuce accessions. Applying this approach in populations that are

genetically variable for decay should result, over time, in commercial cultivars with extended

and more reliable shelf-life.
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