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Abstract

Protein myristoylation is a key protein modification carried out by N-Myristoyltransferase

(NMT) after Methionine aminopeptidase 2 (MetAP2) removes methionine from the amino-ter-

minus of the target protein. Protein myristoylation by NMT augments several signaling path-

ways involved in a myriad of cellular processes, including developmental pathways and

pathways that when dysregulated lead to cancer or immune dysfunction. The emerging evi-

dence pointing to NMT-mediated myristoylation as a major cellular regulator underscores the

importance of understanding the framework of this type of signaling event. Various studies

have investigated the role that myristoylation plays in signaling dysfunction by examining dif-

ferential gene or protein expression between normal and diseased states, such as cancers or

following HIV-1 infection, however no study exists that addresses the role of microRNAs

(miRNAs) in the regulation of myristoylation. By performing a large scale bioinformatics and

functional analysis of the miRNAs that target key genes involved in myristoylation (NMT1,

NMT2, MetAP2), we have narrowed down a list of promising candidates for further analysis.

Our condensed panel of miRNAs identifies 35 miRNAs linked to cancer, 21 miRNAs linked

to developmental and immune signaling pathways, and 14 miRNAs linked to infectious dis-

ease (primarily HIV). The miRNAs panel that was analyzed revealed several NMT-targeting

mRNAs (messenger RNA) that are implicated in diseases associated with NMT signaling

alteration, providing a link between the realms of miRNA and myristoylation signaling. These

findings verify miRNA as an additional facet of myristoylation signaling that must be consid-

ered to gain a full perspective. This study provides the groundwork for future studies concern-

ing NMT-transcript-binding miRNAs, and will potentially lead to the development of new

diagnostic/prognostic biomarkers and therapeutic targets for several important diseases.
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Introduction

The onset of carcinogenesis is initiated by mutations to begin with in a normal cell that results

in the loss of growth control (hyperplasia). Hyperplasia proceeds with the loss of senescence

control, replicative immortality, apoptosis resistance and the ability to evade the immune sys-

tem, which are the hallmark features of cancer and are intrinsic properties in nature [1]. Later

on extrinsic factors get involved where the abnormal cancerous cell begins the process of

angiogenesis (acquiring blood supply) in order to thrive, evade the surrounding tissue and col-

onize at distal sites (metastases) through the epithelial to mesenchyme transition. The culprit

for driving such traits in the journey of a normal cell to cancer is primarily dysregulation of

the signaling in the abnormal microenvironment in which these cancerous cells exists, which

plays an important role in escaping the immune cells responsible for policing them. A healthy

microenvironment (extracellular matrix) has the ability to suppress the cancerous growth.

In order to create effective and personalized strategies for cancer treatment, it is imperative

to understand the many dimensions of signaling dysregulation that characterize different

types of cancer and compromised immune cells. Of the signaling molecules implicated in

either immune dysfunction or cancer, N-myristoyltransferase (NMT), the enzyme responsible

for the covalent attachment of a 14C myristic fatty acid to the N-terminus of target proteins,

has been shown to be implicated in both the development of cancer and impaired immune cell

function [2–6]. Myristoylation is preceded by the removal of the N-terminal methionine of the

target protein by Methionine Aminopeptidase 2 (MetAP2) (and aids in protein trafficking

directed to cellular membrane systems (Fig 1) [6]. Prokaryotes lack NMT, whereas lower

eukaryotes like protozoans and fungus have a single copy of NMT, and mammals and other

vertebrates, NMT has been shown to be present in two major isoforms, NMT1 and NMT2,

which catalyze the same reaction, and are coded respectively by different genes [7, 8]. The bio-

logical role of NMT serves as a promising candidate to study with regards to cancer progres-

sion and immune function as its dysregulation has been shown to contribute to defective

embryo and monocyte development, cell growth, T-cell signaling, and HIV infection. Little is

known about the regulation of its expression, signaling, and localization [4, 5, 8–10].

The methionine residue of a nascent polypeptide is removed co-translationally by MetAP2,

which is followed by addition of a myristoyl group to the exposed N-terminal glycine residue

by NMT.

We are increasingly aware of the multitude of complex and intertwined signaling events

occurring within a cell under various stimuli and stresses, and the many forms of regulation

that govern and balance them. These events include functions prone to driving cancer, such as

cell proliferation, mitosis and migration, and the respective checks in place to limit growth. At

the heart of cell signaling and regulation is the myriad of genes that make up the genome, and

their respective protein end products that serve to exert specific cellular functions. However,

the human genome, once estimated to contain over 100, 000 protein coding genes, has been

re-evaluated over the years to be comprised of merely ~20, 000 distinct genes, which in turn

code for an estimated 293, 000 non-redundant peptides [11, 12]. This revelation has led

researchers to seek and shed light on the various forms of genomic regulation that influence

gene expression, fine-tune spatio-temporal aspects of cell signaling, and account for the mas-

sive repertoire of distinct peptides. To date, several regulatory systems have been identified

and well established, including transcriptional regulation through various pleiotropic tran-

scription-factor family proteins, and epigenetic methylation of DNA, as well as post-transla-

tional mechanisms of gene regulation, such as increased proteome diversity through mRNA

splicing mediated by the spliceosome, and gene downregulation via mRNA silencing by vari-

ous RNA products [13–16]. Of the various agents responsible for RNA silencing, there has
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been emerging evidence pointing to the importance of microRNAs (miRNAs) in several facets

of cellular functional regulation, including those involved in cancer progression and immune

function [17–19].

MicroRNAs (miRNAs) are a family of endogenously expressed small non-coding single

stranded RNAs that are generally 21–23 nucleotides in length [20]. The maturation of miRNA

in humans is facilitated by two consecutive cleavages mediated by RNAIII enzymes DROSHA

and DICER. miRNAs are the final product of larger pri-mRNAs, the latter transcribed by either

RNA polymerase II or III. DROSHA complexes along with its partner DiGeorge syndrome crit-

ical region 8 (DGCR8) in a stoichiometry of 1:2 respectively form the microprocessor complex.

Fig 1. Schematic representation of protein N-myristoylation.

https://doi.org/10.1371/journal.pone.0194612.g001
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The microprocessor complex reduces the pri-mRNA to an ~85 nucleotide long pre-miRNA

containing a hairpin loop [21, 22]. Pre-miRNA is transported into the cytoplasm, recruited to

the spliceosome, and subsequently cleaved by the DICER enzyme to yield a mature miRNA

duplex [23]. One of the strands of the cytoplasmic miRNA, known as guide is used to target

miRNA onto a protein named Argonaute to form the RNA-induced silencing complex (RISC).

RISC is a multi-protein complex that is guided by the sequence of miRNA transcript to a target

(through complementary base pairs) and the protein Argonaute cleaves mRNA (messenger

RNA) [24]. Thus, miRNA is capable of causing degradation of the target mRNA if perfect nucle-

otide complementation is achieved, otherwise translational repression of the target mRNA

occurs in the case of imperfect complementarity [25]. miRNA have been shown to have a cer-

tain degree of genomic organization, adding an additional layer of complexity to miRNA sys-

tems that can be manipulated to drive evolution and specialization [26]. Some miRNAs have

been shown to form polycistronic clusters that in some cases co-express several miRNAs that

target different mRNAs responsible for proteins within the same protein complex [27, 28].

These findings demonstrate the ability of miRNA to influence protein-protein interactions.

The repertoire of miRNA that can be expressed by a cell constitutes an essential layer of

post-transcriptional gene control for many cellular processes. miRNAs are relatively young on

the evolutionary timescale, being expressed only in animals, plants, and some viruses [29–31].

Around 30% of the Homo sapiens protein-coding genes are regulated by miRNAs, which con-

trol the genes at the post-transcriptional level [32]. There are two modes by which miRNAs

regulates the expression of genes; first, miRNA-mediated transcript degradation and second,

inhibition of protein translation [25, 33]. For target degradation model, miRNA binds pre-

dominantly to the target sequence found within the 3’ untranslated region (UTR) of the target

mRNA with perfect complementarity, leading the mRNA to be cleaved [34, 35]. Similarly to

inhibit the translation of target genes, miRNA binds with imperfect complementarity with the

target. However, recent studies suggest that even with the imperfect complementarity between

miRNA and target mRNA sequences, miRNAs are capable of carrying out target recognition

and subsequent translational inhibition and/or transcriptional decay [36]. In addition to its

functions in post-transcriptional gene regulation, miRNAs are also known for regulating pro-

tein complexes and acting as a key-determining molecule in protein-protein interaction [27,

28].

The role of miRNA has been suggested to be more of a fine-tuning mechanism of gene reg-

ulation, rather than as a master regulator; however, increasing evidence has shown that miR-

NAs are heavily dysregulated in many diseases, including cancer [37–40]. There are several

studies linking microRNA as a driving factor in the progression of some cancers, such as the

promotion of colorectal cancer proliferation and invasion by miR-320b [41]. In some cases

miRNA can act as a tumor suppressor, such as miR-29c, which is correlated with breast cancer

survival and downregulates B7-H3 protein which is associated with metastasis and poor prog-

nosis in breast cancer patients [42]. Beyond the potential of miRNAs to play a positive or nega-

tive role in disease, they may serve to act as novel biomarkers [43]. Increasing evidence is

revealing that specific circulating miRNAs may be used as non-invasive biomarkers for neo-

plastic diseases, such as breast cancer (miR-29c, 199a, 424) [44], colorectal cancer (miR-24,

320a, 423-5p) [45], and liver cancer (miR-200 family) as well as its regression (miR-199a-3p)

[46, 47]. In cancer biology, miRNAs may be playing a critical role by modulating key signaling

pathways, as they have been shown to affect the sensitivity of a cell to signal transduction by

signaling molecules such as epidermal growth factor, Notch, TGF- β, and WNT [48, 49].

We suspect that the role of critical signaling modulation by miRNAs can be extended to

their interactions with NMT translation and influence over protein-protein interaction related

to NMT signaling. Dysregulation of NMT1 activity is implicated in cancer and stem cell
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differentiation [8, 50]. The plasticity of transition from normal to cancerous cells as well as

stem cell differentiation and proliferation to T lymphocytes depend on the miRNA target gene

regulation [4, 51]. In this study we predicted the miRNAs that target NMT1/NMT2/MetAP2

transcripts, and the possibility of these interactions to inhibit NMT1/2 expression, and their

function in relation to cancer, stem cell, T-cell/B-cell signaling and infectious diseases, using

the bioinformatics techniques TargetScan 7 and DIANA.

Materials and methods

Sequence selection for computational analysis

For NMT1 and NMT2 reference sequences were retrieved from the GenBank. NMT1 and

NMT2 reference numbers were NM_021079.4 and NM_004808, respectively. For MetAP2, the

reference sequence used was NM_001317182.1.

Prediction of miRNA targets

The putative miRNA targets were predicted using two annotation programs as described pre-

viously [52]. Prediction of miRNAs was done in the subtractive library. The sequences were

submitted for in silico annotation of ncRNAs. During the annotation process, we searched for

the RNA structures by using Infernal (INFERence of RNA ALignment) software as described

in other study [53]. The BLAST program was used to search similar miRNA sequences in the

National Center for Biotechnology Information (NCBI) database as described elsewhere [54].

Finally, miRNAs with the best p-value (�0.05) were selected for further analysis and their

details are presented in tabulated form (S1 Table).

Identification and functional annotation of miRNAs regulating NMT and

MetAP2 genes using TargetScan and DIANA Tools mirPath

Sequences for human NMT1/2 and MetAP2 genes (18 and 11 transcripts respectively) were

downloaded from the ENSEMBL genome browser (NMT: ENSG00000136448, MetAP2:

ENSG00000111142). Sequences of human mature miRNAs (2,588) were downloaded from

miRBase version 21 (http://mirdb.org) [55]. Normalized mRNA and miRNA expression values

were downloaded from Gene Expression Omnibus (GEO) repository (accession ID: GSE62

030). miRNAs targeting NMT1/2 and MetAP2 genes were predicted by TargetScan7 (v7.0;

targetscan.org) [56]. To validate the predicted miRNA: target interactions, Pearson correlation

coefficient (PCC) was calculated using the normalized expression values of miRNA and target

genes. All the miRNA:target interactions having significantly high inverse/negative PCC (r<
-0.5, p� 0.05) were considered as true miRNA:target interactions. The p-value of PCC was cal-

culated by Student’s t-test using “R” software. Biological pathways influenced by miRNAs tar-

geting NMT and METAP2 genes were identified using DIANA Tools mirPath version 3 (v3.0)

(http://www.microrna.gr/miRPathv3) [57].

Functional enrichment analysis of miRNA targets

To determine or predict the function(s) of miRNAs which targets these genes, pathway enrich-

ment analysis was performed using DIANA Tools mirPath (v3.0) as described previously [57].

This tool provides information on experimentally-supported miRNA functional annotation

using Gene Ontology (GO) or GOSlim terms [58], combined with statistically-enriched path-

ways, mainly Kyoto Encyclopedia of Genes and Genomes (KEGG) molecular pathways, and

based on target genes which query miRNAs targets [57].

miRNAs regulating NMT1/2 and MetAP2
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Literature search for miRNAs associated with cancer and signaling

pathways

The chosen set of miRNAs from bioinformatics analyses were thoroughly researched in the lit-

erature for their association, functions and expression changes in cancer and signaling path-

ways. PubMed, PubMed Central and Google Scholar search engines were utilized to perform

the literature survey. MiRNAs that showed at least one publication record were considered for

further analysis in the study.

MiRNA clustering analysis

MiRNA expression values were extracted from “GSE62037” GEO dataset [59]. The miRNAs

that were predicted to target NMT1/2 transcripts were filtered out and their expression values

were specifically extracted from the above dataset. In order to recognize the normalized

expression patterns of these miRNAs, an unsupervised hierarchical cluster analysis were car-

ried out using Cluster v3.0 as described elsewhere [60]. TreeView software was used to gener-

ate and visualize the heatmaps. Green color shows positive PCC values (0.5� r� 1) and red

color shows inverse/negative PCC values (-0.5� r� -1). Thereafter, it was determined

whether the miRNA data fit into known post-transcriptional ‘RNA regulon (operon) model’

which describes how RNA molecules are organized at a higher-organization level and how

their functional dynamics are connected to post-transcriptional regulatory events such as sta-

bility and translation [61, 62].

Results

Identification of miRNAs targeting NMT and METAP2 genes

Mature miRNAs targeting 18 transcripts and 11 transcripts of NMT1/2 and MetAP2 respec-

tively, were identified using TargetScan7 [63]. Using the stringent cutoff, a total of 13,798

miRNA-target interactions were predicted by TargetScan for the NMT1/2 genes. In contrast,

7,708 interactions were predicted for the MetAP2 gene.

In order to filter out false positive miRNA: target interactions, Pearson correlation coeffi-

cient (PCC) was calculated between targeting miRNA and target gene expression. In general,

miRNAs down-regulates the expression of a target gene. Based on previous reports, the thresh-

old PCC for determining the true positive miRNA: target interaction was set at 0.5 [64, 65].

Thus, a true interaction will be indicated by significantly high inverse PCC (r� -0.5, p� -1).

Out of 13,798 putative miRNAs: target interactions predicted for the NMT1/2 genes, only 221

miRNAs: target interactions showed r� -0.5 (S1 Table). The top five miRNAs targeting the

NMT1/2 genes with the highest inverse PCC were miR-421, miR-4317, miR-606, miR-140-5p
and miR-941. Interestingly, these miRNAs were also found to be regulating multiple NMT1/2
transcripts (S1 Table). Similarly, for the METAP2 gene, out of 7,708 interactions predicted,

165 miRNAs: target interactions showed PCC values above our cutoff threshold (r� -0.5) (S2

Table). Based on the PCC values the top five miRNAs targeting the MetAP2 gene turned out to

be miR-330-3p, miR-421, miR-409-3p, miR-139-3p, and miR-1246 (S2 Table).

Next, to determine whether same miRNA targets NMT1/2 and MetAP2 genes, we compared

the targeting miRNAs lists (S1 and S2 Tables). The results revealed that 7 miRNAs are com-

mon which targets NMT1/2 and MetAP2 genes while 20 miRNAs were found to be exclusively

targeting either NMT1/2 or MetAP2 genes (Table 1; Fig 2). From the list of commonly target-

ing miRNAs, miR-421 has the highest inverse co-expression with the target genes and

appeared in the top five miRNAs. Making this miRNA a top candidate for further evaluation.

miRNAs regulating NMT1/2 and MetAP2
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Functional enrichment analysis of miRNA targets

To identify the biological pathways under regulation of the miRNAs identified in the previous

section, functional enrichment was done using DIANA Tools mirPath version 3 [57]. The sta-

tistically significant KEGG pathways enriched from the analyses are summarized in Table 2.

The analysis revealed 88 pathways that belong under the KEGG pathways. It was found that

the most significantly enriched pathway regulated by miRNAs that target both NMT1/2 genes

and the MetAP2 gene was proteoglycans in cancer. Interestingly, one pathway regulated by the

selected miRNAs is the ErbB signaling pathway. This pathway plays an important role in regu-

lating cancer [66]. Furthermore, Wnt, mTOR, and VEGF signaling pathways were found to be

regulated by miRNAs that target NMT gene. Additionally, we also predicted KEGG pathways

that are associated with the miRNAs that exclusively targets NMT1/2 or MetAP2 genes. From

these pathways, the most significant ones were filtered for further exploration in terms of their

relevance in cancer.

The DIANA Tools mirPath analysis predicted that most significantly enriched KEGG path-

way regulated by miRNAs targeting both NMT and MetAP2 genes was ‘ErbB signaling path-

way’ (p = 3.60E-29) which involved 48 genes and 17 miRNAs (Table 2; Fig 3). ErbB receptor

molecules regulate cell proliferation, differentiation, cell motility, and cell survival. Therefore,

ErbB receptor mutations or overexpression have been associated with cancer cell migration,

development, invasion and progression of cancers such as non-small cell lung cancer [67],

breast cancer [68], ovarian cancer and bladder cancer [69]. This is mainly due to the role of

this pathway in phosphorylation of many important kinases involved in cancer pathology.

When analyzing pathways associated with colorectal (Fig 4A) and prostate cancers (Fig 4B),

we observed that miRNAs targeting both NMT1/2 and MetAP2 genes also regulate the expres-

sion of key genes involved in these pathways, including AKT1, GSK3B, BRAF, MAPK and

many others (Fig 4).

Table 1. MicroRNAs (miRNAs) that are specific and common to N-myristoyltransferase (NMT1/2) and methio-

nine aminopeptidase 2 (MetAP2) genes.

miRNAs targeting NMT1/2 miRNAs targeting MetAP2 Common miRNAs

1 miR-1205 miR-107 miR-330-3p
2 miR-1265 miR-139-3p miR-1246
3 miR-140-5p miR-1972 miR-409-3p
4 miR-943 miR-199a-3p miR-421
5 miR-1193 miR-199b-3p miR-543
6 miR-1278 miR-299-3p miR-665
7 miR-137 miR-362-5p miR-671-5p
8 miR-3174 miR-4306
9 miR-3197 miR-485-5p
10 miR-4307 miR-501-5p
11 miR-4317 miR-532-3p
12 miR-512-3p miR-650
13 miR-548p miR-654-3p
14 miR-599 miR-1244
15 miR-127-3p miR-140-3p
16 miR-652-5p miR-299-5p
17 miR-941 miR-324-5p
18 miR-346 miR-4319
19 miR-4264 miR-520d-5p
20 miR-606 miR-628-3p

https://doi.org/10.1371/journal.pone.0194612.t001
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Apart from cancer pathways, miRNAs were also shown to regulate genes in immune cells.

Therefore, we further analyzed KEGG pathways that are associated with immune responses.

For this, we performed pathway enrichment analysis using miRNAs that target only NMT
transcripts. Interestingly, T cell receptor signaling pathway (p = 6.87E-09) involving 43 genes

and 18 miRNAs (Table 2; Fig 5A); and B cell receptor signaling pathway (p = 9.73E-15) involv-

ing 36 genes and 17 miRNAs were predicted by the analysis (Table 2; Fig 5B). A total of 11 and

8 miRNAs that target NMT1 and NMT2, respectively were identified to be associated with T

cell and B cell receptor pathways (Table 3). Among these miRNAs, miR-654 displayed an inter-

esting relationship with NMT1/2 and MetAP2 genes where miR-654-5p targeted NMT1/2while

miR-654-3p targeted MetAP2. Similarly, miRNA-199b-5p was found to be targeting NMT1/2
while miRNA-199b-3p targeted MetAP2. This 5p and 3p pattern was not limited to these two

miRNAs. Same pattern was observed with miR-628, and miRNA-139. These observations sug-

gest that the miRNA species deriving from the 5’ arm (5p) and 3’ arm (3p) of the same pre-

Fig 2. The distribution of microRNAs (miRNAs) that target N-myristoyltransferase (NMT1/2) and methionine aminopeptidase 2

(MetAP2) genes. The miRNAs that target either NMT or MetAP2, or both genes are illustrated in the Venn diagram. Seven miRNAs

target both NMT1/2 and MetAP2 genes.

https://doi.org/10.1371/journal.pone.0194612.g002
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Table 2. KEGG pathways enrichment annotation of the microRNAs (miRNAs) that target N-myristoyltransferase (NMT1/2) and methionine aminopeptidase 2

(MetAP2) genes.

KEGG pathway p-value #genes #miRNAs

1 ErbB signalling pathway 3.60E-29 48 17

2 Prostate cancer 8.54E-27 46 17

3 Colorectal cancer 8.44E-23 36 17

4 Wnt signalling pathway 1.88E-21 71 17

5 mTOR signalling pathway 6.21E-21 36 14

6 Long-term potentiation 1.03E-20 36 12

7 VEGF signalling pathway 1.38E-19 34 16

8 Pancreatic cancer 5.86E-19 36 17

9 Focal adhesion 1.04E-18 83 16

10 Endometrial cancer 1.20E-17 29 16

11 Non-small cell lung cancer 2.04E-16 28 14

12 Neurotrophin signalling pathway 4.14E-16 54 17

13 MAPK signalling pathway 6.31E-16 100 17

14 Insulin signalling pathway 1.79E-15 58 17

15 B cell receptor signalling pathway 9.73E-15 36 17

16 TGF-beta signalling pathway 2.47E-14 39 15

17 Acute myeloid leukemia 7.30E-14 29 14

18 Axon guidance 2.30E-13 57 16

19 Dopaminergic synapse 2.60E-12 54 16

20 PI3K-Akt signalling pathway 3.19E-12 118 17

21 Glioma 3.82E-12 35 14

22 Long-term depression 3.85E-12 34 12

23 Pathways in cancer 4.64E-12 125 17

24 Chronic myeloid leukemia 7.05E-11 34 16

25 Melanoma 9.58E-11 32 14

26 Gap junction 1.33E-10 38 15

27 Aldosterone-regulated sodium reabsorption 6.90E-10 19 11

28 Renal cell carcinoma 3.82E-09 34 16

29 Regulation of actin cytoskeleton 4.15E-09 82 16

30 HIF-1 signalling pathway 4.40E-09 44 15

31 mRNA surveillance pathway 5.38E-09 38 16

32 T cell receptor signalling pathway 6.87E-09 43 18

33 Circadian rhythm 3.95E-08 15 9

34 GnRH signalling pathway 1.24E-07 36 14

35 Prion diseases 3.83E-07 11 7

36 RNA degradation 3.83E-07 30 11

37 Retrograde endocannabinoid signalling 3.99E-07 46 16

38 Protein processing in endoplasmic reticulum 8.13E-07 64 15

39 Thyroid cancer 1.10E-06 14 11

40 Cholinergic synapse 2.16E-06 46 17

41 Fc gamma R-mediated phagocytosis 3.37E-06 36 16

42 Progesterone-mediated oocyte maturation 4.67E-06 33 17

43 Shigellosis 5.15E-06 27 12

44 Hedgehog signalling pathway 6.01E-06 21 15

45 Small cell lung cancer 6.63E-06 32 14

46 Hepatitis B 1.10E-05 55 17

(Continued)
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miRNA can regulate both NMT1/2 and MetAP2 genes depending upon which mature miRNA

is loaded on to Argonaute protein. Additionally, miR-1246 was also common between NMT1/
2 and MetAP2 genes.

Further analysis of the KEGG pathways enriched with miRNAs that targets only NMT1/2
gene transcripts revealed signaling pathways that regulate the pluripotency of stem cells,

Table 2. (Continued)

KEGG pathway p-value #genes #miRNAs

47 Melanogenesis 1.15E-05 38 16

48 Fc epsilon RI signalling pathway 1.47E-05 28 16

49 Adherens junction 1.68E-05 32 15

50 Glutamatergic synapse 2.85E-05 45 16

51 Ubiquitin mediated proteolysis 3.98E-05 48 14

52 Bacterial invasion of epithelial cells 6.28E-05 29 12

53 Phosphatidylinositol signalling system 7.57E-05 32 14

54 Viral myocarditis 9.57E-05 26 14

55 Calcium signalling pathway 1.46E-04 60 17

56 Type II diabetes mellitus 1.89E-04 19 13

57 HTLV-I infection 1.96E-04 86 18

58 Tight junction 2.10E-04 48 17

59 p53 signalling pathway 2.17E-04 27 14

60 Hepatitis C 2.50E-04 45 17

61 Chemokine signalling pathway 3.14E-04 61 17

62 Transcriptional misregulation in cancer 4.00E-04 61 17

63 Hypertrophic cardiomyopathy (HCM) 4.82E-04 30 14

64 Osteoclast differentiation 7.03E-04 44 16

65 Vascular smooth muscle contraction 8.81E-04 42 15

66 Endocrine and other factor-regulated calcium reabsorption 2.18E-03 20 10

67 Dilated cardiomyopathy 2.56E-03 31 16

68 Protein digestion and absorption 2.65E-03 30 13

69 Epithelial cell signalling in Helicobacter pylori infection 2.90E-03 24 12

70 Basal cell carcinoma 2.90E-03 20 16

71 RNA transport 4.84E-03 50 17

72 Nicotine addiction 4.87E-03 18 11

73 Amoebiasis 7.13E-03 36 14

74 Chagas disease (American trypanosomiasis) 7.19E-03 36 17

75 Jak-STAT signalling pathway 7.39E-03 48 16

76 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 9.00E-03 29 14

77 Serotonergic synapse 9.00E-03 37 15

78 Apoptosis 1.24E-02 32 15

79 Adipocytokine signalling pathway 1.31E-02 23 11

80 Inositol phosphate metabolism 1.92E-02 21 14

81 Gastric acid secretion 2.73E-02 25 12

82 Oocyte meiosis 3.01E-02 42 15

83 ABC transporters 3.47E-02 15 10

85 NOD-like receptor signalling pathway 3.82E-02 19 12

86 Salivary secretion 4.10E-02 28 13

87 Fanconi anemia pathway 4.91E-02 18 12

88 Endocytosis 4.91E-02 62 16

https://doi.org/10.1371/journal.pone.0194612.t002
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Hippo signaling pathway, estrogen signaling pathway and glioma. On the other hand, a similar

analysis for miRNAs that target MetAP2 gene revealed regulation of fatty acid biosynthesis, sig-

naling pathways regulating pluripotency of stem cells, ErbB signaling pathway and prion dis-

eases as the top KEGG pathways involved. Interestingly, all these KEGG pathways are related

to the genes/proteins that regulate cellular growth, survival, migration, proliferation and devel-

opment, which are basically essential cellular processes involved in cancer progression [62].

Taken together, the predicted data strongly support the association of miRNAs targeting

NMT1/2 and MetAP2 genes to signaling pathways implicated in cancer and immune response.

Further analysis of signaling networks

Cancer signaling. We mined data to identify the roles of 221 miRNAs that regulate NMT

in cancer. We found that 35 (15.8%) miRNAs were found to have a clear role in cancer. Of

these filtered out 35 miRNAs, 15 miRNAs (42.8%) target NMT1 transcript, while 20 miRNAs

Fig 3. ErbB signaling pathway that is enriched with target genes of microRNAs (miRNAs) which negatively regulate N-myristoyltransferase (NMT1/2) and

methionine aminopeptidase 2 (MetAP2) genes. The figure illustrates ErbB signaling pathway that contain genes that are targeted by miRNAs which regulate NMT
gene. (EGF, epidermal growth factor; TGF, transforming growth factor; BTC, betacellulin; HB-EGF, heparin-binding epidermal growth factor (EGF)-like growth factor;

EREG, epiregulin; NRG1, neuregulin-1; NRG2, neuregulin-2; NRG3, neuregulin-3; NRG4, neuregulin-4; PLCγ, phospholipase C type gamma; CAMK2B, calcium/

calmodulin dependent protein kinase; PRKCB, Protein kinase C-beta; STAT5, Signal transducer and activator of transcription 5; src, Rous sarcoma virus gene; CRK, C

T10 regulator of a tyrosine kinase; NCL, NCK Adaptor Protein 2; PTK2, PTK2 protein tyrosine kinase 2; ABL2, V-Abl Abelson Murine Leukemia Viral Oncogene

Homolog 2; PAK2, P21 (RAC1) Activated Kinase 2; MAP2K4, Mitogen-Activated Protein Kinase Kinase 4; MAPK10, Mitogen-Activated Protein Kinase 10; SOS1, SOS

Ras/Rac Guanine Nucleotide Exchange Factor 1; Grb2, Growth Factor Receptor Bound Protein 2; SHC4, Src Homology 2 Domain-Containing-Transforming Protein

C4; PIK3C4, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit; AKT3, KT Serine/Threonine Kinase 3; mTOR, Mechanistic Target Of Rapamycin

Kinase; BCL2, BCL2 Associated Agonist Of Cell Death; GSK3B, Glycogen Synthase Kinase 3 Beta; CDKN1A, Cyclin Dependent Kinase Inhibitor 1A; EIF4EBP1,

Eukaryotic Translation Initiation Factor 4E Binding Protein 1; BRAF, B-Raf Proto-Oncogene, Serine/Threonine Kinase; RPS6KB1, Ribosomal Protein S6 Kinase B1;

KRAS, KRAS Proto-Oncogene, GTPase; JUN, Jun Proto-Oncogene, AP-1 Transcription Factor Subunit; ELK, ETS Transcription Factor; Myc, MYC Proto-Oncogene,

BHLH Transcription Factor; ER, endoplasmic reticulum. DNA, deoxyribonucleic acid).

https://doi.org/10.1371/journal.pone.0194612.g003
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Fig 4. Colorectal cancer and prostate cancer pathways that are enriched with target genes of microRNAs (miRNAs) which negatively regulate N-myristoyltransferase

(NMT1/2) and methionine aminopeptidase 2 (MetAP2) genes. The figure illustrates A) colorectal cancer pathway and B) prostate cancer pathway that contain genes that

are targeted by miRNAs which regulate NMT gene. (Rac1, Rac family small GTPase 1; Wnt, Wingless-related integration site; FOS, Fos Proto-Oncogene, AP-1 Transcription

Factor Subunit; APC, Adenomatosis Polyposis Coli Tumor Suppressor; AXIN2, Axis Inhibition Protein 2; CTNNB1, Catenin Beta 1; CASP3, Caspase 3; APPL, Adaptor

Protein, Phosphotyrosine Interacting With PH Domain And Leucine Zipper 1; CCND1, Cyclin D1; RALGDS, Ral Guanine nucleotide dissociation stimulator; MSH6, MutS

homolog 6; BCL2, B-Cell CLL/Lymphoma 2; TGFBR2, Transforming Growth Factor Beta Receptor 2; SMAD, SMAD Family Member 3 (mothers against decapentaplegic);

Myc, MYC Proto-Oncogene; BAX, BCL2 Associated X, Apoptosis Regulator; CYCS, Cytochrome C, DCC, Deleted In Colorectal Carcinoma; LEF, lymphoid enhancer

binding factor 1; P53, Phosphoprotein-53. AR, androgen receptor; FOXO1, Forkhead Box O1; PTEN, Phosphatase And Tensin Homolog; GSTP1, Glutathione S-Transferase
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(57%) target the NMT2 transcripts. These miRNAs are listed in Table 4. Furthermore, out of 35

miRNAs 14 (40%) miRNAs were found to be associated with prostate cancer whereas 4 (11.4%)

miRNAs showed association with colorectal, breast and liver cancers. Additionally, 3/35 (8.5%)

miRNAs were found to have roles in esophageal, renal and squamous cell carcinomas.

Stem cell, T cell and B cell receptor signaling. A thorough search of the identified 221

miRNAs revealed a defined role for 21 (9.5%) miRNAs in TCR, BCR and stem cell signaling.

Of the 21 miRNAs, 13 and 8 miRNAs contained complementarity with NMT1 and NMT2

transcripts’ 3’UTR, respectively. The differential regulation of miRNAs that are associated with

signaling pathways are summarized in Table 3 and may provide insights on how differential

expression of miRNAs may impact NMT levels.

Infectious diseases

We found 14 miRNAs that were associated with functions in infectious diseases, 8 of which target

NMT1/2 genes and 6 miRNAs target MetAP2 gene. Of the total 14 miRNAs targeting either

NMT1/2 genes or MetAP gene, 13 miRNAs (miR-29a-5p, miR-132-5p, miR-134-5p, miR-137,

miR-139-3p, miR-140-5p, miR-199a-3p, mir-520d-5p, miR-548p, miR-943, miR-4317 and miR-628-
3p) have been found to have roles in viral infections and 4 miRNAs (miR-127-3p, miR-140-5p
and miR-199a-3p and miR-4317) have been implicated in bacterial infections. Importantly, two

miRNAs: miR-199a-3p and miR-4317 play a role in both viral and bacterial infections. Further-

more, two miRNAs (miR-132-5p and miR-140-5p), have roles in both viral and fungal infections.

HIV infection. The NMT1/2 targeting miR-137 and MetAP2 targeting miR-199a-3p were

found to be upregulated in HIV infection, while another miRNA-324-5p, which targets

NMT1/2 genes, also modulates HIV infection by targeting viral infectivity factor gene.

Hepatitis virus infection. Four miRNAs were found to be associated with hepatitis viral

infections namely miR-29a-5p, miR-548p, miR-199a-3p and miR-520d-5p. Of these four miR-

NAs, three miRNAs (miR-29a-5p, miR-199a-3p, miR-520d-5p) targeted MetAP2 whereas, the

fourth miR-548p targeted NMT1/2 genes.

Human Papilloma Virus (HPV) infection. The two miRNAs (miR-324-5p and miR-139-
3p) that were found to be associated with HPV infection also targeted NMT1/2 and MetAP2
genes. Human Papillomavirus subtype-16 E5 protein downregulates miR-324-5p and contrary

to this miR-139-3p is downregulated in HPV-16-induced carcinomas.

Fungal infection. The NMT1/2 and MetAP2 genes’ targeting miR-132-5p was found to be

associated with fungal infection of human dendritic cells with Candida albicans and Aspergillus
fumigatus and regulates immune responses through the interactions with FKBP1B, KLF4, and

SPN genes. Furthermore, miR-140, miR-628-3p and miR-943 miRNAs that target NMT1/2 and

MetAP2 genes were found to have roles in infectious diseases. Of which miR-943 is upregu-

lated in Herpes Zoster viral infection and miR-628-3p serves as a biomarker for the enterovirus

71 infection. The variable expression of miRNAs associated with infectious diseases is summa-

rized in Table 5 with their corresponding references.

Targeting miRNAs of NMT follows RNA Regulon model

The miRNAs targeting NMT1/2 genes were clustered together based on their expression,

which is supported by a previous report proposing that miRNAs performing similar functions

Pi 1; CDK2, Cyclin Dependent Kinase 2; Rb1, Retinoblastoma 1; E2F3, E2F Transcription Factor 3; EGF, Epidermal Growth Factor; SRD5A2, Steroid 5 Alpha-Reductase 2;

PSA, Kallikrein 3; MDM2, RING-Type E3 Ubiquitin Transferase Mdm2; PDK1, Pyruvate Dehydrogenase Kinase 1; CDKN1A, Cyclin Dependent Kinase Inhibitor 1A;

CREBBP, CREB Binding Protein; CREB3L1, AMP Responsive Element Binding Protein 3 Like 1).

https://doi.org/10.1371/journal.pone.0194612.g004
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usually co-express with each other [61]. This phenomenon of miRNA regulon was previously

observed between miRNAs regulated by same RNA Binding Proteins [144]. We deemed it

worth to identify whether NMT1/2 and MetAP2 gene expression followed a pattern indicative

of a miRNA regulon. To find an active regulon model, PCC between miRNAs were calculated

based on the expression values and miRNAs were clustered based on the correlation value. It

was observed that miR-4306 share highest co-expression with miR-1244 followed by miR-3179
(Fig 6). This regulon model suggests that some common biological pathway is regulated by

these miRNAs apart from targeting of NMT1/2 genes. Our data supports this notion as many

of the miRNAs detected in this study were found to be involved in targeting genes involved in

same pathways. Most of these miRNAs co-express with each other indicating miRNA regulon

model is similar to the RNA regulon model, which needs further evaluation.

Discussion

Understanding miRNA-mRNA interactions that play role in tumor development, cancer pro-

gression and associated cellular processes such as immune responses is a critical step necessary

Fig 5. T-cell and B-cell receptor pathways that are enriched with target genes of microRNAs (miRNAs) which negatively regulate N-myristoyltransferase

(NMT1/2) and methionine aminopeptidase 2 (MetAP2) genes. The figure illustrates two cellular pathways A) T cell receptor signaling and B) B cell receptor

signaling that contains genes that are targeted by miRNAs, which regulate NMT1/2 gene. (PD1, programmed cell death-1; ZAP70, Zeta Chain Of T-Cell Receptor

Associated Protein Kinase 70; LAT, Linker for Activation Of T-Cells; ICOS, Inducible T-Cell Co-stimulator; DLG1, Discs Large MAGUK Scaffold Protein 1;

NCK2, NCK Adaptor Protein 2; LCP2, Lymphocyte Cytosolic Protein 2; GM-CSF, Granulocyte-macrophage colony-stimulating factor; IFN-γ, Interferon gamma;

TNFα, Tumor Necrosis Factor alpha; IL, Interleukin; NFKB1, Nuclear Factor Kappa B Subunit 1; CDK4, Cyclin Dependent Kinase 4; PPP3R2, Protein Phosphatase

3 Regulatory Subunit B, Beta; CTLA4, Cytotoxic T-lymphocyte Associated Protein; PKC8, protein kinase C-8; FYN, FYN Proto-Oncogene, Src Family Tyrosine

Kinase; Raf-1, Raf-1 Proto-Oncogene, Serine/Threonine Kinase. CD, cluster of differentiation; BCR, break-point cluster region; BTK, Bruton Tyrosine Kinase;

DAPP1, Dual Adaptor Of Phosphotyrosine And 3-Phosphoinositides 1; VAV3, Vav Guanine Nucleotide Exchange Factor 3; SHIP, SH2 Domain-Containing

Inositol 5-Phosphatase; Rac1, Rac Family Small GTPase 1; SYK, Spleen Associated Tyrosine Kinase; NFATC1, Nuclear Factor of activated T-cells 1; PPP3R2,

Protein Phosphatase 3 Regulatory Subunit B, Beta; RASGRP3, RAS Guanyl Releasing Protein 3; MALT1, Mucosa Associated Lymphoid Tissue Lymphoma

Translocation; Lyn, LYN Proto-oncogene src family tyrosine kinase).

https://doi.org/10.1371/journal.pone.0194612.g005

Table 3. MicroRNAs (miRNAs) that target T cell and B cell signaling pathways and stem cell signaling.

NMT1 targeting miRNAs Specific Up/Down Regulated References

1 miRNA-652-5p Monocytes Downregulated [70]

2 miRNA-27a-3p Dendritic cells Upregulated [71]

3 miRNA-654-5p Mesenchymal Stem Cells Upregulated [72]

4 miRNA-379-5p Granulocytes Downregulated [73]

5 miRNA-512-3p T Cells Regulatory role [74]

6 miRNA-181c-5p T Cells Upregulated [75]

7 miRNA-3174 Mesenchymal Stem Cells Regulatory role [76]

8 miRNA-200b-3p Monocytes Regulatory role [77]

9 miRNA-326 TH-17 Differentiation Regulatory role [78]

10 miRNA-29b-1-5p T cells Regulatory role [79]

11 miRNA-148b-5p DC/T Regulatory Cells Regulatory role [80]

NMT2 targeting miRNA

1 miRNA-199b-5p Stem Cells Regulatory [81]

2 miRNA-628-5p GMCSF Regulatory [82]

3 miRNA-1246 T Regulatory Cells Upregulated [83]

4 miRNA-599 T Cells Regulatory [84]

5 miRNA363-5p Stem Cells Upregulated [85]

6 miRNA-26a-5p B cells Downregulated [86]

7 miRNA-139-5p Stem cells Regulatory [87]

8 miRNA-3197 Stem Cell Downregulated [88]

https://doi.org/10.1371/journal.pone.0194612.t003
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to use miRNAs as therapeutic or diagnostic targets for cancer and other diseases. miRNAs are

emerging as a crucial component in the regulation of cellular signaling pathways, including

several processes involved in diseases such as cancer and immune dysfunction. Investigating

miRNA function and expression patterns is necessary for fully understanding how miRNAs fit to

interact with more well studied mechanisms of cell regulation, giving us a bigger and clearer pic-

ture of the signaling framework of cells under various conditions. Specifically, studying miRNA

Table 4. The association of microRNAs (miRNAs) that target N-myristoyltransferase (NMT) transcript 1 and 2 (NMT1 and NMT2) with different cancer types and

their expression changes.

NMT1 targeting

miRNAs

Specific Up/Down Regulated References Reported functions

1 miR-421 Prostate Cancer Down [89] repression of cancer cell proliferation and cell cycle

2 miR-186-5p Prostate Cancer Up [90] cell proliferation

3 miR-675-5p Prostate Cancer Down [91] metastasis

4 miR-497-5p Prostate Cancer Down [92] cell proliferation activity, migration and invasion

5 miR-708-5p Prostate Cancer Down [93] cell viability, migration, invasion, tumor progression, and

reoccurrence

6 miR-409-3p Colorectal Cancer Down [94] metastasis

7 miR-106b-3p Colorectal Cancer Up [95] prognosis

8 miR-140-5p Esophageal Cancer Down [96] cell invasion

9 miR-330-3p Esophageal Cancer Down [97] cellular sensitivity to chemotherapy

10 miR-376-5p Gastric Cancer Up [98] cell growth

11 miR-374b-5p Gastric Cancer Up [99] cell invasion and metastasis

12 miR-520b Liver Cancer Down [100] tumorigenesis and liver colonization

13 miR-127-3p Breast Cancer Down [101] cell proliferation

14 miR-503-5p Brain Cancer/Glioma Down [102] cell proliferation invasion

15 miR-346 Squamous Cell

Carcinoma

Up [103] cell proliferation and migration

NMT2 targeting

miRNA

Specific Up/Down

Regulated

References Reported functions

1 miR-376a-5p Prostate Cancer Down [104] cell proliferation

2 mIR-497 Prostate Cancer Down [92] cell proliferation activity, migration and invasion

3 miR-1193 Prostate Cancer Down [105] cell proliferation, cell viability, and colony formation

4 miR-195-5p Prostate Cancer Down [106] migration and invasion

5 miR-1205 Prostate Cancer Down [107] prostate cancer susceptibility

6 miR-214-3p Prostate Cancer Down [108] biomarker

7 miR-1914-5p Colorectal Cancer Upregulated [109] decreases chemo resistance abilities of CRC cells

8 miR-421 Prostate Cancer Down [89] repression of cancer cell proliferation and cell cycle

9 miR-212-5p Prostate Cancer Down [110] angiogenesis and cellular senescence

10 miR-301a-5p Colorectal Cancer Up [111] migration and invasion

11 miR-133a-5p Colorectal Cancer Down [112] apoptosis and inhibiting cell proliferation

12 miR-187-5p Breast Cancer Up [113] poor prognosis, disease progression, poor outcome

13 miR-411-5p Breast Cancer Down [114] proliferation and metastasis

14 miR-519e-5p Nasopharyngeal Cancer Down [115] Inhibit upregulated gene-4

15 miR-15b-5p Liver Cancer Up [116] proliferation

16 miR-199a-5p Liver Cancer Down [117] low survival, higher tumor growth

17 miR-548p Liver Cancer Down [118] proliferation

18 miR_200a-3p Renal Cancer Down [119] cell proliferation, tumor suppressor

19 miR-137 Breast Cancer Regulatory [120] Decreases expression of NOTCH

20 miR-452-5p Esophageal Cancer Up [121] molecular marker

https://doi.org/10.1371/journal.pone.0194612.t004
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interactions with the NMT1/2 and MetAP2 genes will shed light on the poorly understood regula-

tion of myristoylation, a key cellular function critical to oncogenesis, adaptive immune function,

and infectious disease onset. Our findings have verified that miRNAs are likely an important

driving force in the regulation of myristoylation, and identified several NMT-transcript-binding

miRNAs that have been linked to processes mediated by myristoylation.

The present study predicted (1) miRNAs that significantly bind to the NMT1 and NMT2

transcripts, (2) miRNAs in which NMT1/2 and MetAP2 transcripts are common binding tar-

gets, (3) a possible role for the involvement of NMT1/2 transcript-binding miRNAs in Cancer,

T/B cell receptor signaling and infectious diseases. By using TargetScan software, we initially

found a total of 13,798 miRNA-target hits for the NMT1/2 genes, whereas the MetAP2 gene

had 7,708 interactions detected. Statistical analysis using “R” software package further delin-

eated significant binding of these miRNAs onto their target; based on this, 221 NMT miR-

NA-NMT-target interactions, and 165 miRNA-METAP2-target interactions were verified. A

thorough literature review was performed to find if these miRNAs have any role in Cancer,

T/B cell receptor signaling, and infectious diseases. Of the 35 miRNAs, 15 (42.8%) target the

NMT1 transcript and 20 (57%) target the NMT2 transcripts. Interestingly, 14 miRNAs (40%)

have a defined role in prostate cancer, and 4 (11.4%) miRNAs each that play a role in colorec-

tal, breast and liver cancers. Furthermore 3 (8.5%) miRNAs are involved in esophageal cancer,

and one miRNA each that has been detected to play a role in renal cell carcinoma, brain can-

cer, and role in squamous cell carcinomas. Secondly, with regards to T/B cell receptor signal-

ing, 21 (9.5%) NMT1/2 targeting miRNAs were detected. Of the 21 miRNAs, 13 had NMT1 as

their target site and 8 had NMT2 as their target site. Lastly, 2 of each of the miRNAs targeting

NMT1/2 were involved in infectious diseases, including HIV.

Numerous recent reports clearly point to a role of miRNA in cancer establishment, evasion,

differentiation, and metastasis, which when targeted, have shown the promising results as ther-

apeutic targets in preclinical as well as in clinical trials [145, 146]. Our findings indicate that

several miRNAs that target myristoylation related genes (NMT1/2 and MetAP2) are associated

with cancer. Interestingly, of these identified miRNAs, some have been found to be associated

with colorectal or breast cancers wherein role of NMT has already been established [2, 50].

Furthermore, miR-409-3p and miR-106b-3p, and miR-127 that all bind to the NMT1

Table 5. The association of microRNAs (miRNAs) that target N-myristoyltransferase (NMT) transcript 1 and 2 (NMT1 and NMT2) and MetAP transcripts with dif-

ferent infectious diseases and their expression changes.

NMT1/2 & MetAP miRNAs Specific Up/Down Regulated References

1 miR-127-3p Bacterial infection Up [122]

2 miR-132-5p Fungal infection with Candida albicans and Aspergillus fumigatus Up [123]

3 miR-134-5p Poliovirus infection Up [124]

4 miR-137 HIV neurodegenerative diseases down [125]

5 miR-140-5p Coxsackievirus/fungal infection Up [126, 127]

6 miR-548p Suppresses HBV associated HCC Down [128]

7 miR-943 Herpes Zoster viral infection Up [129]

8 miR-4317 E Coli induced miRNA Up [130]

9 miR-29a-5p HBV associated HCC Up [131]

10 miR-139-3p HPV-16 induced Cancer Down [132]

11 miR-199a-3p HBV/HCV/ Schistosoma mansoni Regulatory [133–138]

12 miR-324-5p HCV/HIV/HPV and related cancers Downregulated [139–143]

13 miR-520-5p Immune clearance of HBV Regulatory [142]

14 miR-628-3p Biomarker for enterovirus 71 infection Diagnostic [126]

https://doi.org/10.1371/journal.pone.0194612.t005
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transcript, have been reportedly involved in colorectal cancer and breast cancer respectively.

miR-409-3p was previously found to be a colorectal tumor suppressor, with reduced expres-

sion of miR-409p present in colorectal cancer tissue and correlated with metastasis [94]. In

contrast, miR-106b-3p upregulation was correlated with colorectal tumor growth [147]. Wang

et al demonstrated that miR-127 is downregulated in breast cancer tissues, and reduced miR-

127 expression is correlated with late stage lymph node metastasis. Furthermore, miR-127

downregulation was an independent prognostic factor that predicted lower overall survival in

breast cancer patients and upregulation of miR-127 inhibited breast cancer cells growth, sur-

vival, and migration [148].

We also identified NMT2-targeting miRNAs that have been previously demonstrated to

play a role in regulating or advancing colorectal and breast cancers. Our analysis identified

miR-133a and miR-301a as NMT2-binding miRNAs that act to suppress and promote colorec-

tal cancer respectively. Wan et al established through gene analysis that miR-133a expression

was reduced in 83.2% of colorectal cancer patient tumors compared to healthy mucosal tissue,

and Dong et al demonstrated that ectopic overexpression of miR-133a suppresses colorectal

Fig 6. The clustering of microRNAs (miRNAs) targeting N-myristoyltransferase (NMT) genes. The figure

illustrates clustering of the miRNAs that target NMT1/2 genes based on normalized expression values obtained from

“GSE62037”. Data suggest miRNA regulon model is similar to the RNA regulon model. Green color shows positive

Pearson correlation coefficient (PCC) values (0.5� r� 1) and red color shows inverse/negative PCC values (-0.5�

r� 1). Heatmap shows that most of miRNAs have high PCC values, and these miRNAs co-express with each other to

regulate common biological processes.

https://doi.org/10.1371/journal.pone.0194612.g006
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tumor growth in-vitro and in-vivo [112, 149]. A study into the colorectal cancer promoting

mechanism of miR-301a, which is upregulated in colorectal cancers, revealed that miR-301a

expression confers growth and invasion by downregulating SOCS6 expression [150]. Our

investigation of NMT2 transcript-binding miRNAs revealed miR-411-5p and miR-187, which

respectively function as a tumor suppressor and an oncogenic agent of breast cancer. miR-

411-5p was observed to suppress breast cancer by downregulating GRB2 and Ras expression

[114]. Finally, a report by Mulrane et al identified miR-187 expression as an independent fac-

tor that drives the in vitro development of increased aggressiveness and invasiveness of breast

cancer [113].

There are several lines of evidence that demonstrate the critical role miRNAs play in stem

cell, T-cell, and B-cell signaling [151–154]. This is of relevance to this study as besides cancer,

studies on myristoylation signaling have focused on NMT’s role with respect to embryogene-

sis, innate immune cell differentiation, and adaptive immune development and signaling, and

HIV infection [4, 5, 8, 10]. During our analysis we identified several NMT1/2-binding-miR-

NAs involved in the previously mentioned functions and have chosen to discuss a selection of

the most relevant and best-annotated examples. With regards to certain developmental path-

ways, miR-200, 199b and 26a have been shown to play a decisive role, with the former binding

to the NMT1 transcript, and latter two binding to the NMT2 transcript. miR-200 family

microRNAs were found to be expressed exclusively in epithelial type tissues and when downre-

gulated could stimulate an epithelial-mesenchymal transition, which may implicate their

reduced activity with cancer metastasis [155]. miR-199b has been shown to block stem cell dif-

ferentiation through inhibition of the Notch pathway [81]. miR-26a was identified as a

required factor for the differentiation of skeletal muscle during mouse development, with inhi-

bition of miR-26a resulting in delayed muscle regeneration [156].

In terms of immune function, the NMT2-transcript binding miR-628 was found to be upre-

gulated following TLR mediated LPS detection in monocytes, and targeted MyD88 as part of a

negative feedback loop for TLR signaling [157]. Two NMT1-transcript-binding miRNAs,

miR-29b and 326, have evident roles in T-cell signaling. miR-29b overexpression in CD8+ T

cells of renal carcinoma patients has been found to induce immune dysfunction through

down-regulation of JAK3 and MCL-1 [158]. Furthermore, heightened expression of miR-326,

which is associated with multiple sclerosis (MS), was shown to drive TH-17 T helper cell differ-

entiation and MS pathogenesis in mouse models [78]. Two mRNA hits during our analysis

were functionally implicated in the regulation of B-cell signaling, specifically with regards to

the autoimmune disease lupus. The B-cells of lupus patients were determined to have

increased expression of miR-148, an NMT1-transcript-binding miRNA, and decreased expres-

sion of miR-1246, an NMT2-transcript-binding miRNA. miR-148a is thought to affect B cell

signaling by impairing immune tolerance pathways through suppression of PTEN, thus con-

tributing to autoimmune symptoms [159]. In contrast, expression of miR-1246 normally regu-

lated B cell activation through suppression of EBF1, however miR-1246 expression is reduced

in the activated B cells of lupus patients through Akt-p53 signaling [160]. Lastly, miR-132

(NMT1-transcript-binding miRNA) and miR-29 (NMT2-transcript-binding miRNA) are

involved in HIV infection, with the former promoting infection and the latter acting as an

antiviral agent. miR-132 is highly upregulated during CD4+ T cell activation and are thought

to enhance HIV-1 replication [161]; miR-29 family miRNAs are expressed by increased

STAT3 transcription following IL-21 stimulation and lead to an anti-viral environment in

CD4+ T cells during initial control of HIV-1 in vivo [162].

The overlap between the effects of NMT-transcript-binding miRNAs and previously

reported NMT dysfunction are encouraging for the future development of therapeutics or

diagnostic/prognostic biomarkers that exploit myristoylation-mediated cell signaling. The
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high stability of miRNAs have made them a promising biomarkers as they can be easily

obtained from the buffy coat associated immune cells of blood samples [163, 164]. Addition-

ally, methods of in vivo miRNA modulation are being developed for future clinical settings

[165].

A recent report by Chen et al. documented dynamic interaction of miR-99 and miR-100
and the ability of miR-100 to downregulate NMT1 transcript levels [166]. Several other recent

studies demonstrated that miR-99 modulates many molecular signaling pathways that are not

limited to AKT, mTOR, MMP1 and IGFR1 signaling and contribute to the tumorigenesis of

cancer conditions such as head and neck squamous cell carcinoma [167], oral squamous cell

carcinoma [168, 169] and esophageal squamous cell carcinoma [169]. Interestingly, one func-

tional study indeed proved that miR-99a inhibits cell proliferation, colony formation ability,

migration and invasion by targeting fibroblast growth factor receptor 3 (FGFR3) in prostate

cancer [170] and bladder cancer [171]. A study by Androulidaki et al. demonstrated that

AKT1 controls macrophage responses to the LPS by regulation miRNA [172]. All these studies

provide supporting evidence that miR-99 is a critical player in cancer pathogenesis, which is

possibly derived from post-transcriptional regulation of NMT. Study by Schramedei et al.

demonstrated that MetAP2 is a putative target of miR-21 in B-cell lymphomas [173].

In addition to prediction of the nature of miRNA-mRNA relationships, our study also

revealed another layer of complexity and interconnectedness of miRNAs, long noncoding

RNAs (lncRNA) and target mRNAs. The NMT1 targeting miR-675-5p, which is down regu-

lated in metastatic prostate cancer, derives from the lncRNA H19 [91]. In prostate cancer cells,

H19 is upregulated that aids in expression of miR-675. The expression of lncRNA H19 and

miR-675 were associated with repression of extracellular matrix protein, TGFβ1, that regulate

cellular migration and cancer metastasis. It appears that the H19-miR-675 lncRNA-miRNA

interactions function in different cancer cell types by targeting different mRNAs. For instance,

in gastric cancer, H19-miR-675 regulates cell proliferation by repressing RUNX1 [174].

One of the bottlenecks in HIV infection is the neurodegeneration, which occurs through

modulation of host axon guidance and associated neurotrophin signaling pathways. Zhou

et al., comprehensively profiled miRNAs in patients with dementia who were infected with

HIV. In this study, they uncovered three important miRNAs that were dysregulated particu-

larly in HIV infected dementia patients compared to only dementia patients. The miR-137 that

targets NMT1/2 and MetAP2 genes was on top of the list. Further enrichment of the miRNA

pathways revealed that miR-137 is involved in more than 5 neurodegeneration pathways that

included WNT and MAPK pathways, which happens to be dysregulated in cancers as well

[125]. Since miR-137 targets NMT1/2 genes and particularly in dentate gyrus and hippocam-

pus, it would be interesting to further investigate the dynamics of miR-137 and NMT in

dementia patients with HIV. Hepatocellular carcinoma is a dreaded cancer of the liver whose

etiology is linked to chronic liver inflammation most commonly due to infection with hepatitis

B and hepatitis C viruses. Our analysis revealed four NMT1/2 and MetAP2 targeting miRNAs

(miR-29a-5p, miR-548p, miR-199a-3p and miR-520d-5p) that have roles in hepatitis viral

infections. miR-29a-5p is demonstrated to be upregulated in Hepatitis B Virus infection

related to hepatocellular carcinoma and may function through inhibition of PTEN (131).

Mounting evidences in the literature suggest that miR-199 plays dominant and multi-faceted

role not only in cancer but also in infectious diseases including HBV, HCV and Schistosoma

mansoni. It not only inhibits the HBV viral replication but also regresses the hepatocellular

carcinoma [47, 133]. Moreover, miR-199a-3p can also be used as early biomarker in HCV

infection [138]. As revealed in our analysis, since miR-199a-3p also inhibits the MetAP2 gene,

which plays key role in angiogenesis, further studies are warranted to underpin the role of

miR-199a-3p in oncogenesis. Apart from these miRNAs, we also found that miR-520d-5p is
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associated with immune clearance by transitioning the immune tolerant to immune activation

state in chronic hepatitis B and miR-548p suppresses hepatitis B virus associated HCC by

downregulating expression of hepatitis B x-interacting protein [128, 175].

Our in-depth analyses of miRNAs that regulate NMT1/2 and MetAP2 genes have cemented

the significance of miRNAs in disease etiology and progression. The emergence of miRNAs’

abilities in regulating various important facets of cellular functions dictates the significance of

miRNAs in designing new therapies around cell signaling molecules.

Several miRNAs in this study were predicted to interact with mRNA transcripts responsible

for translating the key proteins involved in myristoylation (NMT1/NMT2/METAP2). This

preliminary in-silico analysis requires future validation within in-vitro cell models to demon-

strate expression of the identified miRNAs and their interaction with the target transcripts.

Initial validation should include quantitative PCR (qPCR) to confirm co-expression of each

miRNA and their respective transcript target using miRNA and transcript specific primers. Since,

in-silico study may reveal a large number of potential miRNA binding sites on a target mRNA, it

is important that a reporter assay should be performed to validate specific binding sites.

The interaction between a miRNA of interest and its target(s) needs to be demonstrated,

which can be done using in-situ hybridization with locked nucleic acid (LNA) modified oligo-

nucleotide probes labelled with digoxigenin that can be visualized appropriately using digoxi-

genin antibody conjugated to alkaline phosphatase to act upon a chromogenic substrate. A

major challenge to these initial approaches includes a potential tissue specific expression of the

analyzed miRNAs, emphasizing the need to test a spectrum of tissue types and cell lines. Tissue

specific expression of NMT1, NMT2 and MetAP2 is well documented and therefore, initial

studies would require validation of miRNAs in cell lines and tissues that express the target

genes.

Furthermore, miRNAs of interest may be overexpressed (gain-in-function) in cell lines

through a lentiviral infection or plasmid transfection to determine their effect on NMT1/

NMT2/METAP2 mRNA transcript levels using qPCR and the resulting protein expression by

Western blot analysis. Narrowed down miRNAs from the aforementioned validation tech-

niques will be used for further studies in order to determine their effect(s) on cell signaling

pathways that are involved in regulating cell proliferation, apoptosis, T/B cell signaling and

viral infection.

Conclusion

Our original data set encompassed over 13, 000 miRNAs that potentially target and regulate

NMT. Together, the functional data available for NMT1/2-transcript-targeting miRNAs

helped create a condensed data set of miRNAs that serve as strong candidates for further inves-

tigation into the regulation of myristoylation with respect to various types of signaling dysre-

gulation. In total, 35 NMT-transcript-binding miRNAs were linked to cancer, 21 linked to

development or immune dysfunction, and 14 linked to infectious disease, including HIV and

HBV infection. Future analysis of this miRNA panel is needed to verify a direct link between

these miRNAs and myristoylation dysfunction associated diseases. This study provides a plat-

form for studying an additional facet of NMT regulation, and may lead to the development of

new therapeutic targets or biomarkers for several types of cancer, development or immune

dysfunction, HIV and hepatitis viral infections.
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