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Abstract

We developed a model for estimating demographic rates and population abundance based

on multiple data sets revealing information about population age- and sex structure. Such

models have previously been described in the literature as change-in-ratio models, but we

extend the applicability of the models by i) using time series data allowing the full temporal

dynamics to be modelled, by ii) casting the model in an explicit hierarchical modelling frame-

work, and by iii) estimating parameters based on Bayesian inference. Based on sensitivity

analyses we conclude that the approach developed here is able to obtain estimates of

demographic rate with high precision whenever unbiased data of population structure are

available. Our simulations revealed that this was true also when data on population abun-

dance are not available or not included in the modelling framework. Nevertheless, when

data on population structure are biased due to different observability of different age- and

sex categories this will affect estimates of all demographic rates. Estimates of population

size is particularly sensitive to such biases, whereas demographic rates can be relatively

precisely estimated even with biased observation data as long as the bias is not severe. We

then use the models to estimate demographic rates and population abundance for two Nor-

wegian reindeer (Rangifer tarandus) populations where age-sex data were available for all

harvested animals, and where population structure surveys were carried out in early sum-

mer (after calving) and late fall (after hunting season), and population size is counted in

winter. We found that demographic rates were similar regardless whether we include popu-

lation count data in the modelling, but that the estimated population size is affected by this

decision. This suggest that monitoring programs that focus on population age- and sex

structure will benefit from collecting additional data that allow estimation of observability for

different age- and sex classes. In addition, our sensitivity analysis suggests that focusing

monitoring towards changes in demographic rates might be more feasible than monitoring

abundance in many situations where data on population age- and sex structure can be

collected.
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Introduction

Due to their popular status as game animals, efficient management of ungulate populations

often requires detailed knowledge about their demography and abundance [1]. When environ-

mental conditions varies, this will often result in demographic rate variation [2] causing the

finite population growth rate (λ) to fluctuate in time and space. For spatially closed popula-

tions, demographic rate variation, together with fluctuations in the age structure [3, 4], are the

ultimate source of variation in λ. As a result, the tradition of studying the link between demog-

raphy and population state has a long history in large mammal research [5–8]. To this end, a

wide range of methods and study approaches have been taken in order to estimate demo-

graphic rates and population sizes. For instance, for many northern and temperate ungulates,

radio telemetry has been used to estimate survival probabilities [9, 10] and recruitment rates

[11, 12]. In addition, great methodological advances in the field of capture-mark-recapture

(CMR) studies have put much focus on the benefits and potential for insight from marked

individuals [13] even if they are not radio collared. While radio collaring has been used mainly

for research purposes, the opportunities offered by CMR methods has been gradually imple-

mented in monitoring programs [14, 15]. In particular, many large carnivore monitoring pro-

grams are currently implementing CMR analysis based on non-invasive sampling (e.g. of

scats; see [16]). Such methods have, however, been far less utilized to monitor ungulate popu-

lations, partly because ungulates usually live at far higher densities and because available funds

for monitoring are limited. These methods, which are both time consuming and often conflict

with the limited funds that are available for wildlife management, generally make them less

applicable in real life situations. There is thus a dire need to develop new cost-efficient tools

that both meet the rigor expected from any mature monitoring scheme (e.g. accounting for

detection probabilities that might vary in time and space; [17]) and at the same time are appli-

cable and sustainable over long time periods across large landscapes.

Wild mountain reindeer (Rangifer tarandus) are endemic to Norway, and are of national

and international conservation interest. Reindeer formerly occupied large continuous areas of

mountain landscape, but roads, railroads, mountain cabins and other infrastructure have frag-

mented the landscape and impeded movements across the landscape [18, 19]. Consequently,

wild reindeer in Norway are currently distributed as 23 isolated populations with many of the

former migration routes being abandoned [18]. As a result of these landscape alterations many

sub-populations also inhabit areas that are less suitable for either summer or winter residency

[19]. Further, in addition to being an iconic species in Norwegian mountains, reindeer are har-

vested annually for sport and population management in most or all sub-populations [20].

These factors together make reindeer management a particularly sensitive natural resource

issue. This situation afforded us an interesting case study of a managed ungulate species for

which detailed knowledge is needed for effective population management.

During the last decade, hierarchical statistical models [21] that integrate information from

multiple data sources [22–24] have been used to estimate abundance and vital rates from ani-

mal populations. In the classical integrated population model, CMR-data is typically modelled

simultaneously with count data, to estimate demographic processes (i.e. survival probabilities

and recruitment rates) as well as population size and rate of change [21, 25]. In other cases,

methods frequently cited in the wildlife management literature (e.g. virtual population analy-

sis; [26]) have been extended and accommodated to allow for joint modelling of complemen-

tary data sources. For instance, the use of auxiliary data has been used to increase precision

and reliability of traditional age-at-harvest models for black bear (Ursus americana) in Minne-

sota, USA [22], and for greater sage-grouse (Centrocercus urophasianus) in Oregon, USA [27].

Despite increased use of integrated population models, some approaches, including change-
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in-ratio models (see also [26] and references therein, and [28]), have received relatively little

attention. The main idea behind these estimators is that the population sex- and age structure

(or some component of that) is sampled before and after some main source of mortality occurs

[28]. For hunted wildlife population, a natural and often used mortality pulse is the annual har-

vest which is often confined to a limited time period. When the number, sex and age-class of

harvested animals is also known, both survival rates and the abundance can be estimated

under a given set of assumptions [26, 29].

Here we cast the change-in-ratio models in an explicit hierarchical modelling framework

within a Markov Chain matrix population model and estimate parameters of interest based on

Bayesian inference. First, we made extensive simulations to assess the robustness of the estima-

tors to deviations from model assumptions. Next, we used the models to estimate parameters

of interest from two wild reindeer populations, taking advantage of the typical multi-year

monitoring programs for wildlife populations in Norway [20].

Materials and methods

Setting and survey protocols

The general sampling scheme and timing of events underlying the models presented here

resembles those of a traditional three-sample change in ratio sampling scheme [26, 28]. One

crucial extension is that we explicitly formulated the estimators through a Markov Chain

model, where the parameter estimates not only results from the current year’s survey but also

results from the Markov Chain properties of the model. The modelling is based on the follow-

ing distinct data collection events:

Prior to harvest season (PRE), age and sex composition of the population is assessed. In our

specific case, however, only a certain segment of the population is sampled as the main pur-

pose of the pre-harvest surveys is to determine the annual calf production. Further, due to

morphological similarities, only two classes of individuals are recognized: i) calves, and ii) a

composite class consisting of adult females and yearlings of both sexes. Depending on the tim-

ing of this sampling event, the resulting estimators might represent a combination of fecundity

f and juvenile summer survival f1. In our case, when the pre-harvest survey occurs a short

time after calving (between June 20th and July 20th), the two rates will appear as distinct param-

eters in our estimators, and will both be estimable. The calf to female ratio is estimated based

on visual examination of aerial photographs taken during summer surveys. Summer surveys

are done in late June or in the first two weeks of July. A small fixed wing aircraft is used flying

transects with overlapping visibility. All encountered herds are photographed and detected

animals are later assigned to categories: calf, yearling and female and male 2 years and older

(see [20] for further details).

Harvest (HARV) takes place as a pulse event (starting August 20th and ending September

20th), removing a known number of individuals with known sex and age. Exact age is not

required if the age classes match other available population data. described later. If the exact

harvest off-take is not known a probabilistic model for the harvest process could possibly be

constructed given that covariates known to be correlated to actual harvest is available (e.g.

quota size and hunting effort).

After the harvest season (POST), the age- and sex structure of the population is again sam-

pled. Sampling takes place in the first week after the harvest season (September 20th to the first

week of October). In our specific case, three classes of individuals are recognized: i) calves (of

both sexes), ii) females (yearlings and older) and iii) males (yearlings and older). The surveys

take place annually during the rut in October. This is a time when sexual segregation breaks

down and all animals are aggregated in mixed sex groups. Surveys are conducted as ground
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surveys using a spotting scope. Herds of differing sizes are observed at distances of 50–300 m,

and each animal is classified to age and sex by their body size, antler development, and visible

genitals. Pre-harvest surveys, harvest data and post-harvest surveys are included in a national

ungulate monitoring program financed by the Norwegian environment agency [30]. Data

from the program can be downloaded at: http://www.hjorteviltregisteret.no/Villrein and at

https://www.ssb.no/jord-skog-jakt-og-fiskeri/statistikker/reinjakt.

In addition, the total population size (TOT) is assessed during mid-winter (January through

March) in both populations (see [20] for a similar sampling regime in another Norwegian wild

reindeer population). The objective is to obtain a minimum count of the reindeer in the area

each year. Surveys are conducted by flying transects with fixed-wing aircraft, and all reindeer

groups that are seen are approached and photographed. Group size is then determined from

the photographs. However, as it is well known that population estimates which are not based

on a sampling scheme that allow observation probability to be estimated separately are often

biased low [14], we considered models that both include and exclude this data set.

While the sampling events described above matches that of a more traditional three-sample

change-in-ratio model [26], there are at least four factors that make our approach novel. First,

we used time series data allowing the full temporal dynamics to be modelled. Second, we cast

the model in an explicit hierarchical modelling framework, allowing the separation of the

observation process from the state process [21]. Third, we estimate parameters based on Bayes-

ian inference allowing us to exploit the great flexibility of the BUGS language. Fourth, the fact

that the age- and sex structure of the population is differently represented in the different data

sets complicates the modeling slightly. For instance, while yearling males are included in the

female/yearling state in the PRE data sat, they are included in the male state in the POST data

set and represent a single state in the HARV data set. While such a sampling scheme would

make the traditional estimators less useful, our explicit formulation of the model as a Markov

chain matrix population model allow us to estimate the hidden states and thus utilize the data

described above.

Population model specification

To utilize the four data sets described above in a joint analysis, we combined the datasets in a

common population dynamic model. All data sets except the total surveys (TOT) includes

information about the age and sex structure of the population, and thus serves as basis for con-

structing age- and sex structured population models [31–33]. Such models have proven useful

when modeling the dynamics of long-lived species, as their demographic rates are typically

strongly age-dependent [34, 35]. Different age classes can differ in their contribution to inter-

annual changes in population increment and fluctuations in population structure might com-

plicate the dynamical patterns further [3].

Population modelling require a proper specification of the presumed time schedule. There

are two broad time schedules used in matrix population models for organisms with discrete

breeding seasons, namely a pre-breeding or post-breeding time schedule [33]. In a post-breed-

ing time schedule, the population state is updated immediately after birthing season and the

youngest age group included in the population vector is the newly born individuals. Employ-

ing a pre-breeding model, the population vector is updated immediately before the birthing

season, and the youngest age class is the almost one year old recruits. However, alternatives are

possible, and sometimes a more detailed description of the annual cycle is needed with sub-

processes describing the transition from one state vector to the next [32, 36]. In our case, the

different data sets are collected at different times through the year, and we exploit the benefits

of specifying the transition from year t-1 to t through a series of two sub-process. First, we
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assume that the annual cycle starts just prior to the harvest season, and represents the popula-

tion vector at that time by Nt. Note that our approach approximates a mid-point between a

post-breeding and a pre-breeding model, with the youngest age in the population vector

including ca. 3 month old calves. We then assume that harvest occurs as a pulse, and reduces

the population vector to Xt by removing a known number of individuals with known sex- and

age. The harvest vector is represented by Ht. Such a partitioning of the annual cycle allows us

both to model surveys taken at different times of the year and to properly account for stochas-

tic and deterministic properties of the state process.

We defined Nt (the population vector prior to harvesting in fall in year t) to be represented

by a vector containing three age classes indexed as calves (c), yearlings (y) and adults (ad)) and

two sexes indexed as males (M) and females (F):

Nt ¼

NF
c

NF
y

NF
ad

NM
c

NM
y

NM
ad

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð1Þ

We then assume that harvest occur as a pulse at the beginning of the time step, and repre-

sents the post-harvest population size in year t with Xt:

Xt ¼ Nt � Ht ð2Þ

The age- and sex distribution of animals harvested in year t is then represented by the vec-

tor Ht. Note that our approach assumes that harvest bag statistics are reported without error,

which is justified in our case because it is mandatory for hunters to report age class and sex of

harvested reindeer to the management authorities [20]. We use only three age classes in our

model (calves, yearlings and older, respectively) and the error should be minimal.

To transfer the population in year t to year t+1, we multiplied the post-harvest population

vector in year t (Xt) with the transition matrix At:

Ntþ1 ¼ Xt þ At ð3Þ

The projection matrix At is a matrix with i columns and j rows. Each matrix element αij in

At specifying the contribution from animals in class i in year t to class j in year t+1 [33, 37].

Our transition matrix, transferring the population vector from Xt to Nt+1 takes the form of a

6x6 square matrix:

At ¼

0 �2�1

f
2

�2�1

f
2

0 0 0

�2 0 0 0 0 0

0 �2 �2 0 0 0

0 �2�1

f
2

�2�1

f
2

0 0 0

0 0 0 �2 0 0

0 0 0 0 �2 �2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð4Þ
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In our hierarchical population model, three vital rates entered the transition matrix At

described above. First, annual fecundity f is given by the number of calves produced per female

alive just prior to the calving season in spring. Second, juvenile survival (f1) is the first sum-

mer survival of calves, with summer here defined as the period between the pre-harvest sam-

ples and post-harvest samples taken just after the hunting season in October. Third, annual

survival (f2) is estimated for the period between harvest season in year t (represented by Xt)

until harvest season in year t+1 (represented by Nt+1). For simplicity, we assumed that the lat-

ter was the same across sex- and age classes.

Combining the state- and observation process models

In contrast to most studies where independent estimates of demographic rates are used to

parameterize the transition matrix At we were confined to simultaneously estimate latent

demographic rates from the data described above. As the different data sets contained infor-

mation about population structure and/or abundance from different times of the year, the for-

mulations need to be tailored to capture the seasonal changes in structure that might be

present as a result of age- and sex differences in survival probabilities.

To model the transition from Xt to Nt+1, we specified two equations for yearlings:

EðNi
y;tþ1
jXi

c;tÞ ¼ Xi
c;t � �2 ð5Þ

and for adults:

EðNi
ad;tþ1
jXi

y;t;X
i
ad;tÞ ¼ ½X

i
y;t þ Xi

ad;t� � �2 ð6Þ

Superscript i = sex (F or M respectively).

Because f2 represents a survival probability that is bound between 0 and 1, we used a bino-

mial distribution to model the survival to ensure that Ni
j,t+1 (subscript j representing age-class

yearling or adult) is an integer number between 0 (if no individual survives) and Xi if all indi-

viduals survive:

Ni
j;tþ1
� BinomðXi

j;t; �2Þ ð7Þ

, where subscript j represents age class yearling or adult, respectively.

To model the number of recruits we used the same approach as above, with the probability

of success given by the product f1f2f = R. As reindeer have a maximum littersize of one calf

we again used a binomial distribution:

Ni
c;tþ1
� BinomðXF

ad;t;RtÞ ð8Þ

To estimate the parameters in the transition matrix (f, f1 and f2, respectively), we relied on

the observation data as described in previous sections. In particular, these data contains infor-

mation about the sex- and age structure of the populations.

PRE-survey. These observations are taken in the spring post-calving, and are related to

the pre-harvest population vector (Nt). Two classes are recognized: calves (of the year) and

females together with yearlings of both sexes (hereafter FY). To accommodate the modeling,

we made some simplifying but still realistic assumptions. First, we assume that the mortality of

FY are minimal through the summer, and that the number of individuals in these age classes

in the spring could be approximated by the pre-harvest population vector Nt. This assumption

is strongly supported by the fact that adult survival in ungulates is generally high and stable

in the absence of predation and harvest [34, 38]. Survival probabilities of juveniles might how-

ever display considerable temporal and spatial variation [38], and this variation needs to be

Hierarchical integrated change-in-ratio model for wildlife monitoring
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modeled. We thus allowed for temporal variation in f1 as described above, and modeled the

number of calves in the population when the surveys were taken (Calft) by removing f1 from

the R-function (Eq 8);

EðCalftjX
F
y;t� 1

;XF
ad;t� 1
Þ ¼ ½XF

y;t� 1
þ XF

ad;t � 1� � ½�2�f � ð9Þ

We assumed that calves and FY had the same probability of being observed, and specified

the observation process through the combination of two binomial probability models;

Ccalf
t � BinomðCalft; p1;tÞ ð10Þ

CFY
t � BinomðFYt; p1;tÞ ð11Þ

Where Ct
calf and Ct

FY is the number of calves and FY observed, respectively, and Calft and

FYt is the estimated number in the population at the time of observation, and p1,t is the obser-

vation probability assumed to be similar for calves and FY but allowed to vary among years.

POST-surveys. After autumn harvest in year t, the age- and sex structure of the popula-

tion is surveyed, and these observations comprise the post-harvest population vector Xt. Lack-

ing independent information about the observation probability (p2,t), we made the assumption

that p2 was similar across age- and sex classes, but we allowed p2,t to vary among years and to

be different from p1,t. We thus specified the observation process through a combination of

three binomial probability models;

Si
j;t � Binomð

P
Xi

j;t; p2;tÞ ð12Þ

where Sji represents the number of individuals observed in the appropriate sex- and age class.

In the post-harvest survey, three classes are identified: calves, females (yearlings and older) and

males (yearlings and older). With additional data, deviations in p1,t and p2,tbetween age- and

sex classes could have been modeled with the appropriate covariates.

TOT-surveys. From aerial line transect surveys we also had access to “minimum count”

data, that were sampled in mid-winter in both populations. While the purpose of the sampling

is to obtain a minimum count of the reindeer in the area each year, such data are often mod-

elled as if they represent the true state of the population [20]. Count data typically underesti-

mates the true abundance and that variation in detectability will mask true changes in

abundance, we included these data as if they represented a sample from the population as use

of unadjusted count data is a common practice in state-space models if repeated counts are

not available [21]. Acknowledging that the samples are taken post-harvest, the TOT-surveys

were included in the model by specifying:

Yt � PoisðXtÞ ð13Þ

, where Xt is the total abundance and Yt is the observed number of reindeer in year t survey. As

noted below we ran models both including and excluding the TOT-data, both on simulated

data and on the empirical data from wild reindeer. The model code in JAGS language is avail-

able in S1 Code.

Simulations

To assess the sensitivity of the model performance to violations to model assumptions, we con-

ducted simulation analyses. First, we simulated data according to the above described process,

assuming either that all demographic rates (f, f1 and f2, respectively) and the observation

probabilities (p1 and p2) were temporally constant, or that fecundity and juvenile survival as

Hierarchical integrated change-in-ratio model for wildlife monitoring
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well as observation probabilities p1 and p2 were varying temporally. We assessed model perfor-

mance for models including with or without total counts. Then, for the time constant model

without total counts, we ran simulations assuming bias (-30% to 30%) in either the post-har-

vest surveys or in the pre-harvest (spring) surveys. For the latter survey, we assessed two

options; male detection probability being biased compared to the other two groups, or female

detection probability being biased compared to the other two groups. We simulated time series

of 20 years, and for each type of bias considered, we ran 195 simulations (with demographic

rates drawn from the distributions in Table 1). Bias was calculated as (biased estimate–true

estimate)/true estimate and rescaled to percent bias for presentation.

Modelling wild reindeer data from Norway

After having assessed the general robustness of our statistical model, we fitted the models to

empirical data from two Norwegian wild reindeer populations for a 25-year period from

1991–2015. The two areas, Knutshø and Snøhetta (Fig 1), are both located within the larger

Dovre-Rondane wild reindeer region [39]. The areas span a range of geographical gradients,

but the main reindeer habitats are occured above the tree line. While the two populations were

formerly continuous, major roads and railways have subdivided the area and reduced connec-

tivity between them [18, 39]. Monitoring of wild reindeer in these two populations includes

surveys of age- and sex structure in the early summer and in the fall after the hunting season.

In addition, detailed harvest statistics (separated in age- and sex groups) are reported by the

hunters. In addition, called “minimum counts” [20], are conducted in winter. Data used to fit

the empirical models are available in S2 Code.

For each of the two populations, we compared two models: M1 including the TOT-data

(i.e. “minimum count” data), and M2 excluding the TOT data. We then compared population

trajectories and demographic rates for these two models. In both models, we allowed p1 and p2

to be time variable, whereas f2 was assumed to be constant. f and f1 were modelled as random

effects logistic regression models of the form:

logitðf ðtÞÞ ¼ af þ b
f
t ð14Þ

b
f
t � Normð0; s2

f Þ ð15Þ

, for f(t) and

logitð�1ðtÞÞ ¼ a�1 þ b
�1

t ð16Þ

b
�1

t � Normð0;s2

�1
Þ ð17Þ

Table 1. Demographic rates used in simulation study.

Vital rate� Meaning Range

f Fecundity 0.60–0.95

f1 Juvenile survival 0.85–0.95

f2 Adult survival 0.88–0.95

N1 Pre-harvest population size in year 1 740–3700

Demographic rates (range) used when simulating data to conduct sensitivity analysis of the hierarchical population

model. In all cases, we assumed a uniform distribution bounded by the range.

� N1 is not a vital rate.

https://doi.org/10.1371/journal.pone.0194566.t001
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for ft(t). In both cases, α represents the mean rate (on the logit-scale), β is the year-effect, and

σ2
f is the variation of the normal distribution from which the year effects are drawn.

Fitting the hierarchical models

We used Bayesian estimation to calculate demographic parameters and population vectors

based on a joint likelihood model (Ljoint) composed of three independent elements:

Ljoint ¼ LTOTx LPRE x LPOST ð18Þ

Where LTOT is the likelihood for the minimum count data, LPRE is the likelihood of the

recruitment data, and LPOST is the likelihood of the structural count data. We could also have

included a model for the age-at-harvest data, but in our case the harvest bag data are very accu-

rate, and although there is considerable uncertainty regarding the exact age of the harvested

animals this should not be of concern when only three age classes are considered.

To estimate the parameters of the hierarchical model, we ran jags from R using the add-

on library R2jags [40]. For the simulated data, we ran 3 chains of 50,000 iterations, with a

burn-in of 25,000, whereas we used 150,000 iterations and a burn in of 50,000 to estimate the

Fig 1. Map showing the location of the study areas. Data for empirical models were collected in the period 1991–

2015 as part of the wild reindeer monitoring program in Norway. In the current study, we have used data from

Snøhetta (red color on map) and Knutshø (yellow color on map) reindeer areas.

https://doi.org/10.1371/journal.pone.0194566.g001
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parameters of the model from the empirical data. The chains were thinned by 3. We specified

uninformative priors, using uniform distributions (0–1) for probabilities, and very wide nor-

mal distributions (precision-parameter tau = 0.0001) for initial population sizes. Convergence

was assessed by visual inspection of MCMC-chains and the Gelman-Rubin statistics R̂. All

data and code developed for this study is available at GitHub (https://github.com/

ErlendNilsen/HierarchicalChangeRatio.git).

Results

Fitting the models to simulated data

When fitting the population models to simulated data, the population size, population growth

rate and demographic rates were effectively estimated regardless if unbiased count data were

included or not. This was true when demographic rates were constant through time, and when

they were time varying. To assess the bias in the parameter estimates, we simulated 200 data

sets of population- and observation data based on the model with time constant detection and

demographic rates, with demographic rates drawn from the distributions in Table 1. When fit-

ting the hierarchical model to these simulated data sets, no bias resulting from the hierarchical

model was apparent with mean bias <0.4% for both population growth rate and all demo-

graphic rates (Fig 2). Concerning estimates of population size, the mean bias was also <2% but

the precision for any one simulation was far larger than that of the other parameters of interest

(Fig 2). Thus, with access to reliable and unbiased surveys of the population structure, the hier-

archical population model developed here provides robust estimates of demographic rates,

abundance and population growth rate.

Sensitivity analysis: Assessing the effects of biased survey data

If the estimates of population size from transect counts (TOT-data) underestimated the true

abundance, this also resulted in biased estimates of population size (Fig 3). However, such a

bias also affected estimates of the demographic rates. In general, this resulted in a slight overes-

timation of f, but the effect was moderate and the bias was <5% as long as the observation

probability was>0.55. Similarly, there was a tendency for f1 to be biased high but the effect

Fig 2. Bias and precision of estimated parameters. Estimated biases in demographic, population size and population

growth rate resulting from fitting the hierarchical population model to 200 simulated data sets assuming no bias in the

PRE- and POST-harvest surveys of population age- and sex structure. Demographic rates were drawn at random from

the distributions in Table 1.

https://doi.org/10.1371/journal.pone.0194566.g002
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was relatively small and the bias was <5% as long as the observation probability was > 65–

70%. The effect on f2 was comparable, but the magnitude of the bias was slightly larger and

the bias was be<5% if the detection probability was>75%.

Fitting the models without including TOT-data (i.e. total count data), we assessed the

effects of biases in the data from surveys of population age- and sex structure. In general, if

males had a different detectability than females and calves in the POST-harvest survey data, it

had a negligible effect on the estimated demographic rates (Panel IV in Fig 4). For all demo-

graphic rates, the bias in the parameter of interest was <5% for the full range of biases in the

survey data considered here (i.e. male detectability being between -70% and 130% that of

females and calves). However, if females and yearlings (FY in PRE-surveys) had a higher

detectability than calves of the year, f was overestimated and f1 was underestimated, with an

opposite pattern emerging if FY were more detectable than calves in the spring surveys (Panel

Fig 3. Bias due to biased count data. Effects on demographic rate estimates, population growth rate and population

size estimates when fitting the hierarchical including biased TOT-data (i.e. total count data). x-axis indicates the

observation probability for the TOT-data. Demographic rates were drawn at random from the distributions in Table 1.

https://doi.org/10.1371/journal.pone.0194566.g003
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I in Fig 4). The same pattern emerged when such a bias is combined with females having dif-

ferent detectability than males and calves in the POST-harvest surveys (Panel III in Fig 4). If

the assumption of equal detectability was not met in either PRE- or both PRE and POST-har-

vest surveys, a bias of<5% in f was found when the bias was� 5% in the survey data. If only

the PRE-harvest data was biased, the bias in f1 was <5% if the detectability of FY was between

Fig 4. Sensitivity analysis. Sensitivity analysis examining the effects of unequal detection probability among age- and sex classes on estimated model parameters.

Roman numbers (I–IV) refers to I) FY detection rate bias relative to calf detection rate in pre-harvest survey, II) female detection rate in relation to calf–and male

detection rate in post-harvest surveys, III) FY (pre-harvest) and female (post-harvest) detection rate relative to other classes in the post-harvest samples, and IV) male

detection rate relative to calves and females in post-harvest samples. Demographic rates were drawn at random from the distributions in Table 1.

https://doi.org/10.1371/journal.pone.0194566.g004
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95% and 105% that of calves. However, when both surveys were biased f1 appeared less sensi-

tive, and the bias in f1 was <5% when the bias between -30% and 20%. If only POST-harvest

surveys were biased with females having a different detectability than males and calves, the

bias in f was <5% if the detectability of females is between 85% and 115% that of calves and

males (Panel II in Fig 4). Similarly, the bias in f1 was<5% if the bias in the POST-harvest sur-

vey data was� ±10%. In contrast to f and f1, annual survival f2 was only weekly affected by

the types of biases considered above (Fig 4). If there were bias in either the POST-harvest data

or both the PRE- and POST-harvest survey data and females (POST-harvest data) or FY (PRE-

harvest data) had<80% detection probability compared to the other groups of individuals (i.e.

females being 80% that of the other classes) was the bias in f2 >5%. Population growth rate

(λ) seemed to be almost unaffected by violations of the equal detectability assumptions, at least

within the range of biases considered here. Finally, the bias in the estimated population size

(N) was >5% when FY had>115% times the detectability of calves in the PRE-harvest survey

data, or if females had>85% times the detectability of males and calves in the POST-harvest

survey data. If both the PRE- and the POST-harvest survey data were biased, the bias in N was

>5% when the detection probability of FY and females were<85% that of the other groups. If

males had a different detection probability than calves and females in the POST-harvest survey

data, the bias in N was >5% when males had<80% detection probability compared to the

other groups (with N biased low) and when males had>110% detection probability compared

to the other groups (with N biased high).

Fitting the models to real data from wild reindeer in Norway

Having explored the general properties of our hierarchical population model through simula-

tions, we fitted the model to real data from two populations of wild reindeer in south-eastern

Norway (Fig 1). We fitted two versions of the models (M1: including TOT-data from winter,

M2: excluding TOT-data). In both models, we assumed that f2 was constant through time,

whereas f and f1 were modelled using a mixed effects logistic model using year as a random

factor to account for year effects.

In Snøhetta, M1 (assuming TOT-data sampled from a Poisson distribution) and M2

(excluding TOT-data) produced similar estimates of mean fecundity f (M1: 0.64 [0.58–0.70,

95% Bayesian c.i.], M2: 0.64 [0.60–0.70, 95% Bayesian c.i.]) and juvenile survival f1 (M1: 0.94

[0.92–0.97, 95% c.i.], M2: 0.95 [0.91–0.98, 95% c.i.]) (Figs 5 and 6). The estimated annual sur-

vival of adults f2 was greater in model M1 (0.97 [0.96–0.98]) compared to M2 (0.94 [0.93–

0.96]). This might reflect the fact that the minimum counts underestimated true abundance,

and a similar pattern was found when we analyzed simulated data with minimum counts

biased low. The population growth rate λ (through the mean estimated population sizes) was

estimated at 1.00 (95% C.I: 0.99–1.01) for M1 and 1.00 (95% C.I: 0.99–1.00) for M2.

In Knutshø the most marked difference in estimated demographic parameters between the

two models was for f2 (M1: 0.97 [0.96–0.98]; M2: 0.93 [0.90–0.95]). Similar to Snøhetta, the

mean fecundity f (M1: 0.87 [0.81–0.93], M2: 0.87 [0.81–0.93]) and mean juvenile survival f1

(M1: 0.91 [0.82–0.96], M2: 0.93 [0.87–0.97]) were similar for the two models (Figs 5 and 6) in

Knutshø. The population growth rate λ (through the mean estimated population sizes) was

estimated at 1.01 (95% C.I: 1.00–1.03) for M1 and 1.02 (95% C.I: 1.01–1.03) for M2.

Discussion

We first formulated a hierarchical population model based on total counts and data on popula-

tion age- and sex structure, and change-in-ratio after harvest. Then we conducted extensive

sensitivity analyses based on simulated data, and fitted the model to empirical data from a wild
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reindeer monitoring program in Norway. Based on our sensitivity analyses we conclude that

the approach developed here is able to obtain precise estimates of demographic rates whenever

unbiased data of population structure is available. Our simulations revealed that this was true

also when population abundance is not available or not included in the modelling framework.

Nevertheless, we show that when the modelling is based on biased population structure data

due to different observability of different age- and sex categories it will affect estimates of all

demographic rates. In particular, estimated population size sensitive to such biases.

Fig 5. Estimated population trajectories. Estimated time series of abundance (left panels), fecundity (f) (middle panels) and juvenile summer survival probability

(f1) (right panels) for Snøhetta (upper panels) and Knutshø (bottom panels) respectively. Model output is based on M1 (see Methods section).

https://doi.org/10.1371/journal.pone.0194566.g005
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When modelling real data from reindeer in Norway, we compared model output from two

versions of the model (i.e. with or without TOT-data). We found that the estimated fecundity

(f), juvenile summer survival (f1) and annual survival (f2) were virtually unaffected by the

choice of model. This result is reassuring in cases when estimating such rates are the main pur-

pose of the study- or monitoring program. The challenge, of course, is that while we are able to

directly assess bias and precision for the simulated data, this is not possible for the real data as

we do not have access to independent data sources. However, comparing estimated demo-

graphic rates to published values for long-lived medium-sized ungulates [41–43] suggest that

the rates reported here are not severely biased. Also, based on the simulation study (Fig 4),

annual survival (f2) seems to be relatively unaffected by biases in detection probabilities

among age- and sex classes as long as these are consistent across years. A similar conclusion

was drawn by O‘Brien et al. [44] when assessing the consequences of violating assumptions in

mark-recapture models. Further, if the TOT-data is biased low (which might be the case if not

all animals are detected), f2 will be overestimated. However, as long as detection probability is

>75% the bias will be less than 5%. Comparing M1 and M2 for the Snøhetta and Knutshø pop-

ulations respectively, the relative difference between estimated f2 from the two models were

<1% (Snøhetta) and 5% (Knutshø) respectively. For the other rates, the difference between

M1 and M2 was negligible.

In our example of wild reindeer in Norway, we used count data for total annual numbers of

reindeer of different age- and sex categories as a basis for our models. We suggest that having

access to raw observation-data will increase flexibility, and can potentially allow for more accu-

rate modelling of the observation process. Explicit modelling detection as function of covari-

ates could help in correcting for biases due to uneven detection probabilities among sex- and

age classes. We thus recommend that the monitoring program adjust their data handling pro-

tocol to make such data readily available. The sensitivity analysis indicated the importance of

Fig 6. Comparison of M1 and M2. Comparison of estimated demographic rates based on M1 and M2 for Snøhetta

and Knutshø, respectively. Note that f and f1 are back-transformed from logit-scale and thus represents true

probabilities. The two latter were estimated using mixed effects logistic regression models outlined in Eqs 11–14.

https://doi.org/10.1371/journal.pone.0194566.g006
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modelling p as a function of age and sex in reducing the potential biases in these estimates.

Here, the potential sources for biased or uneven detectability between age- and sex groups

must be identified. In our case uneven detectability might arise if there is spatial segregation

between age- and sex classes (see e.g. [45] for red deer Cervus elaphus) that are not accounted

for in the study design, if e.g. calves are less observable because of their smaller size, or if

observers are more likely to assign given age- or sex to animals where certain assignment is dif-

ficult based on morphological characters (e.g. between adult females and yearlings of both

sexes in spring).

Monitoring programs for ungulates and large carnivores usually span large spatial scales

due to high mobility of animals. Thus, identifying methods than be applied across large spatial

and temporal scales is key to future sustainable management. Often monitoring programs in

these cases are based on indices or “minimum counts” with no possibility to assess accuracy

and potential biases inherent in the programs [46]. For instance, in the study by Popescu et al.

[46], growth rates based on replicated population counts were compared with biological plau-

sible growth rates based on reported demographic rates for brown bear, wolf (Canis lupus) and

Eurasian lynx (Lynx lynx). While such comparison of monitoring data from data-poor systems

with more robust demographic data to assess the biological plausibility of the observed data

provides information about potential pitfalls related to relying solely on such data, the

approach taken in our study suggest that in many cases combining the data sets afford greater

opportunity to maximize inference from a variety of sources.

We are not the first to advocate hierarchical models combining information from different

data sets to gain increased insight into demographic processes and to obtain better estimates of

abundance [47]. In fact, the motivation for developing integrated population models, as dis-

cussed in e.g. [47–49], is to maximize inference from available data. Our work thus clearly ben-

efits from the many previous studies within this field, and the novelty in our work is not so

much that we combine data from multiple sources but rather the particular setting and type of

data that we use as a basis for our modelling. In general, we have here shown how change-in-

ratio models [26] can be extended using time series data allowing the full temporal dynamics

to be modelled. We believe this extension should be useful in many natural resource issues.

In summary, we suggest that the approach developed here can provide managers with unbi-

ased estimates of demographic rates (i.e. survival and reproduction) and population abun-

dance in cases where time series data on population structure data are available. Sampling

auxiliary data and making sure the study design allows for estimation of different detectability

between age- and sex groups should be prioritized. Our sensitivity analyses suggest that moni-

toring changes in demographic rates can be a more sensible approach when direct surveys of

population size cannot be conducted but managers do have access to data describing changes

in age- and sex structure of a wildlife population through time. The hierarchical models we

present here are based on time series data and in principle allow a full temporal decomposition

of the population dynamics, which should greatly extend the usefulness of such data.
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