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Abstract

Anger is considered a unique high-arousal and approach-related negative emotion. The

influence of individual differences in trait anger on the processing of visual stimuli is relevant

to questions about emotional processing and remains to be explored. Using functional mag-

netic resonance imaging (fMRI), we explored the neural responses to standardized images,

selected based on valence and arousal ratings in a group of men with high trait anger com-

pared to those with normative to low anger scores (controls). Results show increased activa-

tion in the left-lateralized ventral fronto-parietal attention network to unpleasant images by

individuals with high trait anger. There was also a group by arousal interaction in the left thal-

amus/pulvinar such that individuals with high trait anger had increased pulvinar activation to

the high-arousal (versus low arousal) unpleasant images as compared to controls. Thus,

individual differences in trait anger in men are associated with brain regions subserving

executive attentional and sensory integration during the processing of unpleasant emotional

stimuli, particularly to high arousal images.

Introduction

Anger is considered to be an approach-related emotional state incorporating physiological,

affective, cognitive, and behavioral components which occur in response to unpleasant or

undesired events [1–4]. The experience and expression of anger is demonstrated as high-

arousal emotional reactivity to negatively valenced stimuli [2–8]. Some individuals are prone

to experiencing anger, reflecting an enduring trait pattern of response [6, 9, 10]. Evidence has

shown that individuals with elevated levels of anger demonstrate reduced self-control [11]

while attributing disproportionate salience and preferentially attending particularly to nega-

tively valenced stimuli or threatening cues [9, 12–14].
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Functional neuroimaging studies have implicated a network of brain regions subserving the

processing of emotional stimuli encompassing the amygdala, insula, and prefrontal cortical

(PFC) areas [e.g., medial and lateral PFC, and the orbitofrontal cortex (OFC)] [15–20]. Fur-

ther, emotional processing of visual stimuli involves the visuospatial-attentional processing

network, including the visual cortex, parietal cortex [21], dorsolateral prefrontal cortex

(DLPFC), and thalamus [22]. These networks are also involved in motivated attention to the

significance, or sensory distinctiveness of the stimuli, and are modulated by both stimulus

valence (i.e., pleasant or unpleasant) and arousal levels [23, 24]. The neural processing of

arousal, or the intensity of the experience of an emotion, which can range from calming to

exciting or agitating [25], has been associated with activation in the amygdala, insula, ventro-

lateral PFC, and dorsomedial PFC [25–28].

Currently, the relationship between elevated trait anger and neural activity during emotion

processing is not well understood. It is postulated that the approach motivation in anger, mod-

ulates the evaluative response to salient stimuli [1, 2, 29]. This motivational theoretical model

suggests that cortical regions are asymmetrically involved in approach and avoidance motiva-

tion, and that approach-related anger [30], associated with increased levels of left lateralized

brain activity [31, 32] and decreased levels of right frontal activity [2] reflects a bias or selective

attention to negatively valenced stimuli. These network functions may share characteristic pat-

terns in externalizing psychopathology. For example, individuals with intermittent explosive

disorder (IED) and cocaine addiction show hyper-reactivity to error commission and left

DLPFC positivity correlated with increased trait anger expression [33]. Others vulnerable to

externalizing psychopathology have demonstrated reduced prefrontal cortex [medial (MPC),

anterior and posterior cingulate cortex (ACC, PCC) and OFC] and increased insula and sub-

cortical responses (amygdala, hippocampus, thalamus [34–38] on behavioral inhibitory con-

trol and emotional tasks; yet, little is known about the neural mechanisms underlying elevated

trait anger.

One important element that may modulate the neural response by individuals with high

trait anger is autonomic response characterized by overall low level of physiological arousal.

We recently documented reduced blood pressure and reduced OFC response to violent video

content in a reactive aggressive sample [11]. Cardiovascular hypoarousal is directly associated

with neural activity within areas of the anterior cingulate cortex, OFC, medial prefrontal corti-

ces, and the amygdala and often in interaction with activity in the insula, and relay regions of

the thalamus and brainstem [22]

In this study we chose to explore the neuronal correlates of viewing images that are norma-

tively considered unpleasant (i.e., of negative valence) in individuals with high trait anger

in order to uncover the potential effects of increased attention or sensitivity to negatively

valenced cues in this population. Our intent was to determine if individuals with elevated

trait anger as compared to controls would demonstrate increased blood oxygenation level

dependent (BOLD) activity in left-lateralized brain attention networks that are involved in

processing of normatively considered ‘high arousal’ emotional visual stimuli. During fMRI,

individuals with elevated trait anger and those with normative trait anger viewed affectively

unpleasant and pleasant pictures, which varied on normative population values of subjective

arousal (high vs. low). We hypothesized that, relative to controls, men with high trait anger

(HTAs) would show left lateralized hyper-reactivity of networks involved in emotional pro-

cessing and attention allocation, specifically in response to viewing high arousal unpleasant

visual stimuli.

Because anger is often a precursor for violent behavior, there are clinically relevant implica-

tions to understanding psychiatric conditions that are marked by elevated levels of anger [i.e.,

IED, antisocial personality disorder (ASPD)]. As such, modulating neural reactivity to aversive
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stimuli by individuals with high trait anger through biofeedback for example may be a candi-

date approach for therapeutic intervention.

Methods

Ethics statement

This research was approved by the Institutional Review Board (IRB) at Stony Brook Univer-

sity. All individuals provided written informed consent in accordance to the IRB prior to study

participation.

Participants

Healthy individuals and those who felt their anger experiences were problematic were

recruited from the general population, through newspaper advertisements and word-of-

mouth. Inclusion criteria were for native English speaking and not currently taking any medi-

cation. Exclusion criteria were the following: 1) any neurological condition, history of seizures,

and/or head trauma with loss of consciousness (>30 minutes); 2) use of any psychoactive med-

ication within 6-months prior to the study; 3) history of cardiovascular (e.g., high blood pres-

sure), endocrinological, metabolic, oncological, or autoimmune diseases; 4) contraindications

to MRI; 5) history of major psychiatric disorder other than IED or ASPD; 6) current alcohol

intoxication or positive urine screens for psychoactive drugs or their metabolites (amphet-

amine or methamphetamine, cocaine, phencyclidine, benzodiazepines, cannabis, opiates, bar-

biturates, or inhalants).

Thirty-seven male participants were grouped via median split using the State-Trait Anger

Expression Inventory (STAXI-2) [3, 39, 40]. Specifically, the Trait Anger subscale divided sub-

jects to the Trait Anger (HTAs) group [(N = 20, mean ± standard deviation, 25.5 ± 1.8) and

control group (N = 17, 11.8 ± 0.49)]. Using a one-sample t-test, the HTAs’ mean score was sig-

nificantly higher, and the controls’ was significantly lower, than the normative Trait Anger

score at the 50th percentile for men [40] (both p< 0.001), indicating that this split was a valid

way of partitioning the groups. Participants underwent a comprehensive clinical interview

consisting of the Structured Clinical Interview for DSM-IV Axis-I Disorders [41]; the Struc-

tured Clinical Interview for Axis-II personality disorders, specifically Cluster B (Antisocial

Personality Disorder; ASPD) [42]; and an assessment for IED according to DSM-IV criteria

(IED-IR) [43]. The psychiatric disorder IED is defined as the inability to resist aggressive

impulses that result in repeated acts of verbal and/or physical aggression that are grossly out

of proportion to the experienced provocation, affecting 7% of the US population (lifetime

prevalence) [44, 45]. This disorder has been associated with affect dysregulation, clinically sub-

stantial features of increased levels of trait anger and deficits in social-emotional information

processing [46, 47].

Based on this clinical interview, nine HTAs had a diagnosis related to anger/aggression, of

which five met criteria for IED, and four met criteria for ASPD. No psychopathology was

found in controls. Importantly, the groups were matched on age, race, handedness, education,

and estimates of verbal and non-verbal intelligence (Table 1).

Task

Participants passively viewed a series of IAPS images [48], a normed image bank widely used

in studies investigating the neural correlates of emotional processing [26]. This bank is com-

prised of emotion laden images selected with respect to ratings on the dimensions of valence

and arousal. Using normative image values from male raters, and defining levels of arousal
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based on one standard deviation above or below the mean, we selected an image subset of 100

images (25 per condition) for use in the construction of each unique block presented in the

fMRI: unpleasant high-arousal (violence, bodily mutilation, and threat), unpleasant low-

arousal (people in distress, accidents), pleasant high-arousal (nudity, erotica), and pleasant

low-arousal (nature scenes, infants). Normative means and standard deviations for each image

condition and tests comparing the conditions are presented in Table 2.

Each image was presented for 6.75 seconds in blocks of four images of the same type (e.g.,

unpleasant high-arousal) presented serially. Blocks were separated by a fixation cross (inter

trial interval) of 20 seconds, presented before the first image block, but not after the last image

block. This fixation cross served as the implicit baseline for our fMRI analyses. Participants

completed two runs, each with eight unique blocks (32 images per block; total of 64 different

images). Both the blocks and the presentation of the images within each block were pseudor-

andomized and counterbalanced within and across runs, such that blocks of the same condi-

tion were not repeated serially and block sequences of four were not repeated in a run (e.g.,

ABCD, CDBA). During the task, participants viewed the images through MR-compatible

goggles; presentation of stimuli was controlled using an IBM-compatible computer running

the E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA). Participants were

instructed to keep their eyes open, not to move their head or body during the scan, and to

press a button to confirm viewing each image. Prior to the first experimental run, participants

were familiarized with the paradigm by completing a practice run of three blocks of neutral

pictures.

After exiting the scanner, a subset of participants (HTAs, n = 12; controls, n = 12) com-

pleted ratings for a selection of the fMRI task images (12 images); nine unique sequences of 12

Table 1. Demographics and estimates of intelligence for all study participants.

Participants (all male) Test p-value HTAs (n = 20) Controls (n = 17)
aAge (years) t35 = 0.87 0.38 34.9 ± 8.3 32.7 ± 6.5
bRace (Black/Hispanic/Caucasian/Other) χ2 = 0.95 0.82 12 / 4 / 3 / 1 10 / 4 / 3 / 0

Handedness (right/left) χ2 = 0.01 0.91 19/1 16/1

Education (years) t35 = 0.50 0.62 13.1 ± 1.5 13.3 ± 1.59

Verbal IQ: Wide Range Achievement Test III: Reading Scale t35 = 1.36 0.18 10.6 ± 3.8 12.1 ± 2.3

Non-verbal IQ: WASI—Matrix Reasoning Subtest t35 = 0.98 0.33 10.0 ± 2.7 10.9 ± 2.8

a Values are frequencies or means ± standard deviation.
b Race: Other (Asian / more than one race).

https://doi.org/10.1371/journal.pone.0194444.t001

Table 2. Means and standard deviations for valence and arousal for the IPAS pictures in each condition and t-tests testing for significant differences between

conditions.

Mean aValance SD Mean aArousal SD

Unpleasant-NA 2.88 .19559 4.58 .22630

Unpleasant-HA 2.7516 .35293 6.0491 .18666

Pleasant-NA 7.0133 .24203 4.4130 .20911

Pleasant-HA 7.2879 .27704 6.6293 .26090

Condition comparison t-valence p-value t-arousal p-value

Unpleasant-NA vs Unpleasant-HA 1.145 .258 -6.662 < 0.001

Pleasant-HA vs. Pleasant-NA -1.436 .157 -8.125 < 0.001

a Norm values are taken from Lang PB, MM; Cuthbert BN. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual. 2005.

https://doi.org/10.1371/journal.pone.0194444.t002
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images were created. Each picture was accompanied by two questions, measuring arousal and

valence, respectively: Arousal: “How excited or calm does this make you feel?” Valence: “How

pleasant or unpleasant does this make you feel?” All responses were recorded using a visual

analogue scale (1–9; where 1 designated no arousal or unpleasant and 9 designated high

arousal or pleasant).

Functional MRI

Functional magnetic resonance imaging was performed on a 4T whole-body Varian/Siemens

MRI scanner. The BOLD-fMRI responses were measured as a function of time using a T2�-

weighted single-shot gradient-echo planar sequence (TE/TR = 20/1600 ms, 4 mm slice thick-

ness, 1 mm gap, 33 coronal slices, 20 cm FOV, 64 × 64 matrix size, 90˚-flip angle, 200 kHz

bandwidth with ramp sampling, 470 time points, and 4 dummy scans to avoid non-equilib-

rium effects in the fMRI signal). Earplugs (28 dB sound attenuation; Aearo Ear TaperFit 2;

Aearo Company) and headphones (30 dB sound attenuation; Commander XG MRI Audio

System, Resonance Technology Inc.) were used to minimize scanner noise [49].

Image preprocessing and statistical analyses

Data were pre-processed and analysed using SPM8 (Wellcome Department of Cognitive

Neurology, London UK) (http://www.fil.ion.ucl.ac.uk/spm) running on MATLAB 2007b

(Mathworks Inc., Natick, MA). A six-parameter rigid-body transformation (3 rotations, 3

translations) was used for image realignment and to correct for head motion. Criteria for

acceptable motion were<2 mm displacement and<2˚ rotation in any axis in any task run.

The realigned datasets were spatially normalized to the standard stereotactic space of the Mon-

treal Neurological Institute (MNI) using a 12-parameter affine transformation (3 translations,

3 rotations, 3 shears, 3 zooms), and a voxel size of 3-mm3. An 8-mm full-width-half-maximum

Gaussian kernel spatially smoothed the data.

For first-level analysis, images were thresholded using the default masking threshold of 0.8.

To calculate individual BOLD-fMRI maps for the task, which has a blocked design comprising

470 time points, a general linear model and a box-car design convolved with a canonical

hemodynamic response function and high-pass filter (cutoff frequency 1/800s) was used. Four

contrast images per participant were calculated for each of the image conditions (unpleasant

low-arousal, unpleasant high-arousal, pleasant low-arousal, pleasant high-arousal). The sec-

ond-level analysis was conducted to determine of the effects that are observed in the single-

subject level differ as a function of group.

On the second—level, between-group differences and potential interactions were assessed

with two separate valance-based flexible factorial models were estimated in SPM8 with a

within-subjects factor of arousal (high, low) and a between-subjects factor of group (HTAs,

control) using the contrast images mentioned above. Specifically, in the first design, we mod-

eled the effects of brain response to arousing pictures during viewing of unpleasant images

using a 2 (image type: unpleasant high-arousal, unpleasant low-arousal) × 2 (group: HTAs,

controls) mixed design, and in the second, the effects of brain response to arousing pictures

during viewing of pleasant images using a 2 (image type: pleasant high-arousal, pleasant low-

arousal) × 2 (group: HTAs, controls) mixed design. Note that we did not perform a 2x2x2

(valance x arousal x group) because we did not have sufficient power to explore a 3-way inter-

action. To test for significance, a voxel-wise threshold of p< 0.005 was applied, combined

with a minimum cluster-extent of 26 contiguous voxels (702 mm3), to yield a corrected clus-

ter-level false positive rate of p<0.05 as determined by Monte Carlo simulations (similar to

AlphaSim) [50] (http://www2.bc.edu/~slotnics/scripts.htm). We examined any interaction

Trait anger and fronto-parietal activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0194444 April 19, 2018 5 / 14

http://www.fil.ion.ucl.ac.uk/spm
http://www2.bc.edu/~slotnics/scripts.htm
https://doi.org/10.1371/journal.pone.0194444


effects statistically in SPSS using the extracted cluster values from Marsbar (http://marsbar.

sourceforge.net/index.html) in order to determine, through post-hoc comparisons, what

BOLD response was driving the interaction.

The average percent signal change for all significant clusters were extracted with and were

used to inspect for outliers (i.e., three standard deviations from the mean). No extracted

fMRI-BOLD signals for any significant cluster were outside this range; therefore, no data were

discarded from the analysis. Extracted data values were used to present the data in graphical

form. T-maps were used to present significant clusters (Fig 1B).

Fig 1. Brain response to unpleasant images. (A) Main effect of group (HTAs> controls) for unpleasant images across arousal conditions. The HTAs exhibited

increased activations within the left IFG/precentral gyrus, MFG, insula, and IPL compared with the control group when viewing unpleasant images. (B) A significant

group × arousal interaction for unpleasant images emerged in the left thalamus (pulvinar) driven by the difference in brain response for arousal (high>low) within the

HTAs [open bars; t(19) = 3.20, p = 0.003]. In the control group, no difference in the brain response to unpleasant images [diagonal filled bars; t(16) = -0.62, p = 0.54]

emerged. Whole-brain significance threshold was set to p< 0.005, combined with a minimum cluster-extent of 26 contiguous voxels (702 mm3), to yield a corrected

cluster-level false positive rate of p< 0.05. IFG = inferior frontal gyrus, MFG = middle frontal gyrus, IPL = inferior parietal lobule. Red bars indicate unpleasant high-

arousal images; white bars indicate unpleasant low-arousal images. �� p< 0.01.

https://doi.org/10.1371/journal.pone.0194444.g001
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Image ratings

To compare the subjective effects of arousal and group for the unpleasant images, we con-

ducted a 2 x 2 repeated measures analysis of variance (ANOVA) with picture arousal (low vs.

high) as the within subjects variable, and group (HTA vs. controls) as the between subjects var-

iable. There was indeed a significant main effect for arousal [unpleasant: F(1,22) = 12.51,

p = 0.002], validating the high and low-arousal distinction (high > low) in the task. Neither a

main effect of group [unpleasant: F(1,22) = 2.76, p = 0.11], nor a group × arousal interaction

[unpleasant: F(1,22) = 2.07, p = 0.16] reached significance [26]. Identical analyses were used to

compare subjective effects of arousal for pleasant images (See Supporting Information).

Finally, since nine participants within HTAs had anger and/or aggression diagnosis (i.e.,

IED or ASPD) we conducted additional analyses on brain response to the IAPS images com-

paring these diagnosed participants to those without a diagnosis related to anger/aggression

within HTAs. Within the HTA group only, using SPSS, we compared the brain response

between participants with an anger/aggression diagnosis (i.e., IED or ASPD, n = 9) to those

participants in the HTA group that did not meet criteria for and anger/aggression diagnosis

(n = 11). Here we used independent t-test to compare the extracted values obtained in MARS-

BAR) for all significant clusters between the groups. No group differences were noted in brain

response, or in demographic variables between participants (p> .26).

Results

Brain response to unpleasant images

There was a main effect of group for unpleasant images across arousal conditions such that

HTAs showed higher left lateralized activations in the middle occipital gyrus (MGO), inferior

frontal gyrus (IFG), middle frontal gyrus (MFG), mid-insula, and inferior parietal lobule (IPL)

compared with controls (Fig 1A). Importantly, a group × arousal interaction emerged in the

left pulvinar/thalamus. Post-hoc analyses revealed that, as compared to controls, HTAs had

increased responses for high > low arousal unpleasant images (Fig 1B). Table 3 provides these

and additional results found during the whole-brain analyses of brain response to unpleasant

images. Further analyses showed that diagnosis of IED and ASPD did not drive these results

within HTAs. Imaging results for pleasant images are found in the supporting information, S1

Table.

aFor whole brain analysis, a voxel-wise threshold of P< 0.005 was applied, combined with

a minimum cluster-extent of 26 contiguous voxels (702 mm3), to yield a corrected cluster-level

false positive rate of p< 0.05. This table includes the coordinates x, y, and z of the peak voxel

given in Montreal Neurological Institute space and their statistical significance (t-values). BA,

Brodmann area. ACC, anterior cingulate cortex; MOG, middle occipital gyrus; IFG, inferior

frontal gyrus; MFG, middle frontal gyrus; IPL, inferior parietal lobule.

Discussion

In the current study, we investigated the influence of trait anger on the neural response to

unpleasant and pleasant visual stimuli, selected based on high and low arousal. To the best of

our knowledge, this is the first fMRI investigation that identifies distinct neural circuitry asso-

ciated with the processing of unpleasant images as a function of elevated trait anger. We docu-

mented unique left lateralized activation in the IFG, MFG, and mid-posterior insula during

viewing of unpleasant images in HTAs as compared to controls. We further found that HTAs

had increased BOLD signal to high-arousing but not low-arousing unpleasant images relative

to controls in the thalamus/pulvinar.

Trait anger and fronto-parietal activation
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More specifically regarding the first result, we found increased engagement of the salience

and the fronto-parietal attention networks (i.e., MFG/IFG, mid insula, and parietal regions) in

HTAs relative to controls in response to viewing the unpleasant pictures [24]. The PFC and

insula are part of a salience network that has extensive connectivity with the subcortical struc-

tures that underlie interoceptive autonomic processing [23]. Activation in this network,

strongly influenced by motivational salience of the stimuli, was heightened while viewing neg-

ative images [51]. Prefrontal regions and insula are involved in the appraisal of emotional sti-

muli [52–54], emotion regulation, expression of emotion, explicit threat evaluation [55], and

salience detection [23, 24]. The insula is commonly activated in tasks that are associated with

the processing of negative emotion reactivity [56, 57] such as disgust, sadness [58–60], negative

and visceral affective sensation and integration [53, 58, 60]. Although part of the salience net-

work, the insula has also been found to coactivate with the ventral fronto-parietal attention

network, with greater insular activity reflecting increased attentional bias to salient stimuli

[61]. It has been postulated that increased activation of this region of the insula in emotion

tasks involves initiation of attentional control, while engaging higher-order control processes

[62] in tandem with salience discrimination and integration of sensory information [63].

Taken together, this pattern of neural activity may indicate emotional arousal through activa-

tion of the attentional and salience networks.

Increased activation levels in IFG and mid-posterior insula in HTAs was also associated

with increased inferior parietal lobule activity, supporting an increased recruitment of the ven-

tral fronto-parietal attention network in individuals with high anger [24, 64]. Within this net-

work, the IFG, as part of the broader DLPFC, has been implicated in cognitive control and

plays an important role in the processing of emotion mechanisms[65]. Activation of this

region has been observed during various emotional processes such as emotion recognition

and evaluation [66, 67] and emotional perspective taking [68] with the degree of activation

Table 3. Significant activations to unpleasant images revealed by whole brain analysis.

Contrast aBrain Region X Y Z T Cluster Size

Main Effect of Arousal

High > Low none

Low > High

Left ACC (BA 32) -15 38 16 3.75 54

Right ACC (BA 32) 15 47 19 2.96 37

Main Effect of Group

High Trait Anger > Control

Left MOG (BA 18) -27 -97 4 3.69 44

Left IFG (BA 6) -36 2 31 5.81 163

Left MFG (BA 46) -42 35 28 3.35 73

Left Insula (BA 48) -36 -7 4 3.75 62

Left IPL Supramarginal (BA 40, 3) -51 -28 25 4.44 210

Control > High Trait Anger

Right Precuneus (BA 19) 27 -82 34 4.71 73

Right Red Nucleus 0 -13 -8 4.69 260

Right Precuneus (BA 7) 21 -58 58 3.97 62

Right Postcentral (BA 5) 18 -55 70 3.97 54

Right Lingual (BA18) 12 -70 4 3.53 32

Group × Arousal Interaction

Left Thalamus/pulvinar -12 -22 1 3.01 30

https://doi.org/10.1371/journal.pone.0194444.t003
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correlating with the degree of interpersonal involvement with the stimuli [68]. In this task,

activation in the DLPFC potentially reflects an activation of the frontoparietal attention net-

work, suggesting increased attention to the unpleasant images. Thus, one interpretation of

the increased activation in the IFG in the HTA group in response to the unpleasant pictures is

that the effect of increased activation relative to controls was due to a greater attentional bias

towards threatening pictures in men who exhibit elevated levels of trait anger. This interpreta-

tion, however, must be tested more directly in future studies. Given the relatively modest effect

sizes in these results it is probable that stronger effects can be attained through experimental

paradigms that have a clear component of attentional effort.

There was no finding of self-report arousal differences between the groups. However, per-

haps supporting a heightened arousal specific to HTAs in response to unpleasant images, we

found a group × arousal interaction in the left pulvinar. The pulvinar has an integrative func-

tion in bottom-up visual attention allocation functional loops, linking it to selective attention

[69–74] to motivationally relevant features (salience) of unpleasant visual stimuli [75]. Addi-

tionally, it plays an important role in coordinating and refining affective processing in dorsal

and ventral (what and where) visual cortices involved in visual processing [76, 77]. Here it

appears that unpleasant high-arousal images differentially activate the pulvinar, thereby

highlighting its role in automatic, directed attention and the signaling of the salience of the

visual stimuli. It is important to note that a valid measure of attentional bias is needed to

show a correlation with pulvinar signals in future studies to further validate our hypothesis.

Likewise, a behavioral response directly measuring anger after each trial could increase the

observed effects and would be better linked the fMRI findings.

Across conditions, consistent with our hypotheses, group differences observed in response

to unpleasant images appeared lateralized, where HTAs showed activations on the left hemi-

sphere and controls showed activations on the right hemisphere. This lateralization effect is in

line with a motivational system theory that relate aspects of the experience and expression of

emotions such as anger, sadness, and fear [31, 32, 78] to specific patterns of regional brain

activity. Here, an approach system, involved in approaching/attending to rewarding or appeti-

tive stimuli is associated with greater left than right frontal activity, and an avoidance system,

associated withdrawal/avoidance from aversive stimuli, is associated with greater right than

left frontal activity [1, 32, 79, 80]. Evidence suggests that individuals high in trait anger [30]

exhibit increased levels of assertiveness and competitiveness which is a subcomponent of nov-

elty seeking, that is itself associated with approach motivation [32] and left-dominant frontal

neural activity [31]. Taken together, the increased left lateralized brain responses within the

ventral fronto-parietal attention network suggest that individuals high in trait anger may have

an attentional bias towards the unpleasant images which might be mediated by approach moti-

vation. Further, right cortical activation seen in the control group may be involved in the mod-

ulation of arousal and threat response and avoidance-oriented attentional processes. These

differences in activation patterns between groups may stem specifically from basic constitu-

tional differences that underlie trait processes, since within HTAs those with psychiatric diag-

nosis did not differ from those without a diagnosis.

The present study focused on males. The question whether our results extend to female

adults with high trait anger is a direction for future research. Although the amygdala is the

structure most implicated in emotional processing [81, 82] we did not find amygdala activa-

tion in either HTAs or controls to the visual stimuli, and more specifically the unpleasant

images. One potential reason for lack of amygdala activation could be the configuration of the

stimuli presented in one block (pleasant or unpleasant—varied on arousal) may influence the

participant’s processing for subsequent stimuli. Moreover, activation of the amygdala might

not have been detected by the block design of the fMRI paradigm given that the amygdala

Trait anger and fronto-parietal activation
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habituates rapidly under aversive or fear stimulation [83, 84]. Additionally we examined the

processing of emotional visual stimuli in a high trait anger group which included participants

with heterogeneous disorders characterized by aggressive symptoms (ASPD and IED). In the

future, the use of a larger sample would allow for direct comparison between these subgroups.

In conclusion, individuals high in trait anger demonstrate a unique pattern of neural activ-

ity distinguished by increased activation in the ventral fronto-parietal attention—salience net-

works during passive viewing of unpleasant images. Importantly, the activation in the pulvinar

further supports our notion of automatic attentional bias to high-arousal unpleasant images in

HTAs. In some cases, this increased activation may be associated with biased visual attention

and increased engagement which were not observed in response to other types of highly

arousing visual stimuli (e.g. pleasant, or pornographic images; supplement). Thus, this study is

an important first step in exploring the neural correlates of emotion processing in angry indi-

viduals, a direction of research that is essential for uncovering potential effects of increased

attention or sensitivity to negatively valenced cues. Insofar as anger is often a precursor to

aggressive behavior, our results could also have important clinical implications and are rele-

vant to understanding psychiatric conditions such as antisocial personality disorder, intermit-

tent explosive disorder, and depression that are marked by increased negative emotions such

as anger. Reducing the reactivity to salient aversive stimuli of these specific regions/systems

through biofeedback and/or pharmacological interventions may be a candidate approach for

novel therapeutics.
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