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Abstract

Transfer entropy from non-uniform embedding is a popular tool for the inference of causal

relationships among dynamical subsystems. In this study we present an approach that

makes use of low-dimensional conditional mutual information quantities to decompose the

original high-dimensional conditional mutual information in the searching procedure of non-

uniform embedding for significant variables at different lags. We perform a series of simula-

tion experiments to assess the sensitivity and specificity of our proposed method to demon-

strate its advantage compared to previous algorithms. The results provide concrete

evidence that low-dimensional approximations can help to improve the statistical accuracy

of transfer entropy in multivariate causality analysis and yield a better performance over

other methods. The proposed method is especially efficient as the data length grows.

Introduction

In the study of neuroscience, directed information measure has been proven as a critically

important tool in a wide range of application scenarios. Over recent years, a variety of time

series analysis methods have been introduced to identify the existence and direction of the

interactions in nervous system, and there are two most commonly used methods: Granger

causality (GC), which is derived from the field of econometrics [1], and its information-theo-

retic analog, transfer entropy (TE) [2, 3]. Both of them are based on the simple idea that if the

prediction of a time series (the effect) could be improved by incorporating the knowledge of

past information of a second one (the cause), then the latter is considered to have a causal

influence on the former. Moreover, it has been proved [4] that there is a close connection

between Granger causality and transfer entropy: these two measures are equivalent for time

series under the assumption of Gaussianity. This fact leads to a bridge between econometric

and information-theoretic predictive approaches for the evaluation of directed couplings. The

result has also been extended to the condition of non-Gaussian probability density distribu-

tions [5]. For computationally efficiency, the exact formulation of conditional mutual informa-

tion (CMI) derived from GC-TE equivalence has been frequently employed in the analysis of

time series with high linearity, such as for fMRI data [6], while transfer entropy, as a generally

PLOS ONE | https://doi.org/10.1371/journal.pone.0194382 March 16, 2018 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zhang J (2018) Low-dimensional

approximation searching strategy for transfer

entropy from non-uniform embedding. PLoS ONE

13(3): e0194382. https://doi.org/10.1371/journal.

pone.0194382

Editor: Mathias Baumert, University of Adelaide,

AUSTRALIA

Received: September 6, 2017

Accepted: March 4, 2018

Published: March 16, 2018

Copyright: © 2018 Jian Zhang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was unfunded. The author

received no specific funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0194382
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194382&domain=pdf&date_stamp=2018-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194382&domain=pdf&date_stamp=2018-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194382&domain=pdf&date_stamp=2018-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194382&domain=pdf&date_stamp=2018-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194382&domain=pdf&date_stamp=2018-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194382&domain=pdf&date_stamp=2018-03-16
https://doi.org/10.1371/journal.pone.0194382
https://doi.org/10.1371/journal.pone.0194382
http://creativecommons.org/licenses/by/4.0/


model-free approach which does not require any prior assumptions about the probability dis-

tribution, has been mostly adopted to nonlinear complex systems such as in the field of physi-

ology [7–9] or climatology [10–12].

Although transfer entropy has several practical advantages, it still remains some critical

drawbacks to overcome. For example, if the dimension of the embedding space that spanned

by the variables is relatively large, the estimation of mutual information which is required for

the computation of transfer entropy will inevitably suffer from the problem “curse of

dimensionality” [10, 13, 14], make it difficult to uncover correctly the underlying causal struc-

ture of data. To tackle this problem, it is needed to improve the choice of parameters to get a

well fitted model. One promising approach is the shrinking strategy which is based on properly

reduction for the overall parameters to be estimated. Several paradigms focus on this objective

have been proposed by previous researchers, in econometrics it is called “subset regression”

[15–18], a method relies on sequential t-tests and model selection criteria, or by carrying out

branch-and-bound strategy to cut subtrees [19], while in physics it is usually under the name

“Non-uniform Embedding” [7, 13, 20–22], a method relies on information-theoretic measures

and non-uniform state space reconstruction. All of these paradigms are aiming to achieve a

parsimonious model by picking up the most informative lags of driver variables that has a sig-

nificant impact to the target variable, while restricting the state space by reducing the

dimensionality.

In this paper we propose a paradigm that makes use of the low-dimensional approximation

technique for conditional mutual information, which was originally derived from the study of

information-theoretic criterion for feature selection. We employ this method to deal with the

problem of searching lagged variables in the computing process of transfer entropy from non-

uniform embedding. In the implementation of traditional scheme of non-uniform embedding,

the main procedure is to reconstruct a future point of the target variable in the subspace of the

joint state space spanned by lagged driven variables. It derives from a sequential selection

method which updates the embedding vector progressively, taking all relevant lagged variables

into consideration at each step, stopping under certain termination criterion to drop all the

vectors on irrelevant lags, and finally identifying the set of components that associated with

the most information transfer to the target process. The traditional termination criterion

applied by previous researchers [9, 13, 23] is based on a statistical significant test for the condi-

tional mutual information between candidate variables. In this article a new method modified

by low-dimensional approximation searching strategy will be introduced to improve the accu-

racy and efficiency of previous TE algorithms.

The rest of this paper is organized as follows. In the next section, we provide a brief review

of transfer entropy from non-uniform embedding and low-dimensional approximation para-

digm in feature selection, and then describe in detail the formulation of our approach. In sec-

tion 3, we present a number of simulation experiments to demonstrate the effectiveness of the

proposed algorithm compared to previous methods, In section 4 we test our approach in ana-

lyzing intracranial EEG recordings from an epileptic patient to show its practical applicability

on real-world data, and the conclusion will be summarized in the final section.

Materials and methods

Transfer entropy from non-uniform embedding

We start by presenting the definition of transfer entropy from non-uniform embedding

[13, 20, 23], also known as lag-specific transfer entropy [9, 11], which is a measure to estimate

the directional coupling within a dynamical system by using the conditional mutual informa-

tion for variable selection in the procedure of mixed embedding. Let us firstly consider an
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overall dynamical system composed of M interacting subsystems, and suppose that we are

interested in evaluating the information flow from a driving subsystem X, to the destination

subsystem Y, in the presence of the remaining subsystems which are described by the set of

processes Z ¼ fZðkÞgk¼1;...;M� 2. Here we discuss our work under the assumption that the states

of the system can be described as a multivariate stationary stochastic process, and denoted by

Xn, Yn, and Zn as the observations obtained by sampling the processes at present time n, and

accordingly, X�n ¼ ½Xn� 1;Xn� 2; � � ��;Y �n ¼ ½Yn� 1;Yn� 2; � � ��, and Z�n ¼ Zn� 1 � Zn� 2 � � � � as the

respective sets of variables describing the past of the processes. Then, the (multivariate) trans-

fer entropy from process X to Y conditioned on Z, which quantifies the information provided

by the past of X about the present state of Y that has not been contained in the past of Y or any

other processes included in Z, could be defined in the form of conditional mutual information

IðYn; X�n jY
�
n � Z�n Þ, or equivalently as a difference of two conditional entropies:

TX!YjZ ¼ IðYn; X�n jY
�
n � Z�n Þ

¼ HðYnjY �n � Z�n Þ � HðYnjX �n � Y �n � Z�n Þ
ð1Þ

where H(�) stands for Shannon entropy, and I(�) stands for mutual information.

The crucial step in the procedure for estimating transfer entropy TX!YjZ from non-uniform

embedding, is to build a conditioning vector Vn by a sequential selection procedure from the

collection of candidate vectors including in the past of X, Y and Z with a fixed searching depth

up to a maximum truncation lag L. The candidate vectors of all relevant processes compose

the set O ¼ fXn� 1; . . . ;Xn� L;Yn� 1; . . . ;Yn� L;Zn� 1; . . . ;Zn� Lg, and the information transfer to

the target can be quantified by means of the sum of all contributions at different time lags. The

searching strategy for significant components in O can be described as follows:

1. Starting with an empty vector V ð0Þn ¼ /
2. At each step k� 1, perform a searching procedure to select the most informative vector

on a specific lag of past variables, WðkÞ
n , that contribute most significantly to the target variable

Yn, from the available candidate vectors OnV ðk� 1Þ
n (the subtraction from O by V ðk� 1Þ

n ), and con-

struct the optimal conditioning embedding vector by adding WðkÞ
n to the already chosen (k − 1)

vectors, i.e. V ðkÞn ¼ V ðk� 1Þ
n �WðkÞ

n . Each candidate vector WðkÞ
n will be tested by a criterion

through computing the maximum CMI between WðkÞ
n and the target vector Yn conditioned on

the already chosen vector V ðk� 1Þ
n :

WðkÞ
n ¼ argmax

Wn2OnVðk� 1Þ
n

IðYn;WnjV
ðk� 1Þ

n Þ
ð2Þ

3. Terminate the loop of selection when there is no WðkÞ
n can fulfill the significance test. The

significance test is designed in line with the statistical method from previous studies

[13, 22, 23], in each searching loop 100 surrogate data are generated by a random shift proce-

dure on the time points of causal driver and target variables for zero-setting the significant ele-

ments at specific lags, and the CMI value is then compared with the empirical distribution of

surrogates according to the null hypothesis of absent causality from the driver to the target, to

see if the value is larger than the (1 − α)% percentile of the ensemble of the randomized

IðYn; WnjV ðk� 1Þ
n Þ, before stop searching and return by Vn ¼ V ðk� 1Þ

n as the conditioning embed-

ding vector, which is composed of Vn ¼ VX
n � VY

n � VZ
n , where VX

n , VY
n and VZ

n denote the

components of Vn belonging respectively to X, Y, and Z.

4. Calculate the transfer entropy as:

TX!YjZ ¼ HðYnjVY
n � VZ

n Þ � HðYnjVnÞ ð3Þ
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The motivation to use low-dimensional approximation for transfer entropy

The above construction procedure for embedding vector Vn can be seen as a filter method of

feature selection technique that relies on the criterion of CMI to sort and extract the most sig-

nificant vectors from a high-dimensional state space, in order to establish a subset of history

vectors that maximize the amount of information for predicting future state of target variable,

and minimize the redundancy within the set of selected variables. To achieve this purpose

without any prior assumptions of sample distribution, one needs to directly calculate the value

of CMI from the estimated distribution p̂ð�Þ, and rank the candidate vectors by the CMI in

each step to search the most informative vector sequentially.

CMI ¼ IðYn; WnjV ðk� 1Þ
n Þ � ÎðYn;WnjV ðk� 1Þ

n Þ

¼
1

N

XN

i¼1

log
p̂ðYnðiÞWnðiÞjV ðk� 1Þ

n ðiÞÞ
p̂ðYnðiÞjV

ðk� 1Þ
n ðiÞÞp̂ðWnðiÞjV

ðk� 1Þ
n ðiÞÞ

ð4Þ

Nevertheless, as the dimension of conditioning embedding vector Vn is increasing with an

growing number of candidate vectors Wn are added, the estimation of probability distributions

p̂ð�Þ from a higher dimensional Vn becomes less reliable, which unavoidably renders the crite-

rion of CMI more problematic, and may lead to inaccurate judgements for the inclusion/

exclusion of candidate vectors. At this point the major barrier of uniform embedding method

of TE—the curse of dimensionality which we hope to bypass through the non-uniform embed-

ding scheme—reemerges. This impediment derives from the sparsity of the available data of

an increasing volume of state space that makes the estimation of entropy rates progressively

decrease towards zero [14]. For the calculation of TE from multivariate time series this prob-

lem is always aggravated by the limited length of data, which may commonly happen in physi-

ological systems as in the case of EEG analysis. To overcome this obstacle, in the following

sections we will present a low-dimensional approximation paradigm for TE estimation and

test its effectiveness.

Low-dimensional approximation strategy for CMI

The problem of estimating high-dimensional CMI from small samples is a long-standing chal-

lenge in the field of information theoretic feature selection and several well-accepted techniques

have existed in published literature, for instance, MIFS criterion [24], JMI criterion [25], CMIM

criterion [26], MRMR criterion [27], CIFE criterion [28], DISR criterion [29], etc. In recent

years Brown et al. [30] have shown that the above various feature selection heuristics are all

approximate iterative maximisers of the conditional likelihood, which can be interpreted in a

unifying framework of conditional likelihood maximisation under certain assumptions of inde-

pendence. Hence all the methods can be rewritten within a parameterized general criterion:

JðWkÞ ¼ IðWk; YnÞ � b
X

Wj2V

IðWk; WjÞ þ g
X

Wj2V

IðWk;WjjYnÞ ð5Þ

and the differences among them are determined by the scaling factor β/γ, for example, the CIFE

criterion can be obtained with β = γ = 1, the MRMR criterion can be obtained with β = 1/|V|

and γ = 0, and the JMI criterion is under the case of β = γ = 1/|V|. In [31] the researchers keep

on investigating the theoretical underpinnings of high dimensional CMI and provide a princi-

pled approach (RelaxMRMR) for modifying feature selection criterion in which takes into

account higher order feature interactions by relaxing some assumption of conditional indepen-

dence. Compared to (5), the main innovation of RelaxMRMR is on the redundancy term that

Low-dimensional approximation searching strategy for transfer entropy
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incorporates the second-order interactions between the features, i.e., the three-way feature

interaction terms I(Wk;Wi|Wj).

JðWkÞ ¼ IðWk; YnÞ � b
X

Wj2V

IðWk; WjÞ þ g
X

Wj2V

IðWk;WjjYnÞ � d
XX

Wi ;Wj2V;i6¼j

IðWk;WijWjÞ ð6Þ

where β = γ = 1/|V| and δ = 1/|V| or 1/|V|(|V| − 1) (Form-1 and Form-2 in [31]).

In this paper, we investigate the above two low-dimensional approximation criteria as a

substitute measure to the high dimensional CMI in (2), and compare the performance of the

methods with the original non-uniform TE algorithm. Suppose the set of conditioning vectors

we have already built is V = {W1, W2, . . .W(k−1)} and Yn is the target variable. The formulations

of low-dimensional approximations (LA) to CMI here we used are:

LA1 : Wn ¼ argmax
Wk2OnV

IðWk;YnÞ �
2

jVj

X

Wj2V

IðWk;WjÞ þ
2

jVj

X

Wj2V

IðWk; WjjYnÞ

8
<

:

9
=

;
ð7Þ

LA2 : Wn ¼ argmax
Wk2OnV

(

IðWk; YnÞ �
1

jVj

X

Wj2V

IðWk;WjÞ þ
1

jVj

X

Wj2V

IðWk;WjjYnÞ

�
1

jVjðjVj � 1Þ

XX

Wi;Wj2V;i6¼j

IðWk;WijWjÞ

) ð8Þ

In LA1 (7), we didn’t take into account the second-order interactions between the candidate

vectors, but employed a larger factor β = γ = 2/|V| than the JMI criterion, in order to give an

outweighed difference between the redundancy I(Wk;Wj) and conditional redundancy I(Wk;

Wj|Yn), compared to the relevance term I(Wk;Yn). In LA2 (8) we adopted the same formulation

and parameters as in Form-2 in [31], in which the second-order interactions (three-way fea-

ture interaction terms) were considered with a normalization factor 1/|V|(|V| − 1).

Estimator of entropy

In this paper, the entropy estimators adopted in the implementation of TE are consistent with

previous studies in order to compare the algorithms on a fair basis. The first estimator we used

is a binning estimator, which divides the observed state space into a set of equal partitions by a

fixed number of quantization levels, and the probability distribution is estimated by relative

frequencies of occurrence of the quantization values [32]. The second one is nearest neighbor

(NN) estimator [33], it adapts the local neighborhood to the dimension of the state space and

makes bias compensation in the estimation of entropies of variables in different dimension.

The third one is a linear model-based estimator, which works under the assumption that the

multivariate process has a joint Gaussian distribution. It has been demonstrated [4] that the

conditional entropy terms for the TE under the Gaussian assumption can be quantified by

means of linear regressions involving the relevant variables taken from the embedding vector.

All the above three entropy estimators are the same as the ones employed by previous

researchers [9, 13, 14, 23], and in the following analysis these estimators are implemented by

means of the respective functions from the MATLAB toolbox MuTE [23]. The primary aim of

our proposed method is to avoid the high-dimensional CMI as the ranking criterion in the

greedy search procedure for TE from non-uniform embedding, but to adopt the method of

low-dimensional approximations to tackle the problem of dimensionality curse. From the sim-

ulations in the next section we will demonstrate that applying the low-dimensional

Low-dimensional approximation searching strategy for transfer entropy
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approximation criteria as a substitute method for selecting the embedding vectors in TE calcu-

lation is beneficial for obtaining a better result with higher sensitivity and specificity under var-

ious circumstances.

Simulation study

In this section, we present a series of simulation experiments for causality analysis to compare

the performance of low-dimensional approximation methods described in the previous section

with the traditional non-uniform TE methods, on a number of multivariate linear and nonlin-

ear stochastic models with various coupling strengths at different interaction lags. In all simu-

lations, 100 realizations were generated for each model with data length 256/512/1024 to assess

statistically the sensitivity and specificity of the methods. And the threshold of significance test

in the selection loop for candidate vectors was set as α = 0.05, the number of surrogates was

fixed to 100.

In terms of sensitivity and specificity, we computed the TE results with respect to a varying

length of the analysed data. And the ROC (Receiver Operating Characteristic) curves were

obtained for all methods from 256 to 1024 time points. The amount of TP (ture positive), TN

(true negative), FP (false positive) and FN (false negative) were estimated and classified by

grouping all coupled directions (positives) and all uncoupled directions (negatives), to calcu-

late the sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), and F1 score = 2TP/(2TP + FP
+ FN).

For the first two linear models, we used the linear entropy estimator since it works opti-

mally for the time series with a joint Gaussian distribution. Regarding the other three nonlin-

ear models, binning and nearest neighbor estimators were employed to evaluate the difference

of performance.

Model A

Let us start with a linear vector autoregressive (VAR) model which is composed by 4 time

series of order 5 (Model 1 in [34]). The equations for this model are:

x1ðtÞ ¼ 0:8x1ðt � 1Þ þ 0:65x2ðt � 4Þ þ �1ðtÞ

x2ðtÞ ¼ 0:6x2ðt � 1Þ þ 0:6x4ðt � 5Þ þ �2ðtÞ

x3ðtÞ ¼ 0:5x3ðt � 3Þ � 0:6x1ðt � 1Þ þ 0:4x2ðt � 4Þ þ �3ðtÞ

x4ðtÞ ¼ 1:2x4ðt � 1Þ � 0:7x4ðt � 2Þ þ �4ðtÞ

ð9Þ

8
>>>>>>><

>>>>>>>:

where �i(t), i = 1, . . ., 4 are unit Gaussian noise terms with zero mean and unit covariance

matrix. We performed the causal analysis by setting the maximum lag according to the largest

lag in the generating process, and evaluate the transfer entropy from non-uniform embedding

by the traditional algorithm and our low-dimensional approximations searching methods

(LA1, LA2). The results from model A for data length of 1024 points are shown in Fig 1,

depicted by a causal matrix of interactions from row to column for each method, the ROC

curves of 256/512/1024 data points are shown in Fig 2 and the values of sensitivity/specificity/

F1 score listed in Table 1. The true causal connections in model A are at the matrix elements

(1, 3), (2, 1), (2, 3), and (4, 2). For all three methods the deduced values of TE on these posi-

tions are always positive and high, demonstrate a good sensitivity for the true couplings. How-

ever we can notice that a number of false positives were given by the traditional method using

the high dimensional CMI, especially for the large data of 1024 points. In contrast, although

both low-dimensional approximation methods presented a relatively low rejection rate for the

Low-dimensional approximation searching strategy for transfer entropy

PLOS ONE | https://doi.org/10.1371/journal.pone.0194382 March 16, 2018 6 / 24

https://doi.org/10.1371/journal.pone.0194382


Fig 1. Matrix representations of the corresponding causalities for Model A. Retrieved by traditional TE method (a)

and two low-dimensional approximation methods (b) (c) with linear estimator. The results are averaged over 100

simulations of 1024 time points and shown with color revealing the magnitude and transparency indicating the

significance. The directions of causal influence are from row to column.

https://doi.org/10.1371/journal.pone.0194382.g001

Fig 2. ROC curves for Model A. Sensitivity and specificity are obtained by gradually increasing the time series length

from 256 to 1024 points.

https://doi.org/10.1371/journal.pone.0194382.g002

Table 1. Sensitivity, specificity and F1 score values obtained from Model A.

Sensitivity Specificity F1 score

256 points

TE 1.000 0.886 0.898

LA1 0.980 0.999 0.989

LA2 0.875 0.969 0.903

512 points

TE 1.000 0.870 0.885

LA1 0.988 1.000 0.994

LA2 0.938 0.978 0.946

1024 points

TE 1.000 0.869 0.884

LA1 1.000 1.000 1.000

LA2 0.985 0.991 0.984

https://doi.org/10.1371/journal.pone.0194382.t001
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data of 256 and 512, for 1024 points they attained a better performance with respect to the sen-

sitivity/specificity/F1 score. And LA1 in this model provides the best possible result compared

to LA2.

Model B

The second model is another linear VAR of order 4 in five variables with unit Gaussian noise:

x1ðtÞ ¼ 0:4x1ðt � 1Þ � 0:5x1ðt � 2Þ þ 0:4x5ðt � 1Þ þ �1ðtÞ

x2ðtÞ ¼ 0:4x2ðt � 1Þ � 0:3x1ðt � 4Þ þ 0:4x5ðt � 2Þ þ �2ðtÞ

x3ðtÞ ¼ 0:5x3ðt � 1Þ � 0:7x3ðt � 2Þ þ �3ðtÞ

x4ðtÞ ¼ 0:8x4ðt � 3Þ þ 0:4x1ðt � 2Þ þ 0:3x2ðt � 2Þ þ �4ðtÞ

x5ðtÞ ¼ 0:7x5ðt � 1Þ � 0:5x5ðt � 2Þ � 0:4x4ðt � 1Þ þ �5ðtÞ

ð10Þ

8
>>>>>>>>>><

>>>>>>>>>>:

The true causal connections in this model are at the matrix elements (1, 2), (1, 4), (2, 4), (4, 5),

(5, 1) and (5, 2). The results from model B for data of 1024 points are shown in Fig 3. ROC

curves are shown in Fig 4 and the values of sensitivity/specificity/F1 score listed in Table 2.

The scales in Fig 4 are different from Fig 2 but the trends are similar: for the time series of 512/

1024 points, both LA1 and LA2 give better performance than the original TE, and the specific-

ity of LA1 is slightly higher than LA2 because the former is a more stringent criterion in the

sense of the scaling factor. While for the traditional TE method, a large number of non-rele-

vant connections were identified as significant, and the false positives distributed across the

whole matrix, which also gave rise to a certain amount of redundant computation time. The

outcome of Model A and B demonstrates that for linear systems the original TE from non-uni-

form embedding may bring about false positives at a rate higher than the nominal rate of α =

0.05, this fact has been already noticed by previous researchers [13], through introducing the

low-dimensional approximation technique for the searching procedure in state space, our pro-

posed method is able to avert this defect and retain the advantage of high sensitivity within the

non-uniform embedding scheme.

Model C

Now we will consider three nonlinear models in which the binning and nearest neighbor esti-

mator will be applied to evaluate the entropy. The first nonlinear model is composed by four

time series which has the same coupling strength and causal direction as in the model A:

x1ðtÞ ¼ 0:8x1ðt � 1Þ þ 0:65x2ðt � 4Þ þ �1ðtÞ

x2ðtÞ ¼ 0:6x2ðt � 1Þ þ 0:6x2
4
ðt � 5Þ þ �2ðtÞ

x3ðtÞ ¼ 0:5x3ðt � 3Þ � 0:6x2
1
ðt � 1Þ þ 0:4x2ðt � 4Þ þ �3ðtÞ

x4ðtÞ ¼ 1:2x4ðt � 1Þ � 0:7x4ðt � 2Þ þ �4ðtÞ

ð11Þ

8
>>>>>>><

>>>>>>>:

The differences between model A and C are the nonlinear interactions in model C at the X1!

X3 and X4! X2. For the calculation method of entropy we set 6 quantization levels for binning

estimator and 10 nearest neighbors for NN estimator. The results for data of 1024 are shown

in Fig 5, ROC curves shown in Fig 6 and the values of sensitivity/specificity/F1 score listed in

Table 3, respectively labeled by the three computation methods (TE/LA1/LA2) and two

entropy estimators (b/n). For the binning estimator, the specificity of LA1-b and LA2-b is

Low-dimensional approximation searching strategy for transfer entropy
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Fig 3. Matrix representations of the corresponding causalities for Model B. Retrieved by traditional TE method (a)

and two low-dimensional approximation methods (b) (c) with linear estimator. The results are averaged over 100

simulations of 1024 time points and shown with color revealing the magnitude and transparency indicating the

significance. The directions of causal influence are from row to column.

https://doi.org/10.1371/journal.pone.0194382.g003

Fig 4. ROC curves for Model B. Sensitivity and specificity are obtained by gradually increasing the time series length

from 256 to 1024 points.

https://doi.org/10.1371/journal.pone.0194382.g004

Table 2. Sensitivity, specificity and F1 score values obtained from Model B.

Sensitivity Specificity F1 score

256 points

TE 1.000 0.849 0.850

LA1 0.988 0.980 0.971

LA2 0.997 0.901 0.895

512 points

TE 1.000 0.828 0.833

LA1 0.995 0.991 0.987

LA2 1.000 0.906 0.902

1024 points

TE 1.000 0.853 0.853

LA1 1.000 0.998 0.998

LA2 1.000 0.924 0.918

https://doi.org/10.1371/journal.pone.0194382.t002
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higher than TE-b, with a comparably similar sensitivity. In the case of the NN estimator, tradi-

tional TE-n method failed to detect the causal relationship X2! X3 for any data length, ren-

dered a sensitivity of 75% at most. LA2-n also provided the same sensitivity with a slightly

higher specificity, however LA1-n has successfully detected all the correct causal links in this

example and attained the best sensitivity (100%) for 1024 points, though the value of TE at the

X1! X3 is relatively lower than the other methods.

Fig 5. Matrix representations of the corresponding causalities for Model C. Retrieved by traditional TE method and

two low-dimensional approximation methods, respectively by using binning entropy estimator (a, b, c) and NN

entropy estimator (d, e, f) over 100 simulations of 1024 time points. The results are shown with color revealing the

magnitude and transparency indicating the significance. The directions of causal influence are from row to column.

https://doi.org/10.1371/journal.pone.0194382.g005

Fig 6. ROC curves for Model C. TE-b/LA1-b/LA2-b are the results by binning entropy estimator and TE-n/LA1-n/

LA2-n by NN entropy estimator, sensitivity and specificity are obtained by gradually increasing the time series length

from 256 to 1024 points.

https://doi.org/10.1371/journal.pone.0194382.g006
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Model D

The fourth example is another nonlinear VAR process of order 3 in 5 variables (the nonlinear

model in [23], Eq (14)):

x1ðtÞ ¼ 0:95
ffiffiffi
2
p

x1ðt � 1Þ � 0:9025x1ðt � 2Þ þ �1ðtÞ

x2ðtÞ ¼ 0:5x2
1
ðt � 2Þ þ �2ðtÞ

x3ðtÞ ¼ � 0:4x1ðt � 3Þ þ �3ðtÞ

x4ðtÞ ¼ � 0:5x2
1
ðt � 2Þ þ 0:25

ffiffiffi
2
p

x4ðt � 1Þ þ 0:25
ffiffiffi
2
p

x5ðt � 1Þ þ �4ðtÞ

x5ðtÞ ¼ � 0:25
ffiffiffi
2
p

x4ðt � 1Þ þ 0:25
ffiffiffi
2
p

x5ðt � 1Þ þ �5ðtÞ

ð12Þ

8
>>>>>>>>>>><

>>>>>>>>>>>:

The true causal connections in this model are at the matrix elements (1, 2), (1, 3), (1, 4), (4, 5),

and (5, 4). The results for data of 1024 are shown in Fig 7, ROC curves shown in Fig 8 and the

values of sensitivity/specificity/F1 score listed in Table 4. For the binning estimator, LA2-b

presented a lower specificity compared LA1-b, but it was able to retrieve all the true links for

1024 points. The sensitivity of LA1-b is a bit lower than 1, which is improved by LA1-n.

Regarding the TE method, the outcome of TE-n is worse than TE-b, despite the fact that the

nearest neighbor estimator as a locally adaptive kernel estimator is more efficient for

Table 3. Sensitivity, specificity and F1 score values obtained from Model C by binning(-b) and NN(-n) estimators.

Sensitivity Specificity F1 score

256 points

TE-b 0.778 0.911 0.795

LA1-b 0.693 0.955 0.777

LA2-b 0.768 0.976 0.846

512 points

TE-b 0.765 0.913 0.789

LA1-b 0.755 0.968 0.830

LA2-b 0.758 0.979 0.842

1024 points

TE-b 0.785 0.908 0.797

LA1-b 0.800 0.983 0.872

LA2-b 0.785 0.976 0.857

256 points

TE-n 0.750 0.946 0.808

LA1-n 0.945 0.998 0.969

LA2-n 0.750 0.991 0.849

512 points

TE-n 0.750 0.938 0.800

LA1-n 0.995 0.999 0.996

LA2-n 0.750 0.996 0.853

1024 points

TE-n 0.750 0.955 0.815

LA1-n 1.000 1.000 1.000

LA2-n 0.750 0.996 0.853

https://doi.org/10.1371/journal.pone.0194382.t003
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calculating entropies in high-dimensional spaces for limited data. In contrast, the proposed

low-dimensional approximation technique for TE exploits the advantage of nearest neighbor

estimator and attains better performance for both methods under the data length of 1024, in

which the detection accuracy for the causal drivers is 100%.

Fig 7. Matrix representations of the corresponding causalities for Model D. Retrieved by traditional TE method and

two low-dimensional approximation methods, respectively by using binning entropy estimator (a, b, c) and NN

entropy estimator (d, e, f) over 100 simulations of 1024 time points. The results are shown with color revealing the

magnitude and transparency indicating the significance. The directions of causal influence are from row to column.

https://doi.org/10.1371/journal.pone.0194382.g007

Fig 8. ROC curves for Model D. TE-b/LA1-b/LA2-b are the results by binning entropy estimator and TE-n/LA1-n/

LA2-n by NN entropy estimator, sensitivity and specificity are obtained by gradually increasing the time series length

from 256 to 1024 points.

https://doi.org/10.1371/journal.pone.0194382.g008
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Model E

In the fifth example we consider a lattice of five unidirectionally coupled noisy logistic maps,

( x1ðtÞ ¼ ð1 � 1:8x2
1
ðt � 1ÞÞ þ 0:01�1ðtÞ

xiðtÞ ¼ ð1 � rÞð1 � 1:8x2
i ðt � 1ÞÞ þ rð1 � 1:8x2

i� 1
ðt � 1ÞÞ þ 0:01�iðtÞ i ¼ 2; . . . ; 5

ð13Þ

where ρ = 0.2 is the coupling strength and � are unit variance Gaussian noise terms. In this sys-

tem, the first variable is evolving autonomously, whereas the other variables are influenced by

the previous one with coupling ρ, thus forming a cascade of interactions xi−1! xi. The results

for data of 1024 are shown in Fig 9, ROC curves shown in Fig 10 and the values of sensitivity/

specificity/F1 score listed in Table 5. Since the causal relationships in this model are relatively

regular, all the three methods are able to identify the true interaction links and provide a good

sensitivity and specificity, and the results from NN entropy estimator are all better than the

binning estimator for this model. For the longest data of 1024 points the best result is given by

LA2-n, which is nearly the same as LA1-n. It shows that with a proper data size, the F1 score

obtained by LA1 and LA2 are always higher than the TE method.

Table 4. Sensitivity, specificity and F1 score values obtained from Model D by binning(-b) and NN(-n) estimators.

Sensitivity Specificity F1 score

256 points

TE-b 0.992 0.895 0.860

LA1-b 0.958 0.930 0.884

LA2-b 0.988 0.913 0.879

512 points

TE-b 1.000 0.878 0.845

LA1-b 0.972 0.950 0.916

LA2-b 0.990 0.875 0.837

1024 points

TE-b 1.000 0.840 0.806

LA1-b 0.986 0.941 0.911

LA2-b 1.000 0.789 0.760

256 points

TE-n 1.000 0.823 0.790

LA1-n 0.992 0.885 0.849

LA2-n 1.000 0.869 0.836

512 points

TE-n 1.000 0.796 0.766

LA1-n 1.000 0.910 0.881

LA2-n 1.000 0.867 0.833

1024 points

TE-n 1.000 0.777 0.750

LA1-n 1.000 0.933 0.909

LA2-n 1.000 0.873 0.840

https://doi.org/10.1371/journal.pone.0194382.t004
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In this example the noise term is defined by a superimposed form with a relatively little

strength in accordance with previous researches [35, 36]. When noise strength is larger than

0.04 all the methods failed to detect causal relationships between the variables. To illustrate

this, we conducted an experiment varying the noise strength from 0.01 to 0.04 and the cou-

pling strength ρ = 0.1, 0.3, 0.5, and depicted the results in Fig 11 (data length = 512). In the

results by using binning estimator, it shows that the both LA methods perform better than

original TE method. Except in the example of weak coupling by NN estimator, the method of

LA1 gave out a relative low sensitivity, while the LA2 is still superior to the traditional TE.

Fig 9. Matrix representations of the corresponding causalities for Model E. Retrieved by traditional TE method and

two low-dimensional approximation methods, respectively by using binning entropy estimator (a, b, c) and NN

entropy estimator (d, e, f) over 100 simulations of 1024 time points. The results are shown with color revealing the

magnitude and transparency indicating the significance. The directions of causal influence are from row to column.

https://doi.org/10.1371/journal.pone.0194382.g009

Fig 10. ROC curves for Model E. TE-b/LA1-b/LA2-b are the results by binning entropy estimator and TE-n/LA1-n/

LA2-n by NN entropy estimator, sensitivity and specificity are obtained by gradually increasing the time series length

from 256 to 1024 points.

https://doi.org/10.1371/journal.pone.0194382.g010
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Model F

Next we consider three coupled Henon maps

x1ðtÞ ¼ 1:4 � x2
1
ðt � 1Þ þ 0:3x1ðt � 2Þ

x2ðtÞ ¼ 1:4 � cx1ðt � 1Þx2ðt � 1Þ � ð1 � cÞx2
2
ðt � 1Þ þ 0:3x2ðt � 2Þ

x3ðtÞ ¼ 1:4 � cx2ðt � 1Þx3ðt � 1Þ � ð1 � cÞx2
3
ðt � 1Þ þ 0:3x3ðt � 2Þ

ð14Þ

8
><

>:

Nonlinear couplings x1! x2 and x2! x3 are defined with equal coupling strengths c = 0.1,

0.3, 0.5, under which the system does not become completely synchronized. The results of

ROC curves for different data lengths and coupling strengths are shown in Fig 12, and the val-

ues of sensitivity/specificity/F1 score listed in Table 6. In the case of weak coupling (c = 0.1),

both LA methods could not achieve a good sensitivity compared to traditional TE (except for

the 1024 data by NN estimator). But for the data of medium and strong coupling (c = 0.3, 0.5),

the sensitivity of LA methods reached 100% together with a high specificity. In results by bin-

ning estimator, the LA1 method performs better than the other two, especially for data of lon-

ger length (512, 1024), while by NN estimator LA2 is more advantageous. Moreover, the

specificity of all three methods by NN estimator tends to decrease with the coupling strength

of model.

Table 5. Sensitivity, specificity and F1 score values obtained from Model E by binning(-b) and NN(-n) estimators.

Sensitivity Specificity F1 score

256 points

TE-b 1.000 0.968 0.940

LA1-b 0.988 0.976 0.947

LA2-b 1.000 0.979 0.959

512 points

TE-b 1.000 0.966 0.937

LA1-b 1.000 0.979 0.959

LA2-b 1.000 0.976 0.954

1024 points

TE-b 1.000 0.943 0.898

LA1-b 1.000 0.973 0.949

LA2-b 1.000 0.971 0.946

256 points

TE-n 1.000 0.993 0.985

LA1-n 0.985 0.994 0.980

LA2-n 1.000 0.994 0.989

512 points

TE-n 1.000 0.996 0.991

LA1-n 1.000 1.000 1.000

LA2-n 1.000 0.998 0.996

1024 points

TE-n 1.000 0.996 0.991

LA1-n 1.000 0.999 0.999

LA2-n 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0194382.t005
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Fig 11. ROC curves for Model E with varying noise and coupling strengths. Sensitivity and specificity are obtained for models

with a varying noise from 0.01 to 0.04 (marked in the figure). The first row shows results from the methods applying binning

estimator and second row for NN estimator. Column 1 to 3 is with different coupling strength from 0.1, 0.3 to 0.5. Each simulation

was performed 100 runs with data length 512.

https://doi.org/10.1371/journal.pone.0194382.g011

Fig 12. ROC curves for Model F with different data lengths and coupling strengths. Sensitivity and specificity are obtained from

three coupled Henon maps with data length from 256 to 1024 and coupling strength (marked in the figure) from 0.1 to 0.5. The first

row shows results from the methods applying binning estimator and second row for NN estimator. Column 1 to 3 is with data length

from 256 to 1024. Each simulation was performed by 100 runs.

https://doi.org/10.1371/journal.pone.0194382.g012

Low-dimensional approximation searching strategy for transfer entropy

PLOS ONE | https://doi.org/10.1371/journal.pone.0194382 March 16, 2018 16 / 24

https://doi.org/10.1371/journal.pone.0194382.g011
https://doi.org/10.1371/journal.pone.0194382.g012
https://doi.org/10.1371/journal.pone.0194382


Model G

In the last simulation, a system of three coupled identical Lorenz oscillators is defined as

_x1 ¼ 10ðy1 � x1Þ

_y1 ¼ 28x1 � y1 � x1z1

_z1 ¼ x1y1 �
8

3
z1

_x2 ¼ 10ðy2 � x2Þ þ cðx1 � x2Þ

_y2 ¼ 28x2 � y2 � x2z2

_z2 ¼ x2y2 �
8

3
z2

_x3 ¼ 10ðy3 � x3Þ þ cðx2 � x3Þ

_y3 ¼ 28x3 � y3 � x3z3

_z3 ¼ x3y3 �
8

3
z3

ð15Þ

8
>>>>>>>><

>>>>>>>>:

with couplings x1! x2 and x2! x3 of equal strengths c = 1, 2, 3, 4, 5. The first variables xi of

the three interacting subsystems are respectively observed at a sampling time of 0.05 units, and

the differential equations is solved using the explicit Runge-Kutta (4, 5) method “ode45” in

MATLAB. The results of ROC curves for different data lengths and coupling strengths are

shown in Fig 13, and the values of sensitivity/specificity/F1 score listed in Table 7. In most

cases of this example, the traditional TE method outperformed LA methods, which indicates

that this coupled continuous chaotic system cannot benefit from low-dimensional approxima-

tion strategy. The results for LA1 method are especially worse than LA2, partly due to the

inclusion/exclusion of the higher order interactions among variables. However in the simula-

tion of larger coupling strength (c = 4, 5) with data length of 1024 by binning method, LA2

Table 6. Sensitivity, specificity and F1 score values obtained from Model F by binning(-b) and NN(-n) estimators with different data lengths and coupling strengths.

Coupling Sen Spe F1 Sen Spe F1 Sen Spe F1

TE-b/256 LA1-b/256 LA2-b/256

0.1 0.690 0.213 0.652 0.285 0.033 0.422 0.410 0.073 0.527

0.3 1.000 0.173 0.853 0.990 0.018 0.978 1.000 0.028 0.973

0.5 1.000 0.095 0.913 1.000 0.020 0.980 1.000 0.020 0.980

TE-b/512 LA1-b/512 LA2-b/512

0.1 0.985 0.208 0.821 0.005 0.000 0.010 0.175 0.000 0.298

0.3 1.000 0.175 0.851 0.995 0.000 0.997 1.000 0.005 0.995

0.5 1.000 0.135 0.881 1.000 0.000 1.000 1.000 0.015 0.985

TE-b/1024 LA1-b/1024 LA2-b/1024

0.1 1.000 0.203 0.832 0.000 0.000 0.000 0.275 0.058 0.396

0.3 1.000 0.170 0.855 1.000 0.000 1.000 1.000 0.045 0.957

0.5 1.000 0.200 0.833 1.000 0.000 1.000 1.000 0.060 0.943

TEn/256 LA1n/256 LA2n/256

0.1 0.155 0.015 0.262 0.240 0.048 0.360 0.130 0.013 0.225

0.3 1.000 0.033 0.969 0.995 0.038 0.961 1.000 0.015 0.985

0.5 1.000 0.075 0.930 1.000 0.098 0.911 1.000 0.033 0.969

TEn/512 LA1n/512 LA2n/512

0.1 0.580 0.015 0.720 0.615 0.025 0.739 0.415 0.002 0.585

0.3 1.000 0.023 0.978 1.000 0.033 0.969 1.000 0.010 0.990

0.5 1.000 0.095 0.913 1.000 0.150 0.870 1.000 0.033 0.969

TEn/1024 LA1n/1024 LA2n/1024

0.1 1.000 0.000 1.000 0.975 0.015 0.973 0.970 0.000 0.985

0.3 1.000 0.002 0.998 1.000 0.095 0.913 1.000 0.005 0.995

0.5 1.000 0.163 0.860 1.000 0.235 0.810 1.000 0.088 0.920

https://doi.org/10.1371/journal.pone.0194382.t006
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achieves higher F1 score than TE, and with longer data the performance of LA2 by NN estima-

tor is also significantly improved. This fact demonstrates that for LA2 method, data size is cru-

cial for the estimation of higher-dimensional influences.

Application

In this section we turn to real-world data to show the applicability of our proposed approach

for non-uniform embedding. To address this issue we consider a public dataset [37] from an

epileptic patient with implanted array of 8-by-8 cortical electrode grid and two depth electrode

strips with six contacts each, which amount to 76 time series (More details about the data are

given in [38]). For its intrinsic high dimensionality and redundancy, this data is intuitively

appropriate to be employed a non-uniform embedding method to disentangle the underlying

dynamical interactions. Therefore we applied our low-dimensional approximation method

(LA1) to analyze the data corresponding to 8 epileptic seizures and 8 periods just before the

seizure onset, respectively averaged the ictal/pre-ictal results and then compared its perfor-

mance with traditional non-uniform embedding transfer entropy, both by the implementation

of nearest neighbor estimator. In this application the data which were recorded at 400 Hz of 10

seconds length were downsampled to 100 Hz, and the maximum embedding order was set to

8. The results are depicted in Fig 14, which shows the matrices of causalities before and during

the clinical onset of the seizure, and Fig 15, which shows the difference of total numbers of sig-

nificant connections between ictal and pre-ictal period, respectively by TE and LA method.

From matrix representation by the LA method for the pre-ictal data we note that an obvious

causal driver is located at the contact 73 from the second depth electrode strip, this contact can

Fig 13. ROC curves for Model G with different data lengths and coupling strengths. Sensitivity and specificity are obtained from

three coupled Lorenz oscillators with data length from 256 to 1024 and coupling strength (marked in the figure) from 1 to 5. The first

row shows results from the methods applying binning estimator and second row for NN estimator. Column 1 to 3 is with data length

from 256 to 1024. Each simulation was performed by 100 runs.

https://doi.org/10.1371/journal.pone.0194382.g013
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thus be associated to the seizure onset and reflects the fact that the seizure is already active

even if it is not yet clinically observable, also in [35, 39], it has been suggested that the last two

contacts in the second depth electrode are mostly influencing the cortical activity. The results

from ictal data indicates abnormal interactions from the regions corresponding to the lower

left corner of the grid (contacts 1–4, 9–11 and 17) which were then resected during an anterior

temporal lobectomy for the patient. Moreover, from the ictal period our method has success-

fully identified a critical node: contact 50, which exhibits the most significant change in the

value of betweenness centrality and was considered as a target for therapeutic intervention in

Table 7. Sensitivity, specificity and F1 score values obtained from Model G by binning(-b) and NN(-n) estimators with different data lengths and coupling

strengths.

Coupling Sen Spe F1 Sen Spe F1 Sen Spe F1

TE-b/256 LA1-b/256 LA2-b/256

1 0.040 0.038 0.072 0.175 0.158 0.235 0.035 0.015 0.066

2 0.095 0.035 0.163 0.085 0.125 0.127 0.025 0.013 0.048

3 0.105 0.058 0.172 0.080 0.098 0.125 0.100 0.038 0.170

4 0.155 0.048 0.248 0.060 0.093 0.096 0.150 0.015 0.254

5 0.175 0.058 0.271 0.145 0.125 0.208 0.160 0.035 0.260

TE-b/512 LA1-b/512 LA2-b/512

1 0.080 0.053 0.135 0.200 0.173 0.259 0.015 0.010 0.029

2 0.355 0.055 0.485 0.150 0.100 0.222 0.205 0.015 0.332

3 0.550 0.080 0.643 0.190 0.103 0.272 0.430 0.015 0.589

4 0.635 0.063 0.722 0.265 0.100 0.362 0.490 0.020 0.641

5 0.715 0.068 0.773 0.410 0.135 0.488 0.635 0.035 0.745

TE-b/1024 LA1-b/1024 LA2-b/1024

1 0.260 0.088 0.362 0.190 0.200 0.239 0.045 0.007 0.085

2 0.775 0.053 0.824 0.285 0.140 0.364 0.380 0.015 0.539

3 0.915 0.070 0.891 0.420 0.158 0.484 0.695 0.025 0.797

4 0.955 0.063 0.918 0.555 0.190 0.574 0.910 0.015 0.938

5 0.980 0.065 0.929 0.610 0.215 0.598 0.990 0.015 0.980

TE-n/256 LA1-n/256 LA2-n/256

1 0.115 0.063 0.185 0.275 0.203 0.327 0.030 0.028 0.055

2 0.405 0.088 0.513 0.120 0.150 0.169 0.130 0.020 0.222

3 0.695 0.115 0.722 0.115 0.078 0.181 0.315 0.063 0.438

4 0.790 0.138 0.765 0.145 0.070 0.226 0.445 0.063 0.567

5 0.900 0.183 0.795 0.215 0.110 0.300 0.610 0.123 0.658

TE-n/512 LA1-n/512 LA2-n/512

1 0.030 0.010 0.057 0.085 0.025 0.150 0.005 0.000 0.010

2 0.555 0.030 0.687 0.030 0.002 0.058 0.110 0.002 0.197

3 0.900 0.085 0.870 0.120 0.013 0.210 0.320 0.018 0.472

4 0.930 0.105 0.869 0.160 0.023 0.266 0.475 0.045 0.607

5 0.960 0.138 0.859 0.275 0.050 0.400 0.620 0.050 0.721

TE-n/1024 LA1-n/1024 LA2-n/1024

1 0.020 0.002 0.039 0.000 0.000 0.000 0.010 0.000 0.020

2 0.725 0.018 0.824 0.005 0.000 0.010 0.215 0.005 0.351

3 0.975 0.070 0.922 0.010 0.000 0.020 0.475 0.002 0.642

4 0.995 0.123 0.888 0.040 0.002 0.077 0.710 0.020 0.811

5 1.000 0.123 0.891 0.130 0.010 0.226 0.785 0.058 0.826

https://doi.org/10.1371/journal.pone.0194382.t007
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[38], for the reason that these nodes with statistically significant increases in betweenness cen-

trality may facilitate seizure activity and their disruption could prevent or abort ictal activity.

The traditional TE method, on the contrary, leads to more noisy results with a significant

number of false positives, which has extended the computation time to about three folds larger,

and it is more sensitive to the confounding effect of volume conduction resulting in the diago-

nal patterns observed in the matrix compared with our method.

Fig 14. Results for an epileptic EEG recording. Matrices of causalities reflect before (top) and during (down) the

clinical onset of a seizure from an epileptic patient, the results are respectively averaged from 8 recordings. Contacts 1

to 64 belong to a cortical electrode grid, and contacts 65 to 76 to two depth electrode strips. The values are computed

by traditional non-uniform transfer entropy (TE) and low-dimensional approximation approach (LA). The directions

of causal influence are from row to column. The brighter colors correspond to more significant values.

https://doi.org/10.1371/journal.pone.0194382.g014

Fig 15. Results for an epileptic EEG recording. Matrices depict the difference of total numbers of significant

connections between ictal and pre-ictal period (ict—pre). The numbers are respectively summed from 8 recordings.

Contacts 1 to 64 belong to a cortical electrode grid, and contacts 65 to 76 to two depth electrode strips. The values are

computed by traditional non-uniform transfer entropy (TE) and low-dimensional approximation approach (LA). The

directions of causal influence are from row to column. The brighter colors correspond to more significant values.

https://doi.org/10.1371/journal.pone.0194382.g015
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Discussion and conclusion

In this article we have presented a novel and effective modification for the well-known causal-

ity analysis tool: transfer entropy from non-uniform embedding, which is the state-of-the-art

for quantifying causal networks by means of information theoretic measures and has been

employed by a large number of researchers from a variety of disciplines over recent years.

Besides the widely used transfer entropy as a model-free approach there are also other forms of

causality measures that based on different criterion rather than the maximization of CMI and

has shown its great statistical power in detecting relationships from a multivariate embedding

space [40], e.g. local predictability (LP). For the computation of transfer entropy, the employ-

ment of non-uniform embedding strategy has been proved to be suitable for high dimensional

embedding spaces because of its ability to reduce the effective dimension of the state space by

selecting only the relevant variables at specific time lags that contribute the most to explain the

target variable. Thus it is a more flexible procedure for the reconstruction of the multivariate

embedding space compared to the uniform embedding and has been proposed by several pre-

vious authors [7, 22, 41]. Nevertheless it still encounters the obstacle of estimation for CMI

among the candidate vectors and tends to detect false directed couplings. Our suggested

approach exploits low-dimensional approximation method that derives from the feature selec-

tion framework to improve the termination criterion in the procedure of constructing embed-

ding vectors. The detailed approximation strategies we used are formed in two different ways:

one is a stringent version of JMI criterion and the other is RelaxMRMR criterion that takes

into account the second order interactions. In a series of simulations we compared the perfor-

mance of our algorithm with traditional TE implementation under various entropy estimators.

We reported the sensitivity and specificity of the results from different data lengths, confirmed

the capability of the proposed approach, which could lead to less false positives in the detection

of causal flow while retaining the advantage of non-uniform embedding in terms of high sensi-

tivity, especially for the large data sets.

The main development in this paper is that instead of directly applying original CMI as a

criterion for identifying significant variables at specific lags as in recent literature, our

approach follows a paradigm that makes use of low-dimensional mutual information quanti-

ties to approximate higher dependencies between candidate and target variables in the embed-

ding vector reconstruction. It effectively avoids the curse of dimensionality and achieves a

more parsimonious model by maximizing relevance and minimizing redundancy between the

selected components. To tackle this kind of problem there also exists other propositions, e.g.

in [42] the authors introduced a preselection scheme for the subsets of causal predictors to

overcome the combinatorial explosion for searching a globally optimal subset and detect the

synergetic variables, while for our method it relies on the low-dimensional approximation to

alleviate this condition. In the simulation experiments, the approach LA1 with an outweighed

factor on the redundancy and conditional redundancy term generally outperformed LA2

which took higher order interactions of embedding vectors at different lags into consideration,

and presented the best possible results throughout most of the examples except for the coupled

Lorenz system as long as data size is large enough for good statistic. The reason that LA2 did

not show much obvious advantage compared to LA1 may partly due to the number of candi-

date variables in state space is limited to a small number with a small time delay, thus renders

the underlying causal structure of the data set not complex enough. In this case a simple crite-

rion such as LA1 may already be sufficiently capable to give a reasonable outcome. Another

fact is that the performance of an approximation method is not only affected by the

dimensionality of the state space, but also by the data size. Therefore a large data is crucial for

the estimation of higher-dimensional influences, which has been shown in the last example.
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As with the proposed methodology there are also some limitations. For instance, although

in the simulations of linear model our algorithm produced a better result compared to the

original non-uniform transfer entropy, it still could not surpass the efficiency of the standard

uniform conditioning methods [23], and it is more computationally intensive for the associ-

ated randomization significance tests, which is intrinsically required under the non-uniform

conditioning framework. For this reason the beneficial effects of applying the low-dimensional

approximations for TE may rely mostly upon the nonlinear causal relationships, like in the

EEG or MEG data. Also in the experiments of chaotic systems our method did not show obvi-

ous advantage compared to TE, and sometimes even failed to detect the underlying causal rela-

tionship, which restricted its range of applicability and this issue should be investigated in our

further work. In [43], the authors had carried out a simulation study to compare the perfor-

mance of several causality measures and concluded that the non-uniform TE leading to the

best in the case of nonlinear simulation systems and always obtaining the highest specificity.

In our simulations this was confirmed that the traditional TE method could already give a

100% sensitivity and nearly 0 false positives and leaves little space to be improved, this may to

some extent explain what kind of system is most suitable for the applying of non-uniform

scheme. Another issue for the low-dimensional approximation approach is that it is prone to

bring about more false negatives, especially for small data sets. A polished version of this

method should address this problem theoretically, perhaps using an adaptive balancing factor

in which the focus may shift between the relevance and redundancy terms as the unexplained

information of the target variable decreases from the earlier to the latter stage of searching and

constructing embedding vectors, rather than a fixed parameter pattern for the relevance/

redundancy/conditional redundancy in the embedding vector selection process. For different

entropy estimators, the effect of low-dimensional approximations differs in the trade-off

between the information gain and the nonexistent coupling rejection. A more flexible termina-

tion criterion will certainly be helpful to discover the true coupling direction and latency in

multivariate causality analysis.
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33. Kraskov A, Stögbauer H, Grassberger P. Estimation mutual information, Phys Rev E. 2004; 69:

066138. https://doi.org/10.1103/PhysRevE.69.066138

34. Winterhalder M, Schelter B, Hesse W, Schwab K, Leistritz L, Klan D, et al. Comparison of linear signal

processing techniques to infer directed interactions in multivariate neural systems. Signal Process.

2005; 85: 2137–2160. https://doi.org/10.1016/j.sigpro.2005.07.011

35. Marinazzo D, Pellicoro M, Stramaglia S. Kernel Method for Nonlinear Granger Causality. Phys. Rev.

Lett. 100, 144103. https://doi.org/10.1103/PhysRevLett.100.144103 PMID: 18518037

36. Stramaglia S, Cortes JM, Marinazzo D. Synergy and redundancy in the Granger causal analysis of

dynamical networks. New J. Phys. 2014, 16, 105003. https://doi.org/10.1088/1367-2630/16/10/105003

37. http://math.bu.edu/people/kolaczyk/datasets.html

38. Kramer MA, Kolaczyk ED, Kirsch HE. Emergent network topology at seizure onset in humans. Epilepsy

Res. 2008; 79: 173–186. https://doi.org/10.1016/j.eplepsyres.2008.02.002 PMID: 18359200

39. Faes L, Marinazzo D, Stramaglia S. Multiscale Information Decomposition: Exact Computation for Mul-

tivariate Gaussian Processes. Entropy 2017, 19, 408. https://doi.org/10.3390/e19080408

40. Porta A, Faes L, Bari V, Marchi A, Bassani T, et al. Effect of Age on Complexity and Causality of the

Cardiovascular Control: Comparison between Model-Based and Model-Free Approaches. PLoS ONE.

2014; 9: e89463. https://doi.org/10.1371/journal.pone.0089463 PMID: 24586796

41. Porta A, Faes L. Wiener-Granger causality in network physiology with applications to cardiovascular

control and neuroscience. Proceedings of the IEEE. 2016; 104: 282–309. https://doi.org/10.1109/

JPROC.2015.2476824

42. Runge J, Donner R, Kurths J. Optimal model-free prediction from multivariate time series. Phys Rev E.

2015; 91: 052909. https://doi.org/10.1103/PhysRevE.91.052909

43. Papana A, Kyrtsou C, Kugiumtzis D, Djks C. Simulation Study of Direct Causality Measures in Multivari-

ate Time Series. Entropy 2013, 15, 2635–2661. https://doi.org/10.3390/e15072635

Low-dimensional approximation searching strategy for transfer entropy

PLOS ONE | https://doi.org/10.1371/journal.pone.0194382 March 16, 2018 24 / 24

https://doi.org/10.1103/PhysRevE.82.016207
https://doi.org/10.1371/journal.pone.0109462
https://doi.org/10.1371/journal.pone.0109462
http://www.ncbi.nlm.nih.gov/pubmed/25314003
https://doi.org/10.1109/72.298224
http://www.ncbi.nlm.nih.gov/pubmed/18267827
https://doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
https://doi.org/10.1016/j.patcog.2015.11.007
https://doi.org/10.1016/j.physrep.2006.12.004
https://doi.org/10.1016/j.physrep.2006.12.004
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1016/j.sigpro.2005.07.011
https://doi.org/10.1103/PhysRevLett.100.144103
http://www.ncbi.nlm.nih.gov/pubmed/18518037
https://doi.org/10.1088/1367-2630/16/10/105003
http://math.bu.edu/people/kolaczyk/datasets.html
https://doi.org/10.1016/j.eplepsyres.2008.02.002
http://www.ncbi.nlm.nih.gov/pubmed/18359200
https://doi.org/10.3390/e19080408
https://doi.org/10.1371/journal.pone.0089463
http://www.ncbi.nlm.nih.gov/pubmed/24586796
https://doi.org/10.1109/JPROC.2015.2476824
https://doi.org/10.1109/JPROC.2015.2476824
https://doi.org/10.1103/PhysRevE.91.052909
https://doi.org/10.3390/e15072635
https://doi.org/10.1371/journal.pone.0194382

