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Abstract

Host genetic architecture is a major factor in resistance to pathogens and parasites. The col-

lection and analysis of sufficient data on both disease resistance and host genetics has,

however, been a major obstacle to dissection the genetics of resistance to single or multiple

pathogens. A severe challenge in the estimation of heritabilities and genetic correlations

from pedigree-based studies has been the confounding effects of the common environment

shared among relatives which are difficult to model in pedigree analyses, especially for

health traits with low incidence rates. To circumvent this problem we used genome-wide sin-

gle-nucleotide polymorphism data and implemented the Genomic-Restricted Maximum

Likelihood (G-REML) method to estimate the heritabilities and genetic correlations for resis-

tance to 23 different infectious pathogens in calves and cows in populations undergoing nat-

ural pathogen challenge. Furthermore, we conducted gene-based analysis and generalized

gene-set analysis to understand the biological background of resistance to infectious dis-

eases. The results showed relatively higher heritabilities of resistance in calves than in cows

and significant pleiotropy (both positive and negative) among some calf and cow resistance

traits. We also found significant pleiotropy between resistance and performance in both

calves and cows. Finally, we confirmed the role of the B-lymphocyte pathway as one of the

most important biological pathways associated with resistance to all pathogens. These

results both illustrate the potential power of these approaches to illuminate the genetics of

pathogen resistance in cattle and provide foundational information for future genomic selec-

tion aimed at improving the overall production fitness of cattle.
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Introduction

Infection is the colonization of the host by at least one domain of pathogens such as viruses,

bacteria, fungi, and/or parasites (parasite infestation). Each type of pathogen is different in its

invasion and replication in the host tissue, namely “infectivity” and/or the capacity to pass

from one individual to another, namely “transmissibility” [1, 2]. Although variation in resis-

tance to individual infectious agents (pathogens) is associated with levels of immunisation, dis-

ease treatment policies, diet and other environmental factors, previous studies of the resistance

to various pathogens in animals [3] and humans [4] have also revealed a major role of host

genetic factors in pathogen resistance and host survival.

Host genetic architecture in cattle has been found to be a major factor in resistance to mul-

tifactorial diseases and disorders such as infertility, metabolic disorder, claw disorder and mas-

titis [5]. Several studies have addressed the importance of the genetic contribution of host

resistance/susceptibility to different domains, species, and subspecies of pathogens [6, 7]. The

most studied pathogen subspecies in the field of dairy cattle breeding (particularly in Europe)

areMycobacterium avium subspecies Tuberculosis [8–14], andMycobacterium avium subspe-

cies Paratuberculosis [15–18]. Another important pathogen affecting calves is Salmonella typhi-
murium. Wray and Sojka [19] reported some phenotypic variation in resistance to Salmonella

between Jersey calves and Friesian calves, which may be due to the genetic variation among

breeds. Templeton et al., [20] noted that calves of sires with a high resistance to Brucellosis

also show a high resistance to Salmonella, suggesting a genetic contribution to the resistance to

this pathogen. In studies of the genetics of resistance to viral pathogens, resistance has mostly

been measured indirectly as the symptoms of infection in animals, rather than directly mea-

sured as susceptibility to the pathogen itself. For instance, in 2008, Heringstad et al., [21] esti-

mated the heritability of susceptibility to respiratory diseases to be 0.05±0.018. Estimation of

genetic variation underlying the resistance/susceptibility for parasitic infestation has been well

studied in small ruminants [22], and to a small extent in cattle [23]. In Canadian Holstein, the

heritability for susceptibility to Neospora caninum was in a range between 0.08±0.02 and 0.12

±0.04 [24]. In Dutch Holstein-Friesian, the heritability of eggs/larvae count in animal feces

was estimated to be from 0.00±0.02 to 0.25±0.05 [25]. The resistance to ectoparasites in cattle

was studied and reviewed by [26] who concluded that the heritability of resistance to ticks was

0.31, and 0.21 for resistance to Buffalo flies.

A number of studies have also detected quantitative trait loci (QTLs) associated with sus-

ceptibility/resistance to infection diseases in farm animals. Lee et al., [27] found 11 QTLs on

three chromosomes (BTA15, BTA17, and BTA22), significantly associated with susceptibility

to Foot-and-mouth disease in Holstein cattle. Casas et al., [28] searched for markers directly

associated with the susceptibility to infection with Bovine viral diarrhea virus in feedlot cattle,

and found a significant association on Chromosome BTA14.

Despite estimates of the heritability of resistance for some pathogens, genetic correlations

(pleiotropy) among resistance between these domains of pathogens are still unknown, as is the

level of pleiotropy among resistance to different species and subspecies within each domain of

these pathogens. Several reasons lie behind the absence of the genetic correlations among resis-

tance/susceptibility to various pathogens. First, the most popular method used in animal

breeding for estimating genetic correlation has been the pedigree-base restricted maximum

likelihood approach (Pedigree-REML). This method tests genetic overlap of traits between

related individuals within pedigrees. To quantify the genetic correlation between traits in a

family-based study, we may need to measure the traits in individuals with pedigree relation-

ships [29]. Consequently, it will be challenging and costly to repeat measurements on all ani-

mals, in particular for these low-prevalence traits and/or for traits where slaughter of the
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animals to measure their resistance is needed (i.e. endo-parasite infestation). Moreover, some

disease traits (i.e. Bovine respiratory diseases) may result in death of the animal (at a young

age) before it is possible to measure other traits (such as milk production after first calving) for

which we want to test the correlation.

The genomics era has provided a solution to the problem of estimating genetic correlations,

by allowing the genetic correlation to be estimated using genomic variants (i.e. SNPs) instead

of using pedigree information, providing more precise and accurate estimates for the narrow-

sense heritability (h2
SNP) in case-control studies and for quantitative traits as well as for the

coheritability between such traits, which in particular does not need the measurement of mul-

tiple traits per animal. So far, several different methods have been developed for estimating the

(co)heritability using genomic data: the first method uses the significantly associated SNPs

found in large GWAS studies to estimate the causal relationships between risk factors and dis-

ease. This method is efficient only in case of the traits with many significant SNPs, which is

usually not the case in resistance/susceptibility traits. For complex traits (especially for those

recorded in case control studies), it is recommended to use genome-wide data (array or

sequence data) instead of using only significant markers to estimate genetic correlation [30],

and this approach has been implemented in two published methods; Genomic-restricted max-

imum likelihood (G-REML) [31, 32] and polygenic scores [33, 34]. One of the limitations for

the application of the last two methods in complex traits is the availability of individual-level

genotype data. Hence, Bulik-Sullivan and colleagues [29, 35] developed LD Score regression

using the GWAS summary statistics instead of the individual-level genotype data for estimat-

ing heritabilities and genetic correlations.

In this study, we use individual-level genotypes for ~ 20000 animals from cow calibration

groups (NB Cow calibration groups: is a programme initiated in Germany combining infor-

mation for novel traits with high-density genetic markers based on ~20,000 genotyped cows,

to offer a new perspective on breeding for improved disease resistance [36]). We applied the

G-REML method to estimate the heritability of the 23 resistance traits and the genetic correla-

tions between these traits, and the correlations between the resistance traits with calf perfor-

mance and cow productivity. We also implemented a post-GWAS functional analysis to

estimate the pleiotropy based on different scales; scale 1) pleiotropy among all 23 resistance

traits based on gene analysis; scale 2) pleiotropy among all 23 traits based on gene-set analysis

(biological pathways), to understand the biological background of the underlying resistance/

susceptibility to infectious diseases.

Results

SNP heritabilities

Using a univariate G-REML model, we estimated the SNP-based heritabilities (h2
SNP) for all

resistance, performance, and productivity traits (Table 1). SNP heritabilities of resistance to

bacterial pathogens ranged from 0.03±0.01 to 0.21±0.01 in calves, and from 0.02±0.01 to 0.13

±0.02 in cows. Higher SNP heritabilities were estimated for the resistance to viral pathogens,

ranging from 0.16±0.03 to 0.22±0.03 in calves, and 0.10±0.01 in cows. For resistance to tricho-

phyton (the only fungal pathogen) in calves, the heritability estimate was 0.17±0.03, and in

cows it was 0.04±0.01. In parasitic infestation, the SNP heritability estimates in calves ranged

from 0.04±0.01 to 0.14±0.03, while in cow’s estimates varied from 0.19±0.02 to 0.25±0.02. For

calf performance traits, the SNP heritability explained 0.30±0.01 of the phenotypic variance in

birthweight, while 0.08±0.02 of the phenotypic variance in average daily gain was explained.

For cow productivity traits, SNPs explained 0.19±0.02 of the variance in average milk yield,

and 0.25±0.02 of the variance for the fat to protein ratio trait.
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Pleiotropy among calf resistance traits

A bivariate analysis was used to estimate the level of pleiotropy among calf resistance traits

using genome-wide SNPs for all 36 pairwise combinations of the nine resistance traits, shown

in Fig 1 and S1 Table. The genetic correlation was significantly different from zero (according

to FDR<1% and according to the Bonferroni threshold) between the resistance to Salmonella

pathogen and Trichophyton pathogen (0.55±0.07), between Salmonella and Cryptosporidium

(0.98±0.01), between Bovine respiratory syn. and Coccidia (0.46±0.06), between Bovine

Table 1. Number of genotyped samples and estimated SNP-based heritabilities (h2
SNP) for resistance and performance traits in calves; and resistance and produc-

tivity traits in cows.

Calf resistance traits Infected Resistant Incidence Total h2
SNP±s.e.

Bacterial pathogens

Salmonella 271 570 0.32 841 0.21±0.01

Escherichia coli 19 483 0.04 502 0.03±0.01

Viral pathogens

Bovine respiratory syn. 143 375 0.28 518 0.16±0.03

Bovine herpes virus 1 113 162 0.41 275 0.22±0.03

Fungal pathogen

Trichophyton 421 875 0.32 1296 0.17±0.03

Parasitic pathogens

Cryptosporidium 238 749 0.24 987 0.14±0.03

Coccidia 270 770 0.26 1040 0.11±0.03

Myiasis 362 107 0.77 469 0.13±0.02

Bovicola bovis 20 445 0.04 465 0.04±0.01

Calf performance traits Mean±s.d.

Birthweight (in kg) 41.09±4.83 17976 0.30±0.01

Average daily gain (in kg) 0.77±0.17 7673 0.08±0.02

Cow resistance traits Infected Resistant Incidence

Bacterial pathogens

Salmonella 103 794 0.11 897 0.11±0.02

Escherichia coli 87 905 0.09 992 0.08±0.02

Staph. Aureus 102 805 0.11 907 0.12±0.01

Staph. Haemolyticus 379 802 0.32 1181 0.08±0.02

Strep. Agalactiae 51 1177 0.04 1228 0.11±0.06

Strep. Dysgalactiae 18 797 0.02 815 0.02±0.01

Strep. Uberis 101 798 0.11 899 0.13±0.02

Clost. Perfringens 21 238 0.08 259 0.12±0.06

Mycobac. Paratuberculosis 30 781 0.04 811 0.10±0.05

Viral pathogen

Rotavirus 237 1253 0.16 1490 0.10±0.01

Fungal pathogen

Trichophyton 11 1564 0.01 1575 0.04±0.01

Parasitic pathogens

Dictyocaulus viviparus 671 652 0.51 1323 0.06±0.01

Bovicola bovis 25 929 0.03 954 0.06±0.02

Chorioptic scabies 50 940 0.05 990 0.10±0.02

Cow productivity traits Mean±s.d.

Average milk yield (in kg) 30.83±5.51 9959 0.19±0.02

Fat to protein ratio (in %) 1.24±0.17 9959 0.25±0.02

https://doi.org/10.1371/journal.pone.0194374.t001
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herpesvirus 1 and Bovicola bovis (0.74±0.18), between Cryptosporidium and Coccidia (0.52

±0.06), and between Myiasis and Bovicola bovis (-0.54±0.06).

The pleiotropy among cow resistance traits

A second bivariate analysis was used to estimate the pleiotropy among cow resistance traits

using genome-wide SNPs for all 105 pairwise combinations of the 14 resistance traits (all

results are shown in Fig 2 and S2 Table). The estimated genetic correlation was significantly

different from zero (according to FDR<1% and according to the Bonferroni threshold)

between the resistance to Escherichia coli pathogen and Staph. Aureus pathogen (0.71±0.15),

between Staph. Aureus and Strep. Uberis (0.56±0.10), between Staph. Haemolyticus and Strep.

Dysgalactiae (1.00±0.34), between Staph. Haemolyticus and Chorioptic scabies (1.00±0.11),

Fig 1. Genetic correlations among the 9 calf resistance traits analyzed by G-REML. Blue, positive genetic correlation; red, negative genetic correlation. Larger squares

correspond to more significant P values. Genetic correlations that are different from zero at a false discovery rate (FDR) of 1% are shown as full-sized squares. Genetic

correlations that are significantly different from zero after Bonferroni correction for the 36 tests in this analysis are marked with a yellow asterisk. We show results that

do not pass multiple-testing correction as smaller squares. All genetic correlations in this report can be found in tabular form in S1 Table.

https://doi.org/10.1371/journal.pone.0194374.g001
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between Strep. Agalactiae and Strep. Dysgalactiae (1.00±0.28), between Strep. Agalactiae and

Bovicola bovis (1.00±0.36), and between Rotavirus and Chorioptic scabies (-0.52±0.16). The

estimated genetic correlation was significantly different from zero (with FDR <2%) between

the resistance to Escherichia coli and Strep. Dysgalactiae (0.78±0.22), Strep. Agalactiae and

Strep. Uberis (0.72±0.27), Strep. Agalactia and Trichophyton (0.96±0.33), and Rotavirus and

Dictyocaulus viviparus (0.44±0.13).

The genetic correlation between calf and cow resistance traits was significantly different

from zero for two different traits (S3 Table). The estimated genetic correlation between resis-

tance to the Salmonella pathogen in calves and cows was -0.26±0.09 (p-value� 0.001), and the

genetic correlation between resistance to the Trichophyton pathogen in calves and cows was

0.18±0.12 (p-value� 0.05).

Fig 2. Genetic correlations among the 14 cow resistance traits analyzed by G-REML. Blue, positive genetic correlation; red, negative genetic correlation. Larger

squares correspond to more significant P values. Genetic correlations that are different from zero at a false discovery rate (FDR) of 1% are shown as full-sized squares.

Genetic correlations that are significantly different from zero after Bonferroni correction for the 105 tests in this analysis are marked with a yellow asterisk. We show

results that do not pass multiple-testing correction as smaller squares. All genetic correlations in this report can be found in tabular form in S2 Table.

https://doi.org/10.1371/journal.pone.0194374.g002
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Pathogen resistance and calf performance

The genetic correlations of birthweight with the resistance to viral, fungal, and parasitic (except

for Cryptosporidium) pathogens were highly significantly negative for resistance to Bovine

herpes virus 1 (P� 0.01), and also significantly negative (P� 0.05) for resistance to the Bovine

respiratory syn., Trichophyton, Coccidia and Bovicola bovis pathogens. There were no signifi-

cant positive correlations between birthweight and resistance, although that with Myiasis

approached significance (P� 0.1). The genetic correlation of average growth rate was very

highly significantly (P� 0.001) negative with resistance to Salmonella, highly significantly neg-

ative with resistance to the Escherichia coli and Bovine respiratory syn. Pathogens, and nega-

tive and approaching significance (P� 0.1) with resistance to Bovine herpes virus 1 and

Trichophyton pathogens. Positive correlations with average daily gain were only significant

for Cryptosporidium (P� 0.01) and approaching significance for Coccidia (P� 0.1) (Fig 3).

All correlations in calf performance traits had standard errors that ranged from 0.05 to 0.14

(S4 Table).

Pathogen resistance and cow productivity

(Fig 4 and S5 Table). The resistance to bacterial pathogens were generally positively correlated

with milk yield, the correlation being very highly significance positive (P� 0.001) with Staph.

Aureus, highly significantly positive (P� 0.01) with Strep. Uberis and approaching signifi-

cantly positive (P� 0.1) with Staph. Haemolyticus and Strep. Agalactiae. Milk yield was also

Fig 3. Estimated genetic correlations of birthweight (BW) and average daily gain (ADG) with all resistance traits in calves. This plot compares the genetic

correlation between BW and all calf resistance traits with the genetic correlation between ADG and all calf resistance traits obtained from G-REML. The horizontal axis

indicates pairs of phenotypes (BW and ADG), and the vertical axis indicates genetic correlation. Error bars represent standard errors. ‘���’P� 0.001; ‘��’P� 0.01;

‘�’P� 0.05; ‘�’P� 0.1.

https://doi.org/10.1371/journal.pone.0194374.g003
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significantly positively correlated with resistance to Rotavirus. Resistance to Trichophyton was

approaching significance for a negative correlation with milk yield. Fat to protein ratio was

positively correlated with resistance Staph. Aureus (P� 0.01), Rotavirus and Trichophyton

(P� 0.05). Fat to protein ratio was significantly negatively correlated with Salmonella, Myco-

bac. Paratuberculosis and Chorioptic scabies (P� 0.05), and approaching significance for

Staph. Haemolyticus (P� 0.1).

Biological pathway analysis

All SNPs (~50K SNPs) were annotated to the nearest gene where possible using a gene bound-

ary extended by 20kb distance outside the transcription start site or transcription end site of

the gene for all the 23 resistance traits, using MAGMA (version 1.06) and bovine gene location

(UMD3.1) through ensemble-biomaRt (www.ensembl.org/biomart). This annotation pipeline

resulted in a total of 16,094 genes ready for the next step of the analysis.

After testing the association of the 16,094 genes across all the 23 resistance traits, using p-

values of summary statistics of GWAS from GCTA, we selected the top (most significant) 20

genes based on average p-values. The lowest average p-value for the correlation between the

genes and all resistance traits was the average p-value for the RRM2B gene (average p-

value = 0.28) (Fig 5 and S6 Table). After estimating the p-values on the scale of genesets (Bio-

logical pathways), we selected the top 20 genesets based on average p-values (Fig 6 and S7

Fig 4. Estimated genetic correlations of average milk yield (AMY) and fat to protein ratio (FTP) with all resistance traits in cows. This plot compares the genetic

correlation between AMY and all calf resistance traits with the genetic correlation between FTP and all calf resistance traits obtained from G-REML. The horizontal axis

indicates pairs of phenotypes (AMY and FTP), and the vertical axis indicates genetic correlation. Error bars represent standard errors. ‘���’P� 0.001; ‘��’P� 0.01;
‘�’P� 0.05; ‘�’P� 0.1.

https://doi.org/10.1371/journal.pone.0194374.g004
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Fig 5. P-values for the selected annotated candidate genes in all resistance traits in calves and cows. Dark red color means very high p-value, dark blue color means

very low (i.e. more significant) p-value.

https://doi.org/10.1371/journal.pone.0194374.g005
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Table) out of 1083 pathways that were available from BIOCARTA, KEGG and REACTOME

databases. We found that “Reactome pre-notch transcription and translation” and “Biocarta B-
lymphocyte pathway” were the most associated pathways to all resistance traits according to

their calculated p-values (the average p-values = 0.07 and 0.11 respectively) (Fig 6 and S7

Table). The final step was to illustrate the “Biocarta B-lymphocyte pathway” against the 19

genes that were associated with resistance at the gene-level. Fig 7 shows how the candidate

genes (from gene analysis) were directly and indirectly connected to the “Biocarta B-lympho-
cyte pathway.”

Discussion

We implemented G-REML using genome-wide SNP data to explore the genetic etiology of

resistance to pathogens in cattle. This study thus provides the first genomic overview of the

genetics of resistance across a range of pathogens together with the genetic correlations

between pathogens and with production traits for Holstein cattle, the world’s predominant

dairy breed. We estimated the phenotypic variance explained by all SNPs (h2
SNPs) for resistance,

performance and productivity traits, and calculated the genetic correlation (rg) between them,

using genome-wide SNPs in calves and cows. The average heritability of resistance traits at a

Fig 6. P-values for the selected 20 pathways tested across all resistance traits in calves and cows. Dark red color means very high p-value, dark blue color means very

low (i.e. more significant) p-value.

https://doi.org/10.1371/journal.pone.0194374.g006
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young age (calf traits) was larger than the average heritability of the same population at a later

age (cow traits), reflecting the increase of the environmental effect potentially including

increased pathogen exposure after first calving in cattle. The SNP heritabilities estimated using

GREML in this study were of a similar scale to those for which estimates for individual patho-

gens have been previously published using pedigree and genome-wide data [6, 7].

Pleiotropy between resistance to pathogens and calf performance and cow

productivity

There have only been very limited previous estimates of genetic correlations among resistance

to different pathogens with which our estimates can be compared (e.g. [37]). We thus report a

number of new findings that would be difficult to obtain from pedigree studies, including

some very high estimates of positive pleiotropy between the resistance to bacterial, fungal and

parasite pathogens. Negative pleiotropy was found between the resistance to most of the

Fig 7. Network of gene-interactions the candidate genes (outside the red circle) and the “Biocarta B-lymphocyte pathway” (inside of the red circle).

https://doi.org/10.1371/journal.pone.0194374.g007
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bacterial, viral and fungal pathogens with both performance traits that we analysed in calves

(birthweight and average daily gain). Results supports the hypothesis that some resistance

genes may negatively impact performance traits in young calves, perhaps reflecting a balance

between energy expenditure on disease resistance and growth. However, clear positive pleiot-

ropy found between resistance to bacterial, viral and fungal pathogens with average milk yield

in cows supports the hypothesis that cows that are genetically less vulnerable to infections can

produce more milk. This provides economic in addition to welfare justification for increasing

focus of breeding objectives on these disease resistance traits.

Shared biological pathways

To date, few studies have implemented biological pathway analysis in animal health [38, 39].

This is the first study post-GWAS for resistance to most of all infection pathogens in dairy cat-

tle. We found a group of 20 genes shared effects across all resistance traits and showed that

“Reactome pre-notch transcription and translation” and “Biocarta B-lymphocyte pathway” are

the most consistently associated pathways with resistance to different pathogens. The genetic

correlations that we observed in this study show a clear pleiotropy (by the means of similar

resistance mechanism against the 23 pathogens). The combination of accurate recording of

multiple diseases and associated pathogens combined with associated genomic data is unusual

and possibly so far unique in a mammalian species including humans. However, given the

abundance of genomic data in humans combined with GWAS for a number of individual

infectious diseases analyses such as performed here should become increasingly possible for

human populations.

The scale of this dataset facilitated by the thorough electronic data collection within the

dairy cattle test-herd system in north-eastern Germany has enabled us to obtain unique insight

into the genetics of resistance across a range of pathogens. The corollary of these currently

unique data is that the overall multivariate pattern will need to await further data collection

from this or other similar programs before it is possible to replicate our results as a whole.

Nonetheless, all significant correlations have a low standard error (S3, S4 and S5 Tables), and

our estimates of heritabilities and pairwise genetic correlations are generally consistent with

others in the literature where these are available (e.g. [6, 7, 37, 40]).

The biological impact of the genetic pleiotropy on breeding and selection

strategies

The estimated heritabilities and the pattern of genetic correlations between pathogens and

with production traits provide valuable information allowing the further optimisation of cattle

breeding programmes. For example, several low and non-significant genetic correlations were

found among calf resistance traits as well as among cow resistance traits, questioning the tradi-

tional hypothesis of selection for mastitis resistance based on somatic cell count as a conse-

quence of multiple pathogen infection in cattle [41] or in sheep [42]. Additionally, the highly

significant negative correlation between resistance to the Salmonella pathogen in calves and

cows implies that resistance traits in calves are not good indicators or early predictors for the

resistance traits and genetic improvement of cow health after calving in first parity, supporting

a previous pedigree and GWA study [40]. The estimated zero genetic correlation between

resistance to the Trichophyton pathogen in calves and cows indicates that, for this pathogen,

calf and cow resistance, are genetically distinct. Thus, overall it is clear that to design an effi-

cient breeding program, we need to take into account these results and utilise a programme

combining selection in both cows and calves and consider how to most effectively collect and

incorporate information on resistance and susceptibility to multiple pathogens. Fortunately,

Genetics of resistance to bovine pathogens

PLOS ONE | https://doi.org/10.1371/journal.pone.0194374 April 2, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0194374


the increasing availability of genomic data in cattle combined with collection of data such as

analysed here ultimately will facilitate genomic selection programmes that meet these

objectives.

In summary, despite some limitations of available health traits and genotyped data, the use

of G-REML method to estimate the genetic correlation among health traits and between health

trait and performance and productivity traits promises to be a very valuable tool in the genetic

improvement of animal health. Biological pathway analysis appears to be a very useful tool

also, but at present we have had to use information for other species as have no biological path-

ways specifically tested and verified for cattle and the development of such databases would

provide an invaluable resource for future research.

Materials and methods

The resistance to infectious disease traits in Holstein cattle was measured through the frame-

work of the dairy cattle test-herd system of northeast Germany, including the federal states of

Mecklenburg-Westpommerania and Berlin-Brandenburg. Dairy cattle farmers and veterinari-

ans used electronic recording systems, which were based on the diagnosis key as developed by

Feucker and Staufenbiel [43]. This diagnosis key was also considered when developing the

International Committee for Animal Recording (ICAR) [44].

Phenotypes

In calves and cows, four main domains of pathogens were used to classify 23 resistance traits:

(a) bacterial pathogens, (b) viral pathogens, (c) fungal pathogens, and (d) parasitic pathogens.

We distinguished between calf resistance traits and cow resistance traits [40]. For the traits

recorded in calves, we defined a time window from birth to the age of 150 days. For the traits

recorded in cows, the window was from 20 days before first calving up to 365 days after first

calving (a 385-day period). At least one entry for the respective pathogen implied a score = 0

for infected (non-resistant); otherwise, score = 1 for non-infected (resistant). The infected ani-

mal with a given pathogen was the animal (calf/cow) that was recorded as infected with this

pathogen during its calf/cow age. A non-infected (resistant) calf to a given pathogen was

defined as a calf that was found to be healthy on a farm infected with the given pathogen and

that was born after the first record of this infection on that farm; a resistant cow to a given

pathogen is defined as a cow that was found to be healthy in a farm where the first record of

infection with the given pathogen was at least 20 days before its first calving date. Note that in

common with other studies of natural infection in livestock and other species, we use resis-

tance to define animals that did not become infected in a herd that was undergoing a specific

disease challenge. For a given pathogen, all herds that showed no occurrence of infection were

excluded because we do not know whether these herds were challenged with the particular

pathogen.

All veterinary diagnosis and infection pathogen recording was done according to the ICAR

(S8 Table, also available online through: www.icar.org). The nine pathogen resistance traits

that were recorded in calves were Salmonella, Escherichia coli, Bovine respiratory syn., Bovine

herpesvirus 1, Trichophyton, Cryptosporidium, Coccidia, Myiasis and Bovicola bovis. The

14 pathogen resistance traits that were recorded in cows were Salmonella, Escherichia coli,

Staphylococcus aureus (Staph. Aureus), Staphylococcus haemolyticus (Staph. Haemolyticus),

Streptococcus agalactiae (Strep. Agalactiae), Streptococcus dysgalactiae (Strep. Dysgalactiae),

Streptococcus uberis (Strep. Uberis), Clostridium perfringens (Clost. Perfringens),Mycobacte-
rium avium paratuberculosis (Mycobac. Paratuberculosis), Rotavirus, Trichophyton, Dictyo-

caulus viviparous, Bovicola bovis and Chorioptic scabies. For testing the genetic correlation
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between the resistance and performance in calves we considered two performance traits in

calves: birthweight (in kg) and average daily gain (in g/day) during the first 360 days of calf

life. For testing the genetic correlation between the resistance and productivity in cows, we

considered two productivity traits in cows: average milk yield (in kg) during the first lactation

and fat to protein ratio (in %) during the first lactation.

Genotypes

Genotyping was performed using the Illumina Bovine 50K SNP-BeadChip V2 (Illumina Inc.,

San Diego, CA), and with the Illumina Bovine Eurogenomics 10K low-density chip. The low-

density genotypes (10K) were imputed by Vereinigte Information system Tierhalung (Verden,

Germany) to the 50K panel applying the algorithm by Segelke et al. [45]. In post-imputation

SNP quality checks; animals with almost identical SNP genotypes (>95% congruency across

all SNPs) were eliminated from the ongoing analyses; SNPs with minor allele frequency <0.01

and SNPs showing a significant (P< 10−5) deviation from Hardy-Weinberg equilibrium were

discarded. All SNPs had a genotype call rate greater than 95%.

Genotyping was only undertaken for infected and resistant animals from populations

where we could be sure that all animals genotyped have been challenged with the relevant

pathogen (i.e. that they come from an infected population). Hence, the incidences from these

genotyped samples do not reflect the actual incidences in the German Holstein population,

but are likely to be higher as we have excluded data from herds where there is no evidence for

a disease challenge for a particular pathogen. Further epidemic research, it is required to study

the true incidence at the population scale. For a full statistical descriptive of the 23 resistance

traits and the four quantitative traits in calves and cows in the genotyped sample, see Table 1.

Statistical models

Correction for population stratification in genome-wide data

The most common method for dealing with population stratification is principal component

analysis (PCA) [46, 47]. Fitting the leading principal components in the model can correct for

stratification for analyses such as estimating the proportion of variance explained by genome-

wide SNPs and for genome-wide association studies (GWAS). Here, we applied principal com-

ponents analysis to the genome-wide SNP data to infer continuous axes of genetic variation.

Hence, the new axes will reduce the data dimensions (eigenvectors), describing as much vari-

ability as possible (eigenvalues): V−1(ctc)V = D, where V was the matrix of eigenvectors which

diagonalizes the covariance matrix ctc (covariance matrix of genotyped data), D was the diago-

nal matrix of eigenvalues of ctc. Then, we adjusted the phenotypes by including the first five

eigenvectors as covariates in the model when estimating the proportion of variance explained

by all the SNPs, or in G-REML and GWAS (see model-1).

A univariate mixed linear model was used to estimate the phenotypic variance explained by

all autosomal SNPs (h2
SNPs) by applying the genomic-restricted maximum likelihood analysis

(G-REML), and using the GCTA software [48]. In matrix notation, the model was defined as:

y ¼ Xbþ gG þ ε ð1Þ

where y refered to the vector of the quantitative trait (for performance and productivity traits)

or of unobserved liabilities (for resistance traits); b was the vector of the fixed effects (herd,

birth year and birth month for calf traits; herd, calving year, calving season, age at first calving

for cow traits and the first 5 PCs), X was an incidence matrix for the fixed effects; gG was the

vector of aggregated effects of all autosomal SNPs with varðgGÞ ¼ AGs2
G and AG was the
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genomic relationship matrix (GRM). The heritability explained by all autosomal SNPs (h2
SNPs)

was defined as h2
SNPs ¼ s2

SNPs=s2
p where s2

p was the phenotypic variance.

A bivariate model was used to estimate the genetic correlation among resistance traits and

between resistance and performance or productivity traits [48].

y
1
¼ X1b1 þ gG1

þ e1 ðtrait 1Þ

y
2
¼ X2b2 þ gG2

þ e2 ðtrait 2Þ

" #

ð2Þ

The two equations are the same as in model 1, while the (co)variance matrix was:

var
y

1

y
2

" #

¼
s2

G1
Aþ s2

e1
I sG1G2

Aþ se1e2I

sG1G2
Aþ se1e2I s2

G2
Aþ s2

e2
I

" #

ð3Þ

where A is GRM, I is the identity matrix, s2
G is the genetic variance, s2

e is the residual variance

and sG1G2
is the genetic covariance between the two traits. We assumed that all environmental

correlations between pathogens were zero, as less than 10% of animals shared diagnoses for

any pair of pathogens.

Significance thresholds

To determine the significance of the estimated pleiotropy among calf and cow resistance traits,

two methods are commonly used to determine the significance threshold for genome-wide

analysis: the false discovery rate and Bonferroni correction. The False discovery rate (FDR)

correction was introduced by Benjamini and Hochberg [49]. The FDR method first ranks all

p-values from the smallest to the largest, and then adjusts each p-value accordingly:

FDR corrected � p ¼
Number of tests

p � vlaue ranking
� p � value

For the pleiotropy among resistance traits, we used the FDR of 1%. Bonferroni correction

bases on the number of independent tests performed in each scenario (36 tests in calf traits

and 105 tests in cow traits). The Bonferroni threshold was used at α = 1%, and calculated as fol-

lows:

Bonferroni threshold ¼ � log10
a

Number of tests

� �

Biological pathway analysis

Biological pathway analysis is an approach where the association between a select set of genes

(biological pathways) and a trait of interest (the resistance to different pathogens) was tested.

This analysis can be used to test the cumulative genetic effects across multiple genes within a

pathway.

Multi-marker Analysis of GenoMic Annotation (MAGMA)

MAGMA used in our pathway analysis according to Leeuw et al., [50] with the following three

steps: First, an annotation step to map SNPs onto genes using the bovine gene location

(UMD3.1), from ensemble-biomaRt (www.ensembl.org/biomart). Second: a gene-based analy-

sis step to compute gene p-values, using MAGMA and the output of GWAS from GCTA (pre-

estimation of summary statistics of GWAS for each trait, performed using the GCTA software

[48]. Third: a gene-set (Biological pathways) analysis step, to compute biological pathway p-val-

ues, using MAGMA (with the “competitive gene-set analysis” function) with publicly available
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BIOCARTA, KEGG and REACTOME database. All analyses in MAGMA are structured as a

linear regression model on gene-level data.

Z ¼ b0 þ b1G1 þ e ðModel � 4Þ

Where Z was the phenotype vector, Gene-sets G1 were binary indicator variables, coded with

“1” for genes in the gene-set, and with “0” otherwise. e was the residual vector. The intercept β0
represents the mean, and β1 the association specific to the gene-set 1. One last step was to illus-

trate the most significant gene rich network related to most of the resistance traits in calf and

cows. This was done using the web-based software GeneMANIA [50], and then to illustrate the

most significant related genes to all resistance traits (both in the same Fig) to see how these

genes are related to this pathway. The post-GWAS functional analyses were performed using

the MAGMA software [50] and the GWAS output from GCTA software [48].
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average daily gain in calves.
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S5 Table. Genetic correlations between all cow resistance traits and either milk yield or fat
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