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Abstract

During the end of the 20th century and the beginning of the 21st century the discussion on

early human behavioral patterns revolved around the hunting versus scavenging debate.

The correct identification of bone modifications, including percussion, cut and tooth marks,

is a key issue within this debate. While many authors have shown that carnivore and human

modifications can be easily distinguished, it is true that sometimes percussion marks without

associated microstriations and tooth pits overlap morphologically, causing confusion, espe-

cially when unmodified hammerstones are used. In order to solve this equifinality problem,

many investigations have focused their efforts on other pieces of evidence such as the iden-

tification of notches, fragmentation patterns and frequencies, among others. These studies,

however, cannot be considered as fully conclusive. Within this paper we address the prob-

lem of equifinality when identifying percussion marks produced with unmodified hammer-

stones and tooth pits created by carnivores using new methodologies based on the 3D

reconstruction of marks and their statistical multivariate analysis. For the purpose of this

study a total of 128 marks– 39 percussion marks produced with an unmodified quartzite

hammerstone, and 89 pits generated by different carnivores–were virtually modelled with

the aid of a DAVID structured-light scanner SLS-2 and later analyzed by means of geometric

morphometrics. Our results show that percussion marks not associated with striae fields

and the pits generated by the carnivores studied here can be successfully distinguished.

Introduction

Taphonomy is key in the interpretation of archaeological sites. Although the definition of tap-

honomy was first established by [1], the origins of the discipline may be older [2]. Taphonomy,

however, did not actually arise as a scientific discipline within archaeology until 1981. The

taphonomic perspective adopted by [3, 4, 5] and other authors, to study the Plio-Pleistocene

record marked a new beginning in archaeology. The work conducted by [4] symbolizes the
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end of a cycle where the australopiths became prey instead of hunters and the osteodontokera-

tic culture turned into a historiographic myth, whereas [3] proposed a new paradigm explain-

ing the behavior of the first human beings called the man as a scavenger.

Binford’s theories on early hominin behavior [3] were discussed and surpassed by a new

model, according to which these early populations were specialized scavengers with preference

for feline preys that had access to the carcasses before the appearance of hyenas [6–16]. Within

this new framework the correct identification of the marks observed on cortical bone became

key for the correct interpretation of the Early Paleolithic sites. Not only the presence of certain

taphonomic processes, but also the frequency with which they occur became of utmost rele-

vance, since different incidence rates might be indicating human hunting behavior or human

scavenging [7–9, 13]. For example, only a few years later it was demonstrated that many of the

tooth marks identified at the Early Paleolithic FLK site (Olduvai Gorge, Tanzania) were actu-

ally biochemical alterations [17]. This re-analysis suggested that carnivores would not have

played such an important role at FLK and that, instead, hominins would have been the main

accumulating agent at the site [17–19].

Among bone surface modifications, cut [19, 20] and percussion marks [7, 15], as well as

their frequencies, are especially important in the identification of exploitation patterns in the

fossil record. The identification of percussion marks can be complicated, though. Percussion

marks are, superficially, similar to carnivore tooth pits [8], especially when percussion marks

are performed with hammerstones [13]. Given these difficulties, the methods to identify bone

surface modifications and the inclusion or exclusion of inconspicuous marks in the analyses

have been extensively discussed. Two experimental analyses [21,22] stress the adversities tap-

honomists must cope with. In [22] percussion marks generated with modified and unmodified

hammerstones were analyzed and compared with tooth marks. The study shows that percus-

sion marks produced with modified hammerstones differ from tooth marks, while percussion

marks produced with unmodified hammerstones are more problematic, since one third of the

marks are not associated with striae fields. That means that 30% of the percussion marks gen-

erated with unmodified hammerstones is susceptible to equifinality and can be easily mistaken

for tooth marks generated by carnivores, since they cannot be distinguished based on the pres-

ence of microstriations or irregular tissue in the surroundings of the percussion mark. In fact,

the morphological characterization of percussion marks stated how “high breadth: depth ratio
for pits and grooves but internal surface typically lacks crushing. Very shallow microstriations in
and/or emanating from pits and grooves, oriented transverse to the long axis and occurring in
dense superficial patches”, whereas for tooth pits “high breadth: depth ratio, with shallow U-
shaped cross-section. Internal surface shows crushing. Microstriations rare, occurring in low-den-
sity patches” [13]. These observations clearly notice these differences.

The problems encountered in distinguishing percussion marks and tooth pits in controlled

experimental contexts usually increase when analyzing archaeological samples. In these con-

texts, several factors affecting the cortical bone preservation (e.g. biochemical alterations, abra-

sion, weathering) can hinder the taphonomic analysis and the correct identification of the

marks even more. Determining the accumulating and modifying agent of the Plio-Pleistocene

sites has turned out to be quite complicated and has required more than the simple description

of marks. Therefore, several alternatives have been investigated to overcome these limitations.

One of the criteria is based on the study of notches. Notches are scars located at the edges of

bones, associated with fragmentation processes. Notches are less exposed to taphonomic pro-

cesses [11] and it is possible to infer the fracturing agent–whether human or carnivore–accord-

ing to their characteristics. However, there are some problems regarding the process of

determining notches because notches on small sized carcasses made by humans and carnivores

cannot be fully differentiated [22]. On the contrary, it has been observed that the notches on

Differentiation of percussion marks and carnivore pits using 3D geometric morphometrics
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large-sized carcasses can be successfully classified, especially among cattle bones [11, 22].

Though, when comparing notches on equid and bovid carcasses, the analysis is more complex.

Another study [23] concluded that the morphology of notches and the proportions of notch

types cannot be differentiated from the results of static loading by carnivores. Thus, the analy-

sis of notches should be used alongside other taphonomic indicators such as tooth, percussion

and cut mark frequencies, the distribution of anthropogenic and carnivore bone alterations,

fracture angles or fragmentation patterns, etc.

A second approach used to fight the problems concerning the differentiation of human and

carnivore agency is based on the study of fracture angles [23–25]. Nevertheless, the methodol-

ogy proposed [24] in classifying the different fracture angles produced on bovid long bone

shafts is not diagnostic when applied to equids [23]. In addition, carnivores generate similar

fracture angles to those produced by humans using hammerstones [25].

Further evidence used to differentiate the action of humans and carnivores is the ratio of

remaining long bone circumferences alongside the degree of fragmentation observed within

the osteological accumulation [26]. Diagenetic alterations and sedimentary pressure present at

archaeological sites usually affect the fragmentation degree of the bone samples, increasing the

frequency of bone shafts that preserve less than 50% of the shaft circumference and the global

fragmentation of the bones. Bone accumulations where most bones preserve 100% of the shaft

circumference are very scarce in the archaeological and paleontological record, making it diffi-

cult to characterize a fossil accumulation only based on the fragmentation degree and the cir-

cumference pattern seen among long bones.

In conclusion, the fragmentation, the degree of shaft circumference, the angles of the frac-

ture planes, the notches and the morphology of the pits / percussion marks are not strictly

diagnostic when trying to identify the modifying agent of bone accumulations and are subject

to equifinality.

In order to review this issue related to the agent fracturing long bone shafts, we have applied

a new methodology based on three-dimensional reconstructions and a geometric morphomet-

ric analysis to the study of tooth pits generated by carnivores and percussion marks inflicted

with unmodified hammerstones and not associated to microstriae fields. These techniques

have already been applied to other taphonomic questions providing promising results e.g. cut

marks [27–30] or tooth marks [31, 32]. Our aim with this study is to improve the precision in

the identification of these types of marks in order to overcome equifinality [8,13,21,22].

Methods and samples

Sample

For the purpose of this study we first analyzed a total of 128 marks, including pits created by

different carnivores in a controlled setting and percussion marks produced with unmodified

hammerstones. As previously proved [31] the methodology employed in this study is affected

by prey carcass so, in order to avoid possible discrepancies due to differences in carcass size,

we have limited our sample to 89 pits on adult horse long bones generated by wolves (N 24),

hyenas (N 21), jaguars (N 20) and lions (N 24) in captivity at the Cabárceno Nature Park, in

Cantabria (Spain) [33, 34].

Along with this experimental sample conducted with carnivores, we analyzed 39 percussion

marks experimentally created with an unmodified quartzite hammer. Only percussion marks,

that are not associated with microstriations, and can therefore be mistaken for carnivore pits,

were selected for the study.

We used unmodified quartzite hammerstones because these are the most widespread tools

among Paleolithic sites. Other raw materials such as basalt, chert, quartz, sandstone, etc. can
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be used as pebbles to strike carcasses. Notwithstanding, all unmodified hammerstones leave

the same mark patterns regardless of the raw material due to the uniform surface of the tool.

Still, a previous experiment was conducted using quartzite, basalt, and sandstone unmodified

hammerstones to prove that point. A total of 56 percussion marks were compared to demon-

strate the applicability of the methodology to any kind of unmodified hammer (data in S1

Appendix). A skilled person with expertise in conducting neotaphonomic studies performed

both experiments.

Laser scanner structure-light and virtual reconstruction

The process of digitizing the marks was performed with a DAVID structured-light scanner

SLS-2 (Table 1) located at the C.A.I. of Archaeometry at the Complutense University of

Madrid. The equipment consists of a camera, a projector and a calibration marker board, that

in the first phase needs to be calibrated (Fig 1). In order to carry out this process, a DAVID

USB CMOS Monochrome camera is positioned and fit with a macro lens alongside an ACER

K132 projector, both facing towards the calibration marker board at an angle between 15˚ and

25˚ (Fig 2A). The projection produced by the projector has to cover the entire calibration

marker board, in our case the size and calibration pattern corresponds to a 15mm scale.

Within the DAVID software the scale is introduced as displayed on the calibration marker

Table 1. Technical specifications of the structured light scanner SLS-2.

DAVID structured-light scanner SLS-2

Workpiece size 16 x 500 mm.

Resolution Up to 0.1% of scan size (down to ± 0.016 mm).

Scanning time One single scan within a few seconds.

Mesh density Up to 1.200.000 vertices per scan.

https://doi.org/10.1371/journal.pone.0194324.t001

Fig 1. DAVID structured-light scanner SLS-2 technical equipment.

https://doi.org/10.1371/journal.pone.0194324.g001
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board, the camera’s exposure is adjusted accordingly while the focus of all the single instru-

ments is adjusted. The equipment is then calibrated. The camera, as well as the projector, have

to remain fixed and stable throughout the entire calibration process.

The second phase consists in substituting the calibration marker board for the bone we

intend to scan. The DAVID structured-light scanner SLS-2 is able to produce a density of up

to 1.2 million points. The use of this scanning process provides a real reproduction of the bone

external topography (Fig 2B). In this case, the matt polished surface of the bones avoids prob-

lems related to light intensity, or the contrast of lights and shadows during data collection. The

active sensor reduces data capture time to less than 1 minute. The DAVID structured-light

scanner SLS-2 [35] used in this experiment produced a higher quality resolution than the scan-

ner used in [27]. This equipment was able to successfully reproduce most of the percussion

marks and tooth pits identified on our experimental samples. Inconspicuous marks whose

main morphological exterior and interior features could not be appreciated were excluded.

Geometric morphometrics analysis

For this analysis, pits and percussion marks were landmarked using 17 three-dimensional

points (Table 2) on the exterior and interior surfaces (Fig 3), following [31] methodology.

The landmarking step was performed in Avizo (Visualization Sciences Group, USA). A pre-

liminary reliability test was performed to evaluate data collection on percussion marks: two

different observers landmarked a preliminary set of the percussion sample (20 marks) demon-

strating that there is no significant difference between the data obtained (data in S2 Appendix).

The reliability of the landmarking process on tooth pits was already tested in [31].

Landmarks contain shape and size information in the form of Cartesian coordinates, allow-

ing the comparison among different elements that can be described in a homologous way [36–

39]. Landmark configurations are then analyzed by means of geometric morphometrics based

on a Procrustes superimposition, commonly known as generalized procrustes analysis (GPA).

This technique takes the landmark data and normalizes the form information by the applica-

tion of superimposition procedures. This involves the translation, rotation and scaling of

shapes defined by landmark configurations. After GPA, there are always some remaining dif-

ferences that expose patterns of variation and covariation between structures that after being

Fig 2. Scanning perform and results. A) Arrangement of the structured-light scanner equipment to perform a 3D scanning. B) 3D

scanning and results obtained from data collection.

https://doi.org/10.1371/journal.pone.0194324.g002
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projected into a flat Euclidian space where data can be studied using common multivariate sta-

tistics [40–42].

Principal component analyses (PCA) were used to assess patterns of variation among the

data in shape and form space to study shape and size differences. PCA is a statistical tool com-

monly used to reduce large sets of variables to fewer dimensions, simplifying in that way the

visualization of the data distribution maintaining the original distances between the speci-

mens. In the PCA plots the data are explained by linear combinations, known as principal

components (PCs) that successively account for decreasing proportions of the total sample

variance [37]. Form spaces containing size and shape information were obtained by re-scaling

data using the natural logarithm of Centroid Size. Centroid size is the measure most com-

monly used in geometric morphometric studies and is calculated as a composite of the dis-

tances between all landmark configurations and their average, the so-called centroid [43].

Changes in shape and form space were visualized with the aid of transformation grids and

warpings [44] computed using thin-plate splines in Morphologika 2.5 [45].

Several tests were performed to assess differences and similarities among the sample. The

presence of defined groups was statistically tested using a multiple variance analysis (MAN-

OVA) on the PC scores. The test was performed in the free software R [46] to assess differences

among the pits generated by different carnivores and the experimentally created percussion

marks.

More detailed shape and size analyses were performed to describe morphological changes,

since previous analyses on circular marks (e.g. pits) demonstrated that the inclusion of the

interior area of such marks causes different results than when only comparing the external

Table 2. List of landmarks used in the study and their description.

N Landmark Description

1 Length A Upper limit of the longitudinal axis

2 Length B Lower limit of the longitudinal axis

3 Width A Left limit of the breadth axis

4 Width B Right limit of the breadth axis

5 Depth Most centered lowest point of the mark

6 Left upper half A Point at the first third between the upper limit of the long axis and the left limit of the

breadth axis

7 Left upper half B Point at the second third between the upper limit of the long axis and the left limit of the

breadth axis

8 Left lower half A Point at the first third between the left limit of the breadth axis and the lower limit of the

long axis

9 Left lower half B Point at the second third between the left limit of the breadth axis and the lower limit of the

long axis

10 Right upper half

A

Point at the first third between the upper limit of the long axis and the right limit of the

breadth axis

11 Right upper half

B

Point at the second third between the upper limit of the long axis and the right limit of the

breadth axis

12 Right lower half

A

Point at the first third between the right limit of the breadth axis and the lower limit of the

long axis

13 Right lower half

B

Point at the second third between the right limit of the breadth axis and the lower limit of

the long axis

14 Interior Length

A

Upper inflection point on the longitudinal axis

15 Interior Length B Lower inflection point on the longitudinal axis

16 Interior Width A Left inflection point on the breadth axis

17 Interior Width B Right inflection point on the breadth axis

https://doi.org/10.1371/journal.pone.0194324.t002
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morphology of the mark, as it has been traditionally done [31]. Partial least square (PLS) analy-

ses permit the evaluation of two different sets of landmarks, without assuming that one block

is dependent on the other [47]. In this case, PLS analyses were conducted to assess the associa-

tion among the interior and exterior morphology of the marks. Within configuration PLS

analyses were conducted to fully address the covariation between the interior and exterior

morphology of the pits in the context of the structure, including changes related to the relative

sizes, positions and orientations of the data. Two-block PLS analyses were also performed to

evaluate shape and size separately [47]. PLS results obtained for the percussion marks were

compared with the PLS results obtained for carnivore pits in a previous work [31].

Canonical variate analyses (CVA) and linear discriminant analyses (LDA) were performed

to determine the shape features that best distinguish between carnivore pits and percussion

marks [48]. CVA and LDA provide differences among groups in Procrustes–the square root of

summed squared landmark distances from their centroid–and Mahalanobis distances–dis-

tance between points scaled by the within-group variance and correlation [49]. A priori

defined groups of carnivore pits and percussion marks were first tested, and a second sample

division was created by sub-dividing the carnivore sample into pits generated by lions, hyenas,

jaguars and wolves. LDA comparisons were performed in pairs and permutation tests were

computed to assess differences between group means.

First, the sample was analyzed including all the marks, and secondly excluding the tooth

pits generated by wolves. This carnivore was excluded in a second round because we wanted to

generate a sub-sample including only felids and hyaenids that could be applied to the African

continent. The generation of this sub-sample could be of utmost importance in deciphering

Fig 3. Landmark configurations. A) Percussion marks and B) Tooth pits.

https://doi.org/10.1371/journal.pone.0194324.g003
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the processes in which different carnivore agents were involved during the early stages of

human evolution.

Results

The PCAs of the carnivore pits and percussion marks in shape (Fig 4) and form space (Fig 5)

show an important overlapping degree. However, some patterns can be recognized according

to mark type.

In the shape space scatter-plot (Fig 4), the first PC appears to be mostly related to changes

in width and length of the overall shape on both PCA graphs. Percussion marks tend to follow

the trend described by PC1, with most percussion marks closer to more elongated shapes

along the positive x-axis. The second PC in shape space is related to the expansion of the inte-

rior area. Shape changes expressed by PC2 vary slightly when wolves are not plotted against

the graph, and differences in length and width play a greater role. In both PCAs changes along

PC2 mainly express shape variance among carnivore pits. These graphs were also observed

taking a closer look at the dispersion of individual species. When pits were plotted against the

graph using different colors for each carnivore, we noticed that hyena and jaguar pits tend to

vary similarly in both directions, while lions and wolves change much more starkly along PC2.

In PC1 as well as in PC2 changes in the depth of the pits are also relevant. PC3 (13.3%) was

also observed as the first two PCs do not explain half of the variance of the sample. The third

PC is characterized by changes in the exterior surface of the marks related to relative changes

of the upper and lower halves (constrained versus elongated lower half) and shape differences

in the interior area of the marks (very expanded interior areas versus elongated interior areas

Fig 4. PCA plots in shape space. A) including the whole carnivore pit and percussion sample, B) exluding wolves. Shape changes are visualized for PC1 and PC2

positive and negative axis ends.

https://doi.org/10.1371/journal.pone.0194324.g004
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located in the lower half of the mark). The most lengthened shape extreme described by PC3

(11.8%) is less pronounced when wolves are excluded, and the exterior and interior surfaces

assemble curved shapes.

Nevertheless, the shape changes expressed in the PCA plot (Fig 4A) only describe a small

part of the shape variance of the sample, since the first two PCs explain only 38.4% of the total

variance. On the contrary, the variance expressed in the scatter-plot in form space is mostly

explained by PC1 (87.6%/86.2%) alone, being PC2 (3.3%/3.1%) of far less significance. These

results might indicate that centroid size is an important factor affecting the variance of the

sample, which is not surprising when carnivore pits are included in the sample because carni-

vore groups could already be identified based on pits measurements (e.g. [50–52]).

In form space (Fig 5) the variables that appear to mostly explain the variance in shape

space, are comprised in the second PC. PC1 in form space is related to changes in the overall

form of the pits with rhomboidal and deeper marks at the positive limit of the x-axis and circu-

lar and flatter marks at the negative limit of the x-axis. Relative changes in size of the inner and

outer surface of the marks are also expressed by PC1 in form space. PC2 and PC3 in form

space are determined by the same variables that characterize PC1 and PC2 in shape space,

respectively. In form space, changes in depth are more prominent along PC2.

All marks in form space are mostly explained by PC1 (Fig 5). Carnivore pits and percussion

marks show similar scattering ranges along PC1. Only when plotting the form PCA results

using individual colors for each carnivore we acknowledge some differences regarding hyenas

and jaguars, whose pits are less dispersed along the x-axis and show more vertical variability.

Fig 5. PCA plots in form space. A) including the whole carnivore pit and percussion sample, B) exluding wolves. Form changes are visualized for PC1 and PC2 positive

and negative axis ends.

https://doi.org/10.1371/journal.pone.0194324.g005
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Unlike in the case of percussion marks, generally carnivore pits tend to gather in the negative

range of the y-axis, being related to more oval/circular forms.

Though the PCA graphs (Figs 4 and 5) provide a first impression of the sample distribution

according to its morphological variance, further tests have to be conducted in order to assess

the entirety of the variance expressed by the sample and obtain numerical results and signifi-

cance values. The MANOVAs performed on the PC scores to assess the differences among

group means show significant results in shape space when only tooth pits as a unique group is

compared with percussion marks (F = 6.345, p< 0.0001) and when the pits generated by the

individual carnivore species are compared with percussion marks (Table 3). The Pairwise

MANOVA indicate that the mean value of the percussion mark sample is significantly differ-

ent from the mean values for hyenas, jaguars, lions and wolves (Table 3). Shape differences

among carnivore groups are also significant except for the pair jaguar-wolf that, however,

approaches the significance level (Table 3).

When the data are scaled to centroid size and the MANOVA is performed on the PC scores

obtained in form space, percussion and tooth pits can be confidently separated (F = 7.429,

p<0.0001). Likewise, the independent carnivore pits can be significantly separated from the

percussion marks when form is considered (Table 3). Non-significant values can only be

observed between certain carnivore groups: lion-jaguar, hyena-jaguar.

Previous analyses [31] demonstrated that the inclusion of the interior area of carnivore pits

caused different results than when only comparing the external morphology of the mark. In

this work, differences in the interior area in relation to the exterior area of the pits were

assessed taking into account shape variance as well as changes related to the relative sizes, posi-

tions and orientations of the data. Here we expand this analysis, including several PLS tests on

percussion marks. The PLS results (Table 4) show the existence of an overall strong (r = 0.688)

Table 3. MANOVA Pairwise p values for mean group comparison in shape and form space.

PM Hyena Jaguar Lion Wolf

Shape Form Shape Form Shape Form Shape Form Shape Form

PM 0.04 0.009 0.008 0.01 <0.0001 <0.0001 <0.001 0.003

Hyena 0.04 0.009 0.047 0.23 0.002 0.02 0.02 0.003

Jaguar 0.008 0.01 0.047 0.23 0.036 0.23 0.09 0.04

Lion <0.0001 <0.0001 0.002 0.02 0.0036 0.23 0.003 0.002

Wolf <0.001 0.003 0.02 0.003 0.09 0.04 0.003 0.002

https://doi.org/10.1371/journal.pone.0194324.t003

Table 4. PLS results obtained for the comparisons of the internal and external features of the percussion marks (PM) and tooth marks (TM).

Comparison Sample RV coefficient p-value

Interior vs. exterior structure of PM� PM sample 0.688 <0.001

Interior vs. exterior shape of PM PM sample 0.734 <0.0001

Interior vs. exterior size of PM PM sample 0.897 <0.0001

Interior vs. exterior structure of TM� TM sample�� 0.435 <0.001

Interior vs. exterior shape of TM TM sample�� 0.324 <0.0001

Interior vs. exterior size of TM TM sample�� 0.921 <0.0001

Interior vs. exterior structure of TM� Lion 0.685 0.004

Interior vs. exterior structure of TM� Hyena 0.557 0.152

Interior vs. exterior structure of TM� Jaguar 0.701 0.024

Interior vs. exterior structure of TM� Wolf 0.642 0.024

�Tests assessing the structure of the pits include differences in shape, size and relative positions of the interior and exterior areas.

�� Pits sample used in [31], which included crocodile tooth marks.

https://doi.org/10.1371/journal.pone.0194324.t004
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and significant correlation (p< 0.001) between the structure of the inner and outer surface of

the percussion marks. Surprisingly, PLS results on only the shape or the size variable of the

inner and outer areas, show higher correlation rates than the within-configuration PLS that

addresses not only these two factors, but also the relative position/orientation of the outer and

inner structures. The covariation between the inner and the outer areas seem to be slightly

more strongly determined by the size (r = 0.897, p< 0.0001) than by the shape (r = 0.734,

p< 0.0001). Thus, the relative position of the interior and exterior areas might not be as asso-

ciated as size and shape characteristics among percussion marks.

The correlation of the interior and exterior areas of the percussion marks is similar to those

calculated for pits generated by lions, jaguars and wolves, with overall strong and significant

correlations between the mark structures (Table 4). Contrary to what happened when explor-

ing the whole carnivore pit sample that shape appeared as a more varying factor with a weak

correlation value, among percussion marks the outer and inner shape is clearly correlated,

varying in association. Such differences highlight greater inner and outer shape variability

among pits, than among percussion marks and might indicate the presence of a morphological

pattern among percussion marks when observing the inner and outer morphologies and their

relationship.

The CVA conducted for the percussion marks and the entire carnivore sample divided by

carnivore species support these results. The CVA is explained by four canonical variates (CVs)

that account for the variation among the five groups a priori established. Between-group varia-

tion is scaled by the inverse of the within-group variation. The CVA graph (Fig 6A) shows the

dispersion of the pits per carnivore and the percussion marks according to the first two CVs

that explain 73.2% of the differences. The plot can be divided in two halves: one is occupied by

the percussion marks group, and along the other half carnivore pits are represented with hye-

nas and wolves forming two more or less independent groups, and jaguars and lions clearly

overlapping in the lowest right corner of the graph. Despite some graphical overlapping, all the

Fig 6. CVA scatter-plots. A) including the whole carnivore pit and percussion sample, B) exluding wolves.

https://doi.org/10.1371/journal.pone.0194324.g006
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Mahalanobis distances calculated highlight the existence of significant differences among all

pairs of groups, while the Procrustes distances calculated between jaguars-hyenas and jaguars-

wolves are not significant, though very close to the 5% limit of significance (Table 5).

Except for the comparison jaguar-wolf, all the Mahalanobis and Procrustes distances calcu-

lated for all the pairs of groups stress the existence of significant differences between groups

(Table 5). In fact, the pair jaguar-wolf shows significant p values for the Mahalanobis distance,

falling only slightly over the 5% limit in the calculation of the Procrustes distance (p = 0.08).

Differences in Mahalanobis and Procrustes distances among groups can indicate anisotropy of

the variation within groups [49]. When wolves are excluded from the analysis, all groups can

be clearly separated, especially percussion marks from the rest of the carnivore pits (Fig 6B).

The distances calculated between the percussion marks and any other pit groups are always

the largest and show the lowest p values, highlighting the statistical significance of the group

separation.

A pair comparison between percussion marks and the whole sample of pits used in this

study was performed using a jackknife cross-validated LDA and extracting a confusion matrix

explaining the misclassification rates between groups. The LDA was performed to assess mini-

mal variance within mark groups and maximal variance between percussion marks and pits.

The confusion matrix indicates low confusion rates, with always more than 70% of the marks

correctly classified. 71.8% (N = 28) of the percussion marks are correctly classified, while 78.7%

(N = 70) of the tooth marks are attributed to the right group. The higher success rates obtained

for the pits could indicate that results might improve as sample size increases, since the number

of total pits (89) is quite larger than the number of percussion marks used in this study (39).

Discussion and conclusions

The experimental analysis conducted here to differentiate percussion marks from tooth pits

has provided promising results. Both types of marks could successfully be distinguished using

three-dimensional reconstruction techniques and multivariate statistical analyses based on the

geometric morphometrics principle.

To date, some authors [7–9, 13] had identified a list of morphological features that allow

the differentiation of percussion marks and pits by means of macroscopic analyses. However,

these authors admit that sometimes tooth pits and percussion marks could not be clearly

Table 5. CVA p values from permutation tests obtained for Mahalanobis and Procrustes distances.

Hyena Jaguar Lion Wolf

A� B�� A� B�� A� B�� A�

Mahalanobis Hyena <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Procrustes 0.05 0.05 0.003 0.002 0.02

Mahalanobis Jaguar <0.0001 <0.0001 <0.001 <0.001 <0.0001

Procrustes 0.05 0.05 0.03 0.04 0.08

Mahalanobis Lion <0.0001 <0.0001 <0.001 <0.001 <0.0001

Procrustes 0.003 0.002 0.03 0.04 0.003

Mahalanobis Wolf <0.0001 <0.0001 <0.0001

Procrustes 0.02 0.08 0.003

Mahalanobis PM <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Procrustes 0.03 0.03 0.008 0.007 <0.0001 <0.0001 0.0008

�A: analysis using the whole sample, including pits and percussion marks.

��B: analysis excluding wolf pits.

https://doi.org/10.1371/journal.pone.0194324.t005
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distinguished, especially when percussion marks were produced with unmodified hammer-

stones. Unmodified hammerstones, regardless of the raw material, have smooth edges that

may not leave microstriations in the interior or generate flat bottoms, being easily mistaken

with tooth pits [13]. In fact, several experimental studies have demonstrated that percussion

marks produced with modified hammersones can be clearly distinguished from pits, whereas

30% of the percussion marks generated using unmodified hammerstones cannot be separated

from tooth pits [21, 22].

Although 70% of percussion marks produced with unmodified hammerstones can be cor-

rectly classified, still a high frequency of marks is subject to equifinality. Such morphological

overlapping can lead to confusion in the interpretation of archaeological sites, especially in

those sites where anthropogenic modification is minor or when percussion marks are incon-

spicuous and subject to debate [53–57]. It is therefore important to rely on techniques that

provide the most accurate identification of marks.

Cut and percussion marks are the most common anthropogenic modifications that can be

identified among fossil assemblages. The correct identification of these marks and their fre-

quency in the fossil record are key for a precise archaeological interpretation regarding the ori-

gins of human behavior. An inaccurate identification of percussion and cut marks can lead to

the false conclusion that humans were modifying agents in contexts where there is no such

activity. Similarly, the inability to identify cut and percussion marks could depict humans as

scavengers where there is actually an early anthropogenic access to meat resources [17]. This is

especially important in very old contexts where the access to meat resources is subject to

debate. Some works [53, 54, 58] have presented 3 Ma old fossil bones bearing cut and percus-

sion marks, generating a wide discussion [55–57]. This debate is of utmost relevance because

the presence of such marks in these chronologies suggests the existence of very old lithic indus-

tries and thus the possibility of australopiths manufacturing tools and processing carcasses. To

date the oldest stone tools discovered date 2.6 Ma [59], except for the stone tools identified in

Lomekwi 3, West Turkana and dated >3 Ma [60, 61]. Nevertheless, the Lomekwi lithic indus-

try has been called into question from a geological perspective [61].

Classically, cut marks can only be mistaken for trampling marks or tooth scores produced

by carnivores. However, many studies have demonstrated that it is possible to distinguish

trampling and cut marks based on their morphological characteristics [62–66], the same way

scores and cut marks can be identified paying attention to certain features [3, 5, 13]. Similarly,

percussion marks and tooth pits show some differences that allow their distinction [7–9, 13,

21], though confusion rates between percussion marks and pits are still important.

The experimental study presented here offers a preliminary solution to this equifinality

problem by means of three-dimensional virtual reconstruction of percussion marks and tooth

pits, followed by a geometric morphometric analysis. Using this methodology, we could differ-

entiate both types of marks. Although it is true that some marks still show some overlapping

(Figs 4 and 5), the global confusion rate is very small, since only inconspicuous percussion

marks (produced with unmodified hammerstones and not associated with microstriations)

were included in the study. That means that around 70–80% of the percussion marks open to

discussion (30% of the global as suggested by [21] and [22]), could be correctly identified

according to the results we obtained by means of CVA and LDA where differences among

mark groups were significant (p values< 0.05). Altogether, our results reduce the total per-

centage of misinterpreted percussion marks to 5%.

In addition, our analysis does not only isolate percussion marks from tooth pits, but is also

capable of identifying the carnivore involved—hyenas, jaguars, lions and wolves (Fig 6) based

on the pits they generate. Thus, our methodology could be applied to different Plio-Pleistocene

contexts in Africa, Europe or America. A previous study [31] has already demonstrated the
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applicability of three-dimensional morphological analyses to carnivore experimental samples

and the archeological or paleoanthropological record. The study [31] was able to distinguish

between crocodiles, lions, jaguars, wolves and hyenas based on their pit morphology and dis-

cussed the ascription of several carnivore pits found on two Olduvai hominins (OH8 and

OH35). In the present study, we increased our sample, obtaining more reliable results. How-

ever, it is necessary to add more carnivore samples, since certain pits resemble percussion

marks more than others. Therefore, it would be interesting to assess similarities among a

wider range of tooth pits and compare them also with percussion marks produced with

unmodified hammerstones.

Some studies have suggested that virtual reconstruction and geometric morphometric taph-

onomic analyses are only accurate enough when SEM or other microscopy technology is used

[66], but a recent study [29] has shown that micro-photogrammetric techniques offer similar

results to those obtained using microscopes. The development of new methodologies applied

to the study of taphonomic processes, initiated by [67–69], and continued by [27–29] with

applications to the study of cut marks, and tooth marks [31, 32, 70] opens a range of possibili-

ties in the analysis of bone surface modifications, providing precise evidence for the identifica-

tion of marks. Although our results are still preliminary, our study demonstrates the great

potential of the technique when applied to taphonomy.

The further application of these techniques and their future development will certainly

improve our diagnostic capability, reducing subjectivity in the archaeological research. In that

way, it would be possible to end debate on certain taphonomic processes [53, 54, 58] vs. [56,

61] whose misinterpretation can cause severe damage to the understanding of the early human

behavior. Examples of such consequences are widely known: Piltdown hoax or the condemna-

tion of Sanz de Santuola and the Altamira paintings to ostracism.
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Courtenay.
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de los planos de fracturación como discriminador de agentes bióticos. Trabajos de Prehistoria. 2006;
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