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Abstract

Background

Many mathematical models have investigated the population-level impact of expanding anti-

retroviral therapy (ART), using different assumptions about HIV disease progression on

ART and among ART dropouts. We evaluated the influence of these assumptions on model

projections of the number of infections and deaths prevented by expanded ART.

Methods

A new dynamic model of HIV transmission among men who have sex with men (MSM) was

developed, which incorporated each of four alternative assumptions about disease progres-

sion used in previous models: (A) ART slows disease progression; (B) ART halts disease

progression; (C) ART reverses disease progression by increasing CD4 count; (D) ART

reverses disease progression, but disease progresses rapidly once treatment is stopped.

The model was independently calibrated to HIV prevalence and ART coverage data from

the United States under each progression assumption in turn. New HIV infections and HIV-

related deaths averted over 10 years were compared for fixed ART coverage increases.

Results

Little absolute difference (<7 percentage points (pp)) in HIV infections averted over 10 years

was seen between progression assumptions for the same increases in ART coverage

(varied between 33% and 90%) if ART dropouts reinitiated ART at the same rate as ART-

naïve MSM. Larger differences in the predicted fraction of HIV-related deaths averted were

observed (up to 15pp). However, if ART dropouts could only reinitiate ART at CD4<200

cells/μl, assumption C predicted substantially larger fractions of HIV infections and deaths

averted than other assumptions (up to 20pp and 37pp larger, respectively).
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Conclusion

Different disease progression assumptions on and post-ART interruption did not affect the

fraction of HIV infections averted with expanded ART, unless ART dropouts only re-initiated

ART at low CD4 counts. Different disease progression assumptions had a larger influence

on the fraction of HIV-related deaths averted with expanded ART.

Introduction

Antiretroviral therapy (ART) has been shown to drastically decrease mortality in HIV-infected

individuals, increasing life expectancy to levels approaching that of the general population[1],

and to effectively reduce the risk of HIV transmission by decreasing viral replication and thus

viral load[2]. A landmark randomized controlled trial demonstrated that early ART (adminis-

tered immediately) could reduce transmission risk by 93% in serodiscordant heterosexual cou-

ples compared with delayed ART (administered following CD4 count declines or symptom

onset)[3]. In 2016, the ongoing observational PARTNER study reported no phylogenetically

linked transmissions among an estimated 22,000 occasions of condomless sex in serodiscor-

dant partnerships between men who have sex with men (MSM) when the HIV-infected part-

ner was taking ART and virally suppressed [4]. Due to the effectiveness of ART in limiting

HIV transmission within couples, there has been interest in whether the scale-up of ART use

could reduce population-level HIV incidence[5]. One South African study showed that an

individual’s risk of acquiring HIV was lower if they lived in an area with higher ART coverage

[6]. Community-randomized controlled trials aiming to estimate the population-level impact

of early treatment are ongoing; one trial found no impact of early treatment on HIV incidence

in rural South Africa, primarily due to low linkage of diagnosed HIV-infected people to HIV

care which led to modest increases in ART coverage[7], while two other trials which have not

yet been completed have reported promising increases in ART coverage in the intervention

arm.

Mathematical modelling is a valuable tool for planning and evaluating public health inter-

ventions[8], and is particularly useful for population-level evaluations[9]. Mathematical mod-

els consistently suggest substantially reduced HIV incidence due to expanding ART access but

differ in the magnitude of the impact they predict[10].

While there are many similarities between published models, they have made different

assumptions about disease progression for individuals on ART and those who have dropped

out of ART[5, 11–15], and the impact of this type of structural assumption is rarely investi-

gated in modelling studies. In this paper, we investigate each of the different sets of assump-

tions we are aware of that have been previously used in models investigating the impact of

ART expansion.

HIV disease progression among infected individuals is commonly monitored by measuring

CD4 counts. Typically, CD4 counts decline rapidly over the first few months of initial HIV

infection[16], and subsequently decline at a steady but slower rate in the absence of ART[17].

Adequate ART use results in reduced viral load and increasing CD4 counts [18, 19]. Following

ART interruption, a rapid decline in CD4 count is seen in the first few months, followed by

slower decline [20, 21]. Following ART re-initiation, CD4 counts increase again, following a

pattern similar to that seen in those initiating ART for the first time[20, 22].

In some models, the improved survivorship of individuals on ART is represented by a

slower CD4 decline compared to ART-naives[5, 12]. In other models the disease progression
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of individuals on ART is determined by their CD4 count at the time of ART initiation[11, 13,

14], not explicilty representing changes in CD4 count while on ART. Some models explicitly

represent the increasing CD4 counts of individuals on ART[15] while others also include an

accelerated rate of CD4 decline in individuals who have dropped out of ART compared with

those never on ART[13]. These assumptions will affect survival of those on ART and those

who have dropped out of ART, and the duration for which dropouts are infectious. The extent

to which these assumptions may influence the impact of expanded treatment on mortality and

new HIV infections has not been systematically assessed, despite their potential influence on

model predictions and public health decisions. These previous models have typically been cali-

brated to HIV prevalence and ART coverage, and used to estimate the impact of expanded

ART on new HIV infections [5, 11–15], and, less frequently, on mortality[5, 15].Empirical esti-

mates of rates of ART re-initiation among ART dropouts are very scarce since they are often

not engaged in HIV care. It has previously been shown that the rate of ART re-initiation used

in models may influence model predictions of intervention impact[23].

In this study, we simulated HIV transmission among MSM in the United States to explore

how different modeling assumptions about HIV progression on and post-ART interruption

used in published models influence predictions of the population-level impact of expanding

ART. MSM make up approximately 2% of the US population[24], but accounted for 63% of

new HIV infections in 2010[25]. Only 33% of HIV-infected MSM were estimated to be on

ART in 2010[26, 27]. We compared a model of HIV transmission and treatment integrating

each of four main progression assumptions in turn, and independently fitted to HIV preva-

lence and ART coverage among MSM in the US, and investigated the predicted impact of an

intervention achieving fixed increases in ART coverage above baseline over a period of 10

years. We conducted sensitivity analysis to assess whether differences in predicted impact

between different progression assumptions depend upon other factors, including ART re-initi-

ation rates.

Methods

Model

We developed a new deterministic compartmental model of HIV transmission and treatment

amongst US MSM, which integrated each of the four disease progression assumptions outlined

in the introduction in turn, to enable us to compare results using these different assumptions

[5, 11–15].

Shared elements between progression assumptions. The model has the same compart-

mental structure for all four progression assumptions, dividing men by infection and ART sta-

tus. All new individuals entering the model join the susceptible compartment (S) at a constant

rate μ•N0 (N0 is initial total population size). Individuals leave all model compartments at a

per-capita rate μ, representing non-HIV-related death or cessation of sexual activity.

The per-capita force of HIV infection λ(t) takes into account the number, HIV status, stage,

and ART status of sexual partners.

Following infection, individuals progress through the acute stage (Ac), and four chronic

HIV stages (I1-4), segregated by CD4 count (Fig 1X), at per-capita rates γ, σ1, σ2, and σ3. For

ART-naive individuals, the HIV-related death rate (αIi) increases with declining CD4 count.

Infectiousness is increased in the acute stage (by a factor RRAc) and lower CD4 count catego-

ries (by a factor RRIi) compared to individuals with CD4�350 cells/μl.

ART-naive individuals in any chronic stage may initiate ART at a per-capita rate ε which is

constant across stages in the main analysis.

HIV model progression assumptions and impact of treatment expansion
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On ART, infectiousness is reduced to the same level across all CD4 compartments, with

efficacy ω compared to ART-naïve individuals with CD4�350 cells/μl, while HIV-related mor-

tality is reduced with efficacy η relative to their corresponding ART-naive compartments.

Patients on ART drop out or fail treatment at a per-capita rate θ, independent of CD4 count,

moving to the appropriate dropout compartment (D1-4).

In the main analysis, ART dropouts reinitiate ART at the same rate (ε) as ART-naive indi-

viduals (as not much is known about ART-re-initiation behaviours) and progress through the

Fig 1. Model diagrams. X) General model structure showing only what is consistent across all progression

assumptions, A, B, C, and D. The following model diagrams show only the ART compartments (Ai) and ART dropout

compartments (Di) and do not show mortality. Key differences are highlighted in red. A) Progression assumption A:

ART reduces disease progression rate (σi) by a factor τ while ART dropouts progress at the same rate as ART-naive

individuals (δ = 1). B) Progression assumption B: There is no movement between ART compartments; prognosis

depends on CD4 at ART initiation. C) Progression assumption C: ART patients progress to higher CD4 categories over

time at a per-capita rate ψi and the rest is as in progression assumption A. D) Progression assumption D: As in

assumption B, there is no movement between ART compartments. However, upon dropping out of ART, individuals

move to a higher CD4 category (reflecting improvement in CD4 count on ART) but then progress at an increased rate

compared to ART-naive individuals (δ>1; reflecting the rapid CD4 decline which occurs after dropping out of ART).

https://doi.org/10.1371/journal.pone.0194220.g001
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CD4 compartments at the rate of ART-naive individuals multiplied by a factor δ (which differs

between progression assumptions).

Below we describe the differences between the disease progression assumptions.

Assumption A: Slower disease progression on ART. Progression assumption A (Fig 1A)

is based on models developed by Granich et al.[5] and Cori et al.[12]. Disease progression on

ART is slowed by a factor τ compared to ART-naive individuals. Those dropping out of ART

have the same or lower CD4 count than when they initiated ART. ART dropouts progress

through the CD4 compartments at the same rate as ART-naive people (δ = 1).

Assumption B: No disease progression on ART. Progression assumption B (Fig 1B) is

based on the Bezemer et al.[11] and Mishra et al.[14] models. There is no movement between

ART compartments, so individuals dropping out of ART have the same CD4 count as when

ART was initiated. ART dropouts progress through the CD4 compartments at the same rate as

ART-naive people (δ = 1).

Assumption C: Increasing CD4 count on ART. Based on the “Optima” model[15], the

increasing CD4 count of individuals on ART is explicitly modelled. ART patients move from

CD4<200 cells/μl to CD4 200–350 cells/μl, to CD4 350–500 cells/μl, to CD4�500 cells/μl at

per-capita rates ψ3, ψ2, and ψ1, respectively (Fig 1C). Those dropping out of ART have the

same or higher CD4 count than when they initiated therapy. ART dropouts progress through

the CD4 compartments at the same rate as ART-naive people (δ = 1).

Assumption D: Increasing CD4 count/more rapid disease progression post-ART inter-

ruption. Progression assumption D is based on a model by Eaton and Hallett[13]. There is

no movement between ART compartments. Upon dropping out of ART, individuals move to

a higher CD4 count compartment (Fig 1D), but thereafter progress at an increased rate com-

pared with ART-naive individuals (δ>1).

The model was expressed as a system of ordinary differential equations (see S1 Appendix)

which were solved numerically in Berkeley Madonna version 8.3.18 using a 4th order Runge-

Kutta method with fixed step-size of 0.02 years.

Parameterization & fitting data

Biological parameters, including disease progression rates, relative infectivity by infection

stage, and reduction in mortality and infectiousness on ART, were drawn from published

cohort studies[17, 28–32]. Numbers of sexual partners per year and condom use came from

recent studies of US MSM[33, 34]. In the main analysis, ART dropout was set to 10% per year,

in line with previous models[12, 13] and US data [35, 36].

In the main analysis, the relative rate of disease progression on ART in assumption A (τ)

equals (1—η) as progression was tied to HIV mortality in the original models[5, 12]. For pro-

gression assumption C, the rates at which ART patients progress to higher CD4 compartments

were estimated from a US cohort[18]. For progression assumption D, the proportions of those

dropping out of ART moving to each CD4 category, and the relative rate of disease progression

for ART dropouts vs. ART-naïve, were based on the original model[13].

HIV prevalence and ART coverage data were obtained for US MSM [26, 27].

See Tables 1 and 2 for further information on model parameters.

Model fitting

For each progression assumption, the model was run to equilibrium and independently fitted

to the same HIV prevalence and ART coverage data (Table 3) (i.e. pre-intervention) by varying

the ART uptake rate (ε) and per-partnership transmission probability (ρ) and minimizing the

sum of the squared residuals using the Berkeley Madonna “Curve Fit” function. The model
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Table 1. General parameter symbols, definitions, baseline values, sensitivity analysis ranges, and sources.

General parameters—identical for progressions assumptions A, B, C, and D

Symbol Definition Main parameter

estimate

Range used in sensitivity

analysis

Source

γ Rate of progression from the acute infection stage to chronic infection with

CD4� 500 (year-1)

4.80 [32]

σ1 Rate of progression for ART-naive individuals from CD4� 500 to

350� CD4 < 500 (year-1)

1.35 [17]

σ2 Rate of progression for ART-naive individuals from 350� CD4 < 500 to

200� CD4 < 350 (year-1)

0.33 [17]

σ3 Rate of progression for ART-naive individuals from 200� CD4 < 350 to

CD4 < 200 (year-1)

0.27 [17]

c Mean number of partners per year 2.3 [33]

κ Proportion of partnerships in which condoms are used 45.9% [34]

ν Efficacy of condoms in reducing transmissibility in a partnership 78% [31, 37, 38]

ω Efficacy of ART in reducing HIV transmissibility 92% 50–100% [28]

θ ART dropout rate (year-1) 0.10 0.05–0.20 [12, 13, 35, 36]

μ Inverse of the sexual life expectancy (year-1) 1/ 50 = 0.02 [39]

η Efficacy of ART in reducing HIV-attributable mortality 90% [30]

αAc Additional mortality attributable to HIV infection during acute infection (year-1) 0.00 Assumed

negligible

αI1 Additional mortality attributable to HIV infection in ART-naive individuals with

CD4� 500 (year-1)

0.007 [29]

αI2 Additional mortality attributable to HIV infection in ART-naive individuals with

350� CD4 < 500 (year-1)

0.006 [29]

αI3 Additional mortality attributable to HIV infection in ART-naive individuals with

200� CD4 < 350 (year-1)

0.007 [29]

αI4 Additional mortality attributable to HIV infection in ART-naive individuals with

CD4 < 200 (year-1)

0.262 [29]

RRAc Relative infectivity of individuals in the acute phase of infection vs. chronic ART-

naive CD4� 350

11.7 [32]

RRI3 Relative infectivity of infected ART-naive individuals with 200� CD4 < 350 vs.

CD4� 350

1.6 [28]

RRI4 Relative infectivity of infected ART-naive individuals with CD4 < 200 vs.

CD4� 350

5.0 [28]

https://doi.org/10.1371/journal.pone.0194220.t001

Table 2. Assumption-specific parameter symbols, definitions, baseline values, and sources.

Assumption-specific parameters and variables

Symbol Definition Estimate for each assumption Source

A B C D

ε ART initiation rate for ART-naives and for dropouts (year-1) 0.0651 0.0641 0.0614 0.0641 Fitted

ρ Transmission probability per partnership with chronically infected ART-naive individuals

with CD4� 350

0.0361 0.0356 0.0343 0.0359 Fitted (range: 0.012–0.145

[40])

τ Relative disease progression rate for individuals on ART compared to ART-naive 0.1 0 0 0 [5, 12, 30]

ψ1 Rate of progression for individuals on ART from 350� CD4 < 500 to CD4� 500 (year-1) 0 0 0.550 0 [18]

ψ2 Rate of progression for individuals on ART from 200� CD4 < 350 to 350� CD4 < 500

(year-1)

0 0 0.408 0 [18]

ψ3 Rate of progression for individuals on ART from CD4 < 200 to 200� CD4 < 350 (year-1) 0 0 0.479 0 [18]

p Proportion of individuals dropping out from A4 that move to D2 0 0 0 0.5 [13]

δ Relative disease progression rate for ART dropouts compared to ART-naive individuals 1.0 1.0 1.0 2.0 [5, 12, 13]

https://doi.org/10.1371/journal.pone.0194220.t002
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was not fitted to AIDS mortality data, as no data corresponding to the modelled population

could be found; note that previous models were not fitted to mortality data.

Plan of analysis

Analyses without intervention. We calculated survival times (by ART status), HIV

incidence and population distribution by CD4 count and ART status for each progression

assumption at equilibrium (pre-intervention).

Main analysis: ART intervention scenarios. Using the main parameter values for each

progression assumption, we increased ART coverage from its baseline equilibrium value

(33%) either by increasing ART uptake (ε) or decreasing ART dropout (θ). These parameters

were varied to produce final ART coverage values 10 years after the intervention started

between 33% and 90%. Intervention impact was measured as percentage of new infections and

HIV-related deaths averted over the first 10 years, compared to the baseline scenario where

ART coverage remains at 33% over 10 years (keeping the ART uptake and dropout rates fixed

at pre-intervention levels).

Sensitivity analysis. We tested the predicted intervention impact with each progression

assumption in various scenarios (Fig 2), including a version of progression assumption A with

HIV-attributable mortality and disease progression rate on ART reduced by 50% (in line with

the original models[12]) rather than 90%, and a version of progression assumption D with the

same (rather than doubled) progression rate in ART dropouts as ART-naive individuals.

For all progression assumptions, we looked at a scenario where individuals with CD4<200

cells/μl (ART naïve and ART dropouts) initiate treatment at double the rate of higher CD4 cat-

egories, and a scenario in which ART dropouts only reinitiate ART with CD4<200 cells/μl.

We investigated the influence of varying the efficacy of ART in reducing HIV transmissibil-

ity (ω), baseline ART dropout rate (θ), baseline HIV prevalence, and baseline ART coverage.

For all these analyses, the model was re-fitted to HIV prevalence and ART coverage at equilib-

rium by varying the transmission probability and ART uptake rate. Finally, we investigated the

impact of fitting the model by varying the baseline ART dropout rate rather than the uptake

rate, and the impact of using identical starting conditions in each progression assumption

(rather than fitted values for transmission probability and ART uptake).

Results

Analyses without intervention

At equilibrium, survival of ART-naive individuals was the same for all progression assump-

tions (mean 9.6 years). Survival on ART was longest for progression assumption C (47.7 years)

and shortest for progression assumption A (32.1 years). Survival of ART dropouts was longest

for progression assumption C (8.8 years) and similar across the other 3 assumptions (6.4–6.8

years) (see S1 Table and S1 Fig). HIV prevalence was 18.0% for all models at equilibrium, in

agreement with the data used for fitting[27]. HIV incidence at equilibrium was lower for

assumption C (1.49/100 person-years) than for the other assumptions (1.65–1.69/100 person-

years), differing by up to 13% between assumptions, but for all assumptions the estimated HIV

Table 3. Model fitting data: Baseline values, sensitivity analysis ranges, and sources.

Data for model calibration for all progression assumptions

Variable Estimate Sensitivity analysis Source

Equilibrium ART coverage 33% 10–50% [26, 27]

Equilibrium HIV prevalence 18% 10–40% [27]

https://doi.org/10.1371/journal.pone.0194220.t003
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Fig 2. Summary of results. Each model reaches the specified ART coverage target (in brackets) 10 years after the intervention, which is achieved by

either increasing the ART uptake rate (ε) or decreasing the ART dropout rate (θ). Maximum absolute differences are the differences between the

minimum and maximum estimates across progression assumptions; these are only calculated when estimates are available for all 4 progression

assumptions. Blue bars indicate that the absolute difference between progression assumptions in the fraction averted is greater than 10 percentage

points. NR: the target ART coverage could not be reached for this progression assumption and the specified intervention.

https://doi.org/10.1371/journal.pone.0194220.g002
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incidence fell within the 95% CI of a national estimate of HIV incidence among MSM in

2010–2011 (1.87 per 100 person-years, 95% CI 1.04–3.38 per 100 person-years[41]). HIV-

related mortality among HIV-infected MSM at equilibrium was also lower for assumption C

(4.79/100 person-years) than for other assumptions (5.49–5.67 per 100 person-years), differing

by up to 18% between assumptions. Similarly, HIV-related mortality among those on ART

was lowest for assumption C (0.20/100 person-years) varying between 0.71–0.89/100 person-

years for assumptions A, B and D, which is broadly consistent with AIDS-related mortality

rates from a combined analysis of European and North American ART cohorts of around 0.6/

100 person-years[42].

For assumption C, a greater proportion of the HIV-infected population had CD4>500

cells/μl than for other progression assumptions (31% vs. 8–10%). There was also a greater pro-

portion of ART dropouts in assumption C than in assumptions A, B, and D (21% vs. 15–16%)

(see S2 Fig).

Main analysis: ART intervention scenarios

From an initial ART coverage of 33%, with 10% ART dropout per year, the maximum target

ART coverage of 90% could always be reached within 10 years by increasing the ART uptake

rate alone, to a rate of 1 year-1 for each progression assumption. However, it was not possible

to reach the 90% target by decreasing the ART dropout rate alone. Reducing ART dropout

from 10% year-1 to 0% increased ART coverage to a maximum of 56–57% within 10 years,

across all progression assumptions.

Despite differences in model structure and parameter values, each assumption produced

similar trends in ART coverage over time and concomitant reductions in HIV prevalence,

with less than 1 percentage point (pp) difference in predicted HIV prevalence between assump-

tions for any given increase in ART coverage (see S3 Fig). Similar changes in the distribution

of individuals in each ART stage were seen across assumptions as ART coverage increased (see

S4 Fig).

The predicted fraction of infections averted differed by at most 5pp between progression

assumptions, for ART coverage up to 90%, whether ART coverage was increased by increasing

ART uptake rates or decreasing ART dropout rates (Fig 3A). For the same level of final ART

coverage, decreasing ART dropout rates produced a lower estimate of ART impact and created

larger differences between assumptions compared to increasing ART uptake rates.

Different progression assumptions had a larger influence on the predicted fraction of HIV-

deaths averted than on the fraction of infections averted, with up to 14.2pp difference between

assumptions when 90% ART coverage was achieved (Fig 3B).

Sensitivity analysis

Allowing ART dropouts to reinitiate treatment only at CD4<200 cells/μl led to substantial dif-

ferences between assumptions (Fig 4). If ART coverage was increased through higher ART

uptake rates, assumption C predicted a much greater fraction of infections and HIV-related

deaths averted than the other assumptions for the same ART coverage (e.g. 10pp difference in

infections averted with 55% ART coverage). Smaller variations in the fractions of infections

and HIV-deaths averted were predicted for this scenario when ART coverage was increased

by reducing ART dropout. Allowing ART dropouts to reinitiate treatment only at CD4<200

cells/μl affected the distribution of HIV-infected persons within the model compared to the

main analysis: for assumption C, individuals stopping treatment were sequestered to the

higher CD4 count ART dropout compartments as ART uptake was increased (see S5 Fig).

HIV model progression assumptions and impact of treatment expansion
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If 50% reduction of the HIV-attributable mortality and disease progression rates was

assumed on ART in assumption A, the final HIV prevalence was lower for A compared to

B-D (see S6 Fig), and the mean survival time of individuals who (re-)initiate ART for life

decreased from 32.1 years to 12.1 years, while the mean survival time of ART dropouts

who never reinitiate treatment decreased by 0.4 years (6% decrease). This version of

assumption A predicted fewer HIV-related deaths would be averted than for other assump-

tions with differences between assumptions reaching 48pp if ART coverage was increased

by higher ART uptake rates, but did not give substantial differences in predicted infections

averted (Fig 4).

Differences between the progression assumptions remained similar in magnitude to those

seen in our main analysis (up to 7pp for infections and up to 20pp for deaths averted) in the

following alternative scenarios: when ART initiation rate was doubled for CD4<200 cells/μl;

for different levels of ART efficacy (50–100%), baseline ART dropout rates (5–20% per year),

baseline HIV prevalence (10–40%), and baseline ART coverage (10–50%); when CD4 decline

for ART dropouts and ART naive MSM in assumption D were equal; when identical starting

Fig 3. Projections from progression assumptions A-D. A) The fraction of HIV infections averted and B) The

fraction of HIV-related deaths averted over the 10 year period when increasing ART uptake rate (ε, solid lines) or

decreasing ART dropout rate (θ, dashed lines) to obtain final ART coverage shown.

https://doi.org/10.1371/journal.pone.0194220.g003
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conditions were used for each progression assumption; when the model was fit by varying the

ART dropout rate (instead of ART uptake rate).

Discussion

Our study shows that in many cases, after fitting to the same HIV prevalence, assumptions

about HIV disease progression during and post-ART interruption do not substantially influ-

ence the predicted impact of expanding ART coverage on HIV infections averted (up to 7 per-

centage point difference in the fraction of infections averted in most scenarios), except when

ART dropouts reinitiate ART only at low CD4 counts (representing re-initiation due to symp-

toms), where substantial differences were seen. We also found that these different assumptions

can substantially influence the estimated impact of expanded treatment on HIV-related deaths

(up to 20pp difference between assumptions for the fraction of HIV deaths averted in many

scenarios, 37pp difference if ART dropouts only reinitiate ART at low CD4 counts).

Fig 4. Sensitivity analysis—ART dropouts reinitiate ART only at CD4<200 cells/μl. A) The fraction of HIV infections averted

and B) The fraction of HIV-related deaths averted over the 10 year period when ART initiation rate is increased or ART dropout rate

is decreased to achieve a final ART coverage of 55% or 62%. HIV-attributable mortality and disease progression rates in assumption

A reduced by 50% on ART vs. off ART instead of 90%: C) The fraction of HIV infections averted and D) The fraction of HIV-related

deaths averted over the 10 year period when ART initiation rate is increased or ART dropout rate is decreased to achieve a final ART

coverage of 55% or 90%.

https://doi.org/10.1371/journal.pone.0194220.g004
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Our analyses suggest that models with slowed disease progression on ART (assumption

A, following Granich et al.[5]) could give substantially smaller estimates of the impact of

expanded ART on deaths if ART is only assumed to slow disease progression 2-fold, as has fre-

quently been assumed[5, 12]. A previous analysis of this model type found little effect of the

magnitude of this slowing on cumulative HIV incidence[12], in agreement with our findings,

but did not look at number of deaths.

We found that models with increasing CD4 counts on ART (assumption C, e.g.[15])

could give substantially higher estimates than other progression assumptions of the impact of

increased ART initiation rates on both infections and deaths averted if ART dropouts were

assumed to only re-initiate ART at low CD4 levels. Under this assumption, more ART drop-

outs had high CD4 counts, so to reach the same ART coverage as the other assumptions a

greater proportion of those with CD4<200 cells/μl must be treated. Since these individuals are

more infectious and at higher risk of HIV-related death, this increases the impact.

Models assuming that CD4 count upon ART dropout is similar to CD4 count at ART initia-

tion (assumption B, e.g.[14]) show similar results to models including both increasing CD4

counts on ART and more rapid CD4 decline following ART dropout (assumption D, e.g.[13]).

This latter model comes closest to representing what is known about true CD4 dynamics on

and post-treatment[17, 18, 20, 21], although long-term post-ART interruption data are scarce.

In a model comparison study for South Africa, differences between models in the predicted

impact of increasing ART coverage on HIV incidence remained even when 100% treatment

retention was assumed[10], in apparent contradiction to our results. Two out of 12 models in

that analysis assumed lower rates of ART re-initiation among ART dropouts with high CD4

counts, but disease progression in those two models were similar to our assumptions B and D

(with no sequestration of ART dropouts into high CD4 compartments). In light of our analy-

sis, we would not expect differences in disease progression to account for the observed differ-

ences between these models; other differences between models in the South Africa study are

likely to be responsible for these variations, such as calibration to different data or differences

in model sexual mixing assumptions.

A number of recently published models, including several used to inform changes to the

World Health Organization HIV treatment guidelines[13, 14, 23, 43], assumed lower ART ini-

tiation rates at high CD4 counts for ART dropouts, so it is important to note the difference

that disease progression assumptions can make in this case. In this scenario, if we assume

that assumption D (CD4 increases on ART, more rapid CD4 decline post-ART interruption)

is the most realistic assumption, then models using assumption C (CD4 increases on ART

without rapid CD4 decline post-ART interruption), are expected to overestimate the impact of

expanded ART on both infections and deaths averted.

Differences in the predicted impact of expanded ART on deaths will have a large influence

on estimates of Disability-Adjusted Life Years (DALYs) gained, a metric frequently used for

cost-effectiveness analyses[43, 44]. Some of the differences we saw in impact on deaths may

occur because we did not fit our models to HIV deaths (in line with previous modelling stud-

ies), whereas predictions of the impact on infections may have varied less because we fitted our

models to HIV prevalence. However, this is unlikely to fully explain the large differences seen

in impact on mortality when ART dropouts only re-initiated ART with lower CD4.

Simplifications of the original models needed to fit into our framework have caused the

progression assumptions to differ slightly from their original published versions. Differences

such as the (lack of) modelling of the care cascade, or of multiple ART stages, and using the

same CD4-specific HIV-related mortality rates on ART in all progression assumptions may

mean that our assumptions do not fully capture the nuances of the models they are based on

[5, 11–15]. However, these differences are unlikely to substantially affect our conclusions, as
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more detailed representations of the care cascade or ART stages are unlikely to greatly affect

the distribution of CD4 levels among those on ART or dropping out of ART, and HIV-

related mortality rates at CD4 counts above 200 cells/μl are generally much smaller (by 2

orders of magnitude) than rates of movement between CD4 stages, and so again unlikely to

greatly affect CD4 distributions, which are the main driver of our results. Synergistic effects

between ART uptake and retention have been ignored here, as each was varied separately to

increase ART coverage; Eaton et al. noted that in several of the models they tested the impact

of increasing access to ART increases more rapidly with higher retention[10]. Our results

apply to the first 10 years of an expanded ART intervention, but longer-term variation was

not explored. We have not fully incorporated parameter uncertainty into our results, an

issue noted in previous model comparison studies[10], although we have investigated

the sensitivity of our results to selected key parameters, finding that they are robust to differ-

ent values for ART efficacy and for ART initiation and dropout rates. It was difficult to

completely separate differences in model structure from differences in parameterization in

this study. However, we fitted the models in ways commonly used in the literature, enabling

us to compare model results under the conditions in which they are often used. Our models

were not fitted to mortality data as we were unable to find suitable data to fit our models to,

which means that our estimates of the impact of expanded ART upon mortality may not be

accurate. However, our finding that these estimates may vary between different model pro-

gression assumptions and with different parameters is important, since previous models

estimating the impact of expanded ART provision upon mortality were also not fitted to

mortality data[5, 15]

Our study has a number of strengths: the first to employ a systematic approach to compare

the influence of HIV progression assumptions in modelling, this study allows the different

assumptions to be compared fairly so that differences in their predictions can be attributed to

differences in model structure rather than confounding due to unrelated factors such as differ-

ent parameter values or methods of modelling transmission. Our sensitivity analysis, which

showed that our results were consistent across different HIV prevalence and ART coverage

levels, suggests that these results are broadly applicable across different settings. This modelling

approach is useful for interpreting differences between models, and should be useful for com-

paring the influence of other model assumptions upon predictions.

Conclusions

Differences in key disease progression assumptions on and post-ART interruption made little

difference when evaluating the fraction of infections averted over 10 years of an expanded

ART program, except in the case where ART dropouts re-initiated ART only at low CD4

counts, which has frequently been assumed in previous modelling studies. Differences in pro-

jected impact on HIV-related deaths were more commonly observed between progression

assumptions and these differences would be likely to affect estimates of cost-effectiveness

which look at DALYs averted. However, these results could be to some extent due to us cali-

brating the model to HIV prevalence but not to AIDS deaths.

This study has identified the following data gaps: formal comparisons of rates of CD4

decline following ART dropout vs. prior to ART initiation, and data on CD4 counts at ART

re-initiation for ART dropouts. These data would improve the accuracy of modelling assump-

tions for ART dropouts.

Future studies seeking to understand the influence of model assumptions on the predicted

impact of HIV interventions should look at parameter uncertainty and the influence of which

aspects of the model are fitted to data, as well as structural uncertainty.
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when decreasing ART dropout rate to reach a target ART coverage of 55% after 10 years;

C) HIV prevalence over time when increasing ART uptake rate to reach a target ART cov-

erage of 90% after 10 years; D) HIV prevalence over time when decreasing ART dropout
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rized by ART status, against ART coverage for: A) Assumption A; B) Assumption B; C)

Assumption C; D) Assumption D, when increasing ART uptake rate (ε, solid lines) or

decreasing ART dropout rate (θ, dashed lines) to obtain the final ART coverage shown.
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(TIF)

S5 Fig. The constituents of the population of infected people in the sensitivity analysis

where ART dropouts reinitiate ART only at CD4<200 cells/μl, categorized by ART status,

against ART coverage for: A) Assumption A; B) Assumption B; C) Assumption C; D)

Assumption D, when increasing ART uptake rate (ε, solid lines) or decreasing ART drop-

out rate (θ, dashed lines) to obtain the final ART coverage shown. ART dropouts are fur-

ther subdivided based on CD4 count to represent those who are ineligible to reinitiate

ART (D1-3) and those who are eligible (D4).
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S6 Fig. HIV prevalence after 10 years against ART coverage after 10 years when increasing

ART uptake rate (ε, solid lines) or decreasing ART dropout rate (θ, dashed lines) to obtain

final ART coverage shown for: A) The main analysis; B) HIV-attributable mortality and dis-

ease progression rates in assumption A reduced by 50% on ART vs. off ART instead of 90%.
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