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Abstract

The existing protein complex detection methods can be broadly divided into two categories:

unsupervised and supervised learning methods. Most of the unsupervised learning methods

assume that protein complexes are in dense regions of protein-protein interaction (PPI) net-

works even though many true complexes are not dense subgraphs. Supervised learning

methods utilize the informative properties of known complexes; they often extract features

from existing complexes and then use the features to train a classification model. The

trained model is used to guide the search process for new complexes. However, insufficient

extracted features, noise in the PPI data and the incompleteness of complex data make the

classification model imprecise. Consequently, the classification model is not sufficient for

guiding the detection of complexes. Therefore, we propose a new robust score function that

combines the classification model with local structural information. Based on the score func-

tion, we provide a search method that works both forwards and backwards. The results from

experiments on six benchmark PPI datasets and three protein complex datasets show that

our approach can achieve better performance compared with the state-of-the-art super-

vised, semi-supervised and unsupervised methods for protein complex detection, occasion-

ally significantly outperforming such methods.

Introduction

A group of proteins that interact with one another for specific biological activities is called a

protein complex [1]. Predicting protein complexes is helpful for understanding the principles

of cellular tissue [2, 3], predicting protein functions [4], identifying disease genes [5] and dis-

covering drug-disease associations [6]. Modern experimental techniques have revealed a large

amount of protein interactions, thereby enabling protein complexes to be predicted from pro-

tein-protein interaction (PPI) networks.

In recent years, automatic computational approaches have increasingly been proposed for

detecting protein complexes from PPI networks [7]. A PPI network can be represented as an

undirected graph, where the nodes denote the proteins and the edges denote the interactions
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Received: April 6, 2017

Accepted: February 26, 2018

Published: March 19, 2018

Copyright: © 2018 Dong et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by

NO.61572005, National Natural Science

Foundation of China, www.nsfc.gov.cn, YQS, CQ;

NO.61272004, National Natural Science

Foundation of China, www.nsfc.gov.cn, YQS;

NO.61672086, National Natural Science

Foundation of China, www.nsfc.gov.cn, YQS; and

Fundamental Research Funds for the Central

Universities K17JB00220 to CQ. The funders had

no role in study design, data collection and

https://doi.org/10.1371/journal.pone.0194124
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194124&domain=pdf&date_stamp=2018-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194124&domain=pdf&date_stamp=2018-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194124&domain=pdf&date_stamp=2018-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194124&domain=pdf&date_stamp=2018-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194124&domain=pdf&date_stamp=2018-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194124&domain=pdf&date_stamp=2018-03-19
https://doi.org/10.1371/journal.pone.0194124
https://doi.org/10.1371/journal.pone.0194124
http://creativecommons.org/licenses/by/4.0/
http://www.nsfc.gov.cn
http://www.nsfc.gov.cn
http://www.nsfc.gov.cn


[8]. Existing protein complex detection approaches can be broadly grouped into two catego-

ries: unsupervised and supervised learning methods. The majority of the unsupervised meth-

ods detect protein complexes by discovering the densely connected subgraphs in the PPI

network using predefined rules. The Markov clustering method (MCL) partitions the PPI net-

work into densely connected subgraphs by simulating random walks within the graph [9]. The

molecular complex detection (MCODE) method isolates the dense regions by growing the

local weighted seeds [10]. The restricted neighbourhood search clustering (RNSC) method

partitions networks into clusters based on a cost function, which is assigned to each partition-

ing [11]. The CFinder method discovers clusters by combining adjacent k-cliques identified

via clique percolation [12, 13]. The clustering based on maximal cliques (CMC) [2] method is

also a clique-based method that detects complexes by removing or merging cliques based on

their inter-connectivity. The repeated random walks (RRW) [14] method implicitly utilizes

network topology, edge weights and long-range interactions by repeated random walks to

identify protein complexes. The clustering with overlapping neighbourhood expansion (Clus-

terONE) [15] method finds subgraphs with high cohesiveness by greedy adding or removing

nodes starting from seed nodes.

The majority of the unsupervised methods are simply based on the topological structure of

the PPI network and do not utilize the information of the existing true complexes [7]. These

methods assume that protein complexes are in dense regions of PPI networks, but in fact,

many true complexes are in sparse regions. Fig 1 shows two sparse complexes from the

Munich Information Center for Protein Sequences (MIPS) complex catalogue database [16].

Therefore, using topological attributes alone is not sufficient for efficiently detecting protein

complexes [8].

In recent years, supervised learning methods have been developed to detect complexes by

utilizing the informative properties of known complexes. These types of methods consist of

three main steps: 1) extract useful features from the known complexes and denote them as vec-

tors, 2) train a supervised classification model or score function to distinguish the true protein

complexes from random subgraphs based on the extracted features, and 3) search for protein

complexes from PPI networks using the trained classification model or score function as a

guide. For example, SCI-BN [17] is a supervised method that trains a probabilistic Bayesian

Fig 1. Two sparse complexes in the MIPS complex catalogue database.

https://doi.org/10.1371/journal.pone.0194124.g001
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network to score the subgraphs. RM [7] trains a regression model to score the subgraphs. NN

[18] is a semi-supervised method, and it trains a neural network model on the training sets

and uses the trained model to detect new protein complexes. Then, NN uses the new predicted

complexes to adjust the parameters of the model recursively until the model converges. The

final converged neural network model is used to guide the search process for detecting protein

complexes. ClusterEPs [8] defines an integrative score of emerging patterns (EPs) to measure

the likelihood of a subgraph being a complex.

The supervised methods extract features from true complexes and learn a prediction

model, and then they use the model as a guide in the protein complex search process. How-

ever, the PPI data contain considerable amounts of noise, and many of the benchmark clusters

are incomplete; thus, the trained prediction model is inaccurate. The existing supervised meth-

ods only use the prediction model to guide the search process for detecting protein complexes.

In this paper, we first define a new score function that combines a supervised model with

unsupervised structural information. Based on this score function, we propose a search algo-

rithm that works both forwards and backwards to identify protein complexes from PPI net-

works. We use a neural network as the classification model, and we adjust the output of the

neural network at each step using the local structural information. Our method is named Clus-

terSS (clustering with supervised and structural information).

To assess the performance of ClusterSS, we compared ClusterSS with supervised, semi-

supervised and unsupervised learning methods. First, we compared ClusterSS with three

supervised learning methods, namely, ClusterEPs [8], SCI-BN [17] and RM [7], and with the

semi-supervised learning method NN [18]. The results showed that ClusterSS achieved consid-

erably better performance (precision, recall and F1) on the commonly used DIP PPI network

[19]. We then compared ClusterSS with seven unsupervised learning methods: MCL [9],

MCODE [10], RNSC [11], CFinder [12, 13], CMC [2], RRW [14] and ClusterONE [15]. The

PPI datasets are five large-scale yeast PPIs, including Collins, Krogan core, Krogan extended,

Gavin and BioGRID. The two protein complex datasets are the MIPS complex catalogue data-

base [16] and the Saccharomyces Genome Database (SGD) [20]. Comparative experiments

showed that ClusterSS achieved the highest fraction score and maximum matching ratio

(MMR) score among all seven literature methods on all five PPI datasets and a higher compos-

ite score than the other methods.

In case studies, we analyzed the prediction results of ClusterSS, ClusterEPs and ClusterONE

on five protein complexes. The results indicated that only ClusterSS could detect the origin

recognition complex (ORC) and the Pwp2p-containing subcomplex of 90S preribosome com-

plex completely and correctly. From the gene ontology (GO) analysis, we obtained four pre-

dicted clusters that have not previously been identified as complexes. However, their low p-

values suggest that these clusters are very likely complexes in the biological sense.

The algorithm has been implemented in Python, and both the software and source code are

available from the authors.

Methods

A PPI network can be represented as an undirected graph G = (V, E,W), where V denotes the

set of nodes (proteins), E denotes the set of edges (interactions), andW denotes the weights of

the edges. Let S = (VS, ES,WS) be a subgraph of G, and let Next(G, S) be the external neighbours

of S of G, which is defined as follows:

NextðG; SÞ ¼ fvjðw; vÞ 2 E; v 2 V � VS;w 2 VSg: ð1Þ
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Opposite to Next(G, S), we define Nint(G, S) as follows:

NintðG; SÞ ¼ fvjðw; vÞ 2 E; v 2 VS;w 2 V � VSg; ð2Þ

that is, the nodes in Nint(G, S) have edges with the nodes in V − VS. Illustrations of Next(G, S)
and Nint(G, S) are shown in Fig 2.

Our ClusterSS method includes three main steps: 1) extracting features, 2) determining the

score function, and 3) searching for complexes in PPI networks. These steps are described in

detail in the following subsections.

Extracting features

To measure the similarity between complexes, we represent each subgraph as a feature vector.

First, we select 24 features, which are divided into 9 groups, as follows: 1) node size (the num-

ber of nodes in subgraph S), 2) graph density (the density of subgraph S), 3) degree statistics,

4) edge weight, 5) degree correlation statistics, 6) clustering coefficient statistics, 7) topological

coefficients, 8) first eigenvalues, and 9) protein weight/size statistics (see S1 Table for details).

Second, by performing a sequential backward feature selection, we remove two feature groups:

degree correlation and protein weight/size. Thus, the feature vector contains 7 groups, which

Fig 2. Illustrations of Next and Nint.

https://doi.org/10.1371/journal.pone.0194124.g002
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include 17 features. Finally, we extract all 17 features from the subgraphs, mapping from the

true complexes in the training set, and we denote them as the positive instances. For each true

complex in the training set, we produce 20 complex-unlikely random subgraphs with the same

size, and we extract features from these subgraphs as the negative instances. Therefore, the

negative instances are 20 times the number of positive instances and obey the same distribu-

tion. We place the positive and negative instances together and denote it as dataset D for train-

ing the supervised neural network model.

Determining the score function

For dataset D derived from the input PPI network, a neural network model is trained to fit the

probability of subgraph S belonging to true complexes (as shown in Fig 3). We choose a three-

layer fully connected neural network. The input layer contains 17 nodes according to the num-

ber of features in D, the hidden layer contains 9 nodes, and the output layer contains two

nodes, O1 and O2 (the details of the parameters are shown in S1 Text). Given a subgraph S of

G, we can calculate the two outputs O1(G, S) and O2(G, S). By normalizing O1(G, S), we obtain

the supervised score,

supervisedScoreðG; SÞ ¼
O1ðG; SÞ

O1ðG; SÞ þ O2ðG; SÞ
; ð3Þ

Fig 3. The structure of the neural network.

https://doi.org/10.1371/journal.pone.0194124.g003
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where O1(G, S) denotes the probability of subgraph S belonging to true complexes and O2(G, S)
denotes the probability of subgraph S belonging to false complexes. The higher the supervised

score is for subgraph S, the higher is the probability that it belongs to true complexes.

To improve the supervised model, we introduce the structural score, which was used by

ClusterONE [15] to make the score function more robust and accurate. The structural score is

defined as follows:

structuralScoreðG; SÞ ¼
winðG; SÞ

winðG; SÞ þ woutðG; SÞ
; ð4Þ

where win(G, S) denotes the total weight of edges of subgraph S of G and wout(G, S) denotes the

total weight of edges between node sets Vs and V − Vs in G. The higher the structural score is

for subgraph S, the higher is the probability that it belongs to true complexes. The final cluster-

ing score f(G, S) used to guide the search process is defined as follows:

f ðG; SÞ ¼
supervisedScoreðG; SÞ þ structuralScoreðG; SÞ

2
ð5Þ

The values of f(G, S) range from 0 to 1. A larger f(G, S) suggests that S is more likely to be a

protein complex.

Searching for new complexes

The clustering score f(G, S) is used as a heuristic function in the process of searching for new

complexes in graph G. First, we need to determine the start nodes of the search process, and

we consider them to be the initial clusters. Then, these clusters are updated according to the

heuristic function f(G, S).
We choose a both forwards and backwards strategy in the complex search process. At

each search step, the current candidate cluster is denoted as C. We go through all the nodes

in Next(G, C) to find a node u that maximizes the score function f(G, C[{u}) and go through

all the nodes in Nint(G, C) to find a node v that maximizes the score function f(G, C − {v}).

Then, u is added to C if f(G, C[{u}) is higher than f(G, C − {v}), and v is deleted from C other-

wise. The asymptotic time complexity of this process is approximately O(n3); this process is

very time consuming, particularly when the scale of G is relatively large. Thus, we design a

trick called top-k to accelerate the search process. Let BS be the bipartite subgraph of G
induced by node sets Next(G, C) (see Eq 1) and Nint(G, C) (see Eq 2), as shown in Fig 2. We

sort the nodes of Next(G, C) and Nint(G, C) in descending order according to their degrees in

BS, and we take the first k nodes in each of the two sets as the candidate node sets, denoted as

NkextðG;CÞ and NkintðG;CÞ, respectively. At each search step, the candidate nodes are selected

from NkextðG;CÞ (or NkintðG;CÞ) rather than Next(G, C) (or Nint(G, C)); thus, the search process

becomes quicker. In fact, we take k = 5 in our experiments (S6 Table presents the running

time comparison of our top-k trick). We also design a hyper-parameter α to control the

growth scale of candidate complexes. The search process will stop when the new score func-

tion is less than α times the old function. A larger value of α will cause the search process to

complete earlier. We set the value of α to 1.02 in all the experiments (S2 and S3 Tables pres-

ent the performance comparison of ClusterSS with different values of α). The details of the

algorithm are shown in Algorithm 1.

The final step is to merge the highly overlapping clusters as in [15]. We also merge each

pair of cluster with an overlapping score ω [10] that is no less than the threshold of 0.9. The
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overlapping score of two clusters A and B is defined as follows:

oðA;BÞ ¼
jA \ Bj2

jAj � jBj
: ð6Þ

If we find two clusters in which their overlapping score is not less than the threshold, we

merge them and add them to the protein complex candidates. This process is performed itera-

tively until there is no pair of clusters with an overlapping score that satisfies the threshold.

Algorithm 1 The algorithm of ClusterSS
Input: G: the PPI network; T: the training set containing known com-
plexes; α: a hyper-parameter that controls the growth scale of candi-
date complexes;
Output: P: the set of predicted complexes;
1: for each cluster 2 T do
2: Extract 17 features from cluster and treat them as positive

instances and add them to instance set D;
3: Generate 20 subgraphs of G randomly with the same size as cluster;

extract 17 features from each of them and treat them as negative
instances and add them to instance set D;

4: end for
5: Train a neural network model on dataset D; then, determine the

supervised score function based on Eq 3, and then obtain the
adjusted score function f(G, S) based on Eq 5;

6: Find the nodes in G with a degree of greater than 1 as the start
nodes and denote it as ST;

7: for each v0 2 ST do
8: Initialize candidate cluster C = {v0}, and calculate the score

function f(G, C);
9: repeat
10: u ¼ arg maxu2Nkext ðG;CÞ f ðG;C [ fugÞ;
11: v ¼ arg maxv2Nkint ðG;CÞ f ðG;C � fvgÞ;
12: if f(G, C [ {u}) � f(G, C − {v}) then
13: update C0 = C [ {u};
14: else
15: update C0 = C − {v};
16: end if
17: if f(G, C0) > αf(G, C) then
18: update C = C0;
19: end if
20: until (f(G, C0) � αf(G, C))
21: Add candidate cluster C to set P;
22: end for
23: for each pair of clusters ci and cj in P do
24: if w(ci, cj) > 0.9 according to Eq 6 then
25: Merge ci and cj and add it to P;
26: end if
27: end for
28: return P

Results and discussion

This section consists of four parts. We first compare the performance of ClusterSS with those

of supervised and semi-supervised methods. Then, we present our results of the comparison

with the unsupervised methods. In the third part, we analyze two examples of detected protein

complexes. Finally, we present the GO analysis on the novel protein complexes predicted by

our method.

Detect protein complexes combining supervised method and local structural information
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Evaluation measures and datasets

We used six PPI datasets and three benchmark protein complex datasets in all the experi-

ments. The PPI datasets include the DIP dataset [19], the Gavin dataset [21], the Krogan

core dataset [22], the Krogan extended dataset [22], the Collins dataset [23] and the Bio-

GRID dataset [24].

The detailed properties of the PPI datasets are shown in Table 1. The benchmark protein

complex datasets include the TAP06 [21] dataset, the MIPS dataset [16] and the SGD [20]

dataset.

Similar to ClusterEPs, we use three measures, namely, precision, recall and F1-measure, to

evaluate the performance of the supervised learning methods. Recall measures the ratio of

complexes in the benchmark datasets that match at least one complex in the predicted protein

complex datasets, and precision measures the ratio of complexes in the predicted protein com-

plex datasets that match at least one of the complexes in the benchmark datasets. F1-measure

is the harmonic mean of precision and recall. Let B = {b1, b2, � � �, bi, � � �, bm} denote the bench-

mark complex datasets, and let P = {p1, p2, � � �, pj, � � �, pn} denote the protein complex sets pre-

dicted by a method, where bi and pj represent the ith and jth complexes in B and P, respectively,

andm and n represent the number of complexes in B and P, respectively. For two protein com-

plexes bi and pj, if the overlapping score ω(bi, pj) [25] as defined in Eq 6 is greater than or equal

to 0.25, then bi and pj are considered to be matching. Let Nbp be the number of the benchmark

complexes that match at least one predicted complex, and let Npb be the number of the pre-

dicted complexes that match at least one of the benchmark complexes; then, Nbp and Npb are

defined as follows:

Nbp ¼ jfbjb 2 B;9p 2 P;oðb; pÞ � 0:25gj; ð7Þ

Npb ¼ jfpjp 2 P; 9b 2 B;oðb; pÞ � 0:25gj: ð8Þ

The precision, recall and F1-measure are defined as follows:

precision ¼
Npb
n
; ð9Þ

recall ¼
Nbp
m
; ð10Þ

F1 � measure ¼
2� precision� recall
precisionþ recall

: ð11Þ

Table 1. Properties of the protein-protein interaction datasets.

dataset protein interactions reference

DIP 4931 22277 Xenarios et al. [19]

Gavin 1855 7669 Gavin et al. [21]

Krogan core 2708 7123 Krogan et al. [22]

Krogan extended 3672 14317 Krogan et al. [22]

Collins 1622 9074 Collins et al. [23]

BioGRID 5640 59748 Stark et al. [24]

https://doi.org/10.1371/journal.pone.0194124.t001

Detect protein complexes combining supervised method and local structural information

PLOS ONE | https://doi.org/10.1371/journal.pone.0194124 March 19, 2018 8 / 23

https://doi.org/10.1371/journal.pone.0194124.t001
https://doi.org/10.1371/journal.pone.0194124


To compare with unsupervised methods, we use three measures: fraction (Frac), geometric

accuracy (ACC) and MMR [8]. The definition of fraction is the same as that of recall. ACC is

the geometric mean of clustering-wise sensitivity (Sn) and clustering-wise positive predictive

value (PPV) [3]. Let T be an n ×mmatrix, and let Tij represent the number of proteins found

in both bi and pj. Then, Sn(B, P), PPV(B, P) and ACC(B, P) are calculated as follows:

SnðB;PÞ ¼
Pm

i¼1
max nj¼1

Tij
Pm

i¼1
jbij

; ð12Þ

PPVðB;PÞ ¼
Pn

j¼1
maxmi¼1

Tij
Pn

j¼1

Pm
i¼1
Tij

; ð13Þ

AccðB; PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðB;PÞ � PPVðB;PÞ

p
; ð14Þ

where |bi| represents the number of proteins in complex bi.
The MMR [15] is a measure that is based on the maximal one-to-one mapping between B

and P, and it explicitly penalizes cases where a benchmark complex is split into two or more

parts in the predicted set because only one part is allowed to match the benchmark complexes

[15]. The MMR is calculated as follows: 1) construct a bipartite graph BG between B and P, in

which each cluster is represented as a node; 2) for each cluster bi in B and each cluster pj in P,

connect bi and pj by an edge with a weight of ω(bi, pj) if ω(bi, pj)> 0; 3) select disjoint edges

from BG to maximize the sum of their weights; and 4) the MMR is the total weights of the

selected edges divided by |B|.

Comparison with supervised and semi-supervised learning methods

In this part, we first compare the prediction performance of ClusterSS with three existing

supervised methods, namely, SCI-BN [17], RM [7] and ClusterEPs [8], and with the semi-

supervised method NN [18] on the DIP [19] dataset, which follows the approach used by Clus-

terEPs. Considering that ClusterEPs is the most recent supervised method, we subsequently

compared it with ClusterSS in detail on the other five datasets, including the Gavin dataset

[21], the Krogan core dataset [22], the Krogan extended dataset [22], the Collins dataset [23]

and the BioGRID dataset [24].

Because the programs of SCI-BN and RM are not available, ClusterEPs compared them

based on their published results; therefore, we also compared with their published results. The

PPI dataset for the test is the DIP [19] dataset. SCI-BN used an SVM-based method to filter

out the interactions that have a score below 1.0. RM used a GO-based method to filter out the

interactions that have a GO score of less than 0.9. ClusterEPs preprocessed the PPI network

using the topological clustering semantic similarity (TCSS) [26] method and filtered out the

interactions that have a biological process (BP) score of less than 0.5. ClusterSS employed the

same processing method as ClusterEPs.

The true protein complex datasets for the test are the two independent datasets MIPS [16]

and TAP06 [21]. We removed the complexes composed of a single or pair of proteins from the

two datasets. There are 195 complexes remaining in MIPS and 193 complexes remaining in

TAP06 after preprocessing. There are a total of 1579 proteins in the MIPS and TAP06 complex

datasets, and we extracted a PPI subgraph of these proteins from DIP. Then, we tested Clus-

terSS on this PPI graph.

To assess the protein complex identification performance, we performed the experiments

using MIPS as the positive training set and TAP06 as the test set and vice versa. We
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chose three measures, namely, precision, recall and F1, to evaluate the performance. The

results are presented in Table 2. As shown in this table, when MIPS was considered as the

training set and TAP06 as the test set, ClusterSS achieved the highest scores on all three

measures. Specifically, the F1 measure of ClusterSS was 12.0 percentage points higher

than that of ClusterEPs, 61.2 percentage points higher than that of SCI-BN and 43.1 per-

centage points higher than that of RM. When TAP06 was used as the training set and MIPS

as the test set, the F1 measure of ClusterSS was slightly higher than that of ClusterEPs. Clus-

terEPs has a higher precision score; however, ClusterSS has a considerably higher recall

score. Both of these methods have higher scores compared with SCI-BN and RM on all

three measures.

As a semi-supervised learning model, NN [18] was evaluated using MIPS as both the train-

ing set and test set; thus, we tested ClusterSS under the same settings. The results are presented

in Table 3. As shown in this table, ClusterSS has considerably higher scores compared with

NN and other supervised methods on all three measures. Specifically, the F1 measure of Clus-

terSS was 90.4 percentage points higher than that of NN, 8.8 percentage points higher than

that of ClusterEPs, and substantially better than those of SCI-BN and RM.

In the following, we conducted further comparisons between ClusterEPs and ClusterSS on

the other five PPI datasets. ClusterEPs trained models on the training sets and then searched

for complexes on the subgraphs of PPI networks. The subgraphs only consist of those proteins

that exist in the training set or in the test set. We compared the performances of ClusterSS and

ClusterEPs under the same conditions and same measures for a fair comparison. The measures

include fraction, accuracy and MMR, and the sum of these three measures is denoted as the

composite score. Because ClusterSS and ClusterEPs need negative instances selected randomly

in the training process, we ran ClusterEPs and ClusterSS 20 times to calculate the average

Table 2. Performance compared with ClusterEPs, SCI-BN and RM on the DIP dataset.

Train Test Method Precision Recall F1

MIPS TAP ClusterSS 0.477 0.864 0.614

MIPS TAP ClusterEPs 0.424 0.782 0.548

MIPS TAP SCI-BN 0.312 0.489 0.381

MIPS TAP SCI-SVM 0.247 0.377 0.298

MIPS TAP RM 0.424 0.433 0.429

TAP MIPS ClusterSS 0.526 0.807 0.636

TAP MIPS ClusterEPs 0.606 0.664 0.633

TAP MIPS SCI-BN 0.219 0.537 0.312

TAP MIPS SCI-SVM 0.176 0.379 0.240

TAP MIPS RM 0.489 0.525 0.506

https://doi.org/10.1371/journal.pone.0194124.t002

Table 3. Performance compared with NN on the DIP dataset.

Train Test Method Precision Recall F1

MIPS MIPS ClusterSS 0.690 0.836 0.756

MIPS MIPS ClusterEPs 0.649 0.751 0.695

MIPS MIPS SCI-BN 0.273 0.473 0.346

MIPS MIPS SCI-SVM 0.239 0.412 0.302

MIPS MIPS RM 0.419 0.670 0.514

MIPS MIPS NN 0.333 0.491 0.397

https://doi.org/10.1371/journal.pone.0194124.t003
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performance. We first conducted the experiment using MIPS as the positive training set and

using SGD as the test set. The results are presented in Table 4. As shown in this table, ClusterSS

outperformed ClusterEPs on all five datasets. We then conducted the experiment using SGD

as the positive training set and using MIPS as the test set. The results are presented in Table 5.

As shown in this table, ClusterSS achieved a higher fraction score, accuracy score and compos-

ite score than ClusterEPs on all five datasets. Except for Gavin, ClusterSS achieved a higher

MMR score on the other four datasets.

Comparison with unsupervised learning methods

In this part, we compare the performance of ClusterSS with seven representative unsupervised

approaches: MCL [9], MCODE [10], RNSC [11], CFinder [12, 13], CMC [2], RRW [14] and

ClusterONE [15]. The experiment was conducted on five large-scale yeast PPI networks,

including the Gavin dataset [21], the Krogan core dataset [22], the Krogan extended dataset

[22], the Collins dataset [23] and the BioGRID dataset [24]. The benchmark complex sets are

the MIPS dataset [16] and the SGD dataset [20]. The three evaluation measures are the Frac,

the Acc and the MMR, and we denote the sum of the three measures as the composite score.

For a fair comparison, all parameters of the other seven methods on every PPI dataset were the

same as those used in ClusterONE. To compare with the unsupervised methods, ClusterSS

searched for complexes on the entire PPI networks rather than their subgraphs.

Table 4. Performance compared with ClusterEPs on four yeast PPI datasets using SGD as the test set.

Dataset Method #cluster Frac Acc MMR Composite score

Collins ClusterSS 259 0.876 0.711 0.603 2.190

ClusterEPs 173 0.720 0.628 0.470 1.819

Krogan core ClusterSS 261 0.812 0.639 0.557 2.007

ClusterEPs 291 0.626 0.574 0.422 1.622

Krogan extended ClusterSS 280 0.725 0.613 0.484 1.822

ClusterEPs 516 0.631 0.540 0.394 1.565

Gavin ClusterSS 168 0.820 0.684 0.516 2.020

ClusterEPs 255 0.803 0.635 0.500 1.939

BioGRID ClusterSS 1060 0.721 0.562 0.482 1.766

ClusterEPs 817 0.664 0.522 0.392 1.579

https://doi.org/10.1371/journal.pone.0194124.t004

Table 5. Performance compared with ClusterEPs on four yeast PPI datasets using MIPS as the test set.

Dataset Method #cluster Frac Acc MMR Composite score

Collins ClusterSS 293 0.802 0.508 0.445 1.754

ClusterEPs 173 0.667 0.506 0.395 1.567

Krogan core ClusterSS 245 0.773 0.448 0.418 1.639

ClusterEPs 371 0.620 0.402 0.336 1.358

Krogan extended ClusterSS 269 0.686 0.423 0.373 1.482

ClusterEPs 516 0.585 0.383 0.301 1.268

Gavin ClusterSS 167 0.723 0.479 0.384 1.585

ClusterEPs 242 0.697 0.454 0.390 1.542

BioGRID ClusterSS 984 0.648 0.378 0.370 1.396

ClusterEPs 901 0.608 0.356 0.287 1.251

https://doi.org/10.1371/journal.pone.0194124.t005
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We first conducted the experiment using MIPS as the positive training set and using SGD

as the test set. The results are presented in Fig 4. As shown in this figure, ClusterSS achieved

the highest fraction, MMR and composite score on all five PPI datasets. We then conducted

the experiment using SGD as the positive training set and using MIPS as the test set. The

Fig 4. Performance comparison of eight algorithms on four yeast PPI datasets using SGD as the test set.

https://doi.org/10.1371/journal.pone.0194124.g004
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results are presented in Fig 5. As shown in this figure, ClusterSS achieved the highest fraction

score and MMR score on all five datasets. ClusterSS did not achieve the highest accuracy and

composite score on the Collins and Gavin datasets, but the scores are close to the highest score

and are significantly higher than those of the other six methods. We do not provide the results

Fig 5. Performance comparison of eight algorithms on four yeast PPI datasets using MIPS as the test set.

https://doi.org/10.1371/journal.pone.0194124.g005
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of CFinder and CMC on the BioGRID dataset because CFinder did not provide any results

within 24 hours and CMC predicted an exorbitantly large number of clusters (more than

6000) [8]. In addition, the composite scores of ClusterSS in Figs 4 and 5 are slightly lower than

those in Tables 4 and 5. The main reason for this result is that ClusterSS searched for com-

plexes on the entire PPI networks in this section, whereas it searched for complexes on the sub-

graphs in the previous section.

Case study

ClusterEPs and ClusterONE are the latest supervised and unsupervised protein complex detec-

tion methods; thus, we present a detailed case study of ClusterSS, ClusterEPs and ClusterONE

on three non-overlapping complexes and a pair of overlapping complexes. The three non-

overlapping complexes include the retromer complex, the Pwp2p-containing subcomplex of

90S preribosome and the DASH complex. The pair of non-overlapping complexes are the RSC

and the SWI/SWF complexes.

The retromer complex is a central component for eukaryotic DNA replication, and it

remains bound to chromatin at replication origins throughout the cell cycle [27] and contains

6 proteins. The Krogan extended PPI dataset contains the subgraph of this complex. Figs 6–8

Fig 6. The retromer complex predicted by ClusterSS. The red nodes represent the proteins in the true complex that are detected by the algorithm, the

green nodes represent the proteins in the true complex that are not detected by the algorithm, and the blue nodes represent the proteins that do not

belong to the true complex that are detected by the algorithm.

https://doi.org/10.1371/journal.pone.0194124.g006
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show the predicted subgraphs of this complex by ClusterSS, ClusterEPs and ClusterONE,

respectively. As shown, ClusterSS could detect the retromer complex completely and cor-

rectly. ClusterEPs missed one protein and added three unrelated proteins. Although Cluster-

ONE found all the proteins of ORC, three unrelated proteins were added in the detection

result.

The Pwp2p-containing subcomplex of 90S preribosome contains 6 proteins, and the Collins

PPI dataset contains the subgraph of this complex. Figs 9–11 show the predicted subgraphs of

this complex by ClusterSS, ClusterEPs and ClusterONE, respectively. As shown, ClusterSS

could detect the Pwp2p-containing subcomplex of 90S preribosome completely and correctly.

ClusterEPs missed one protein and added fifteen unrelated proteins. Although ClusterONE

found all the proteins of ORC, thirty-seven unrelated proteins were added in the detection

result.

The DASH complex has been taken as a case study for ClusterONE and ClusterEPs, and

the complex was embedded in the Krogan extended PPI dataset. Both ClusterONE and Clus-

terEPs can detect the complex correctly and clearly. ClusterSS can also detect this complex but

adds an additional protein into the prediction result. The detail prediction results are shown in

S1–S3 Figs.

Fig 7. The retromer complex predicted by ClusterEPs. The red nodes represent the proteins in the true complex that are detected by the algorithm,

the green nodes represent the proteins in the true complex that are not detected by the algorithm, and the blue nodes represent the proteins that do not

belong to the true complex that are detected by the algorithm.

https://doi.org/10.1371/journal.pone.0194124.g007
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The RSC and the SWI/SNF complexes were contained in the Collins PPI dataset and were

also examined as a case study using ClusterONE and ClusterEPs. All three methods, Cluster-

ONE, ClusterEPs and ClusterSS, can obtain prediction results close to the true complexes. The

detailed detection results are shown in S4–S6 Figs.

GO analysis of the new predicted complexes

Table 6 presents the GO analysis results of four complexes identified by ClusterSS. The match

score represents the maximum overlapping score of predicted complexes with the MIPS and

SGD complex datasets, which is calculated using Eq 6. The fourth column presents the mini-

mum p-value of the matched GO terms, and the fifth column presents the corresponding

descriptions.

The first complex and the second complex are embedded in the Collins and Krogan

extended PPI datasets, respectively, and they have no overlap with existing complexes in

MIPS and SGD. The third complex and the fourth complex are embedded in the Gavin and

Krogan core PPI datasets, respectively, and they have low overlapping scores with existing

complexes. Table 6 presents the GO analysis results for the four predicted complexes

obtained using BINGO [28]. All 6 proteins of complex-1 are enriched in 25 GO terms

that are mostly related to rRNA processing, rRNA metabolic process or ncRNA processing

(with a p-value < 6.88 � 10−3, and the minimum p-value is 4.22 � 10−9). All 11 proteins of

complex-2 are enriched in 6 GO terms that are mostly related to ribosome biogenesis,

ribonucleoprotein complex biogenesis or cellular component biogenesis (with a p-

value < 5.25 � 10−3, and the minimum p-value is 3.11 � 10−14). All 12 proteins of complex-3

Fig 8. The retromer complex predicted by ClusterONE. The red nodes represent the proteins in the true complex that are detected by the algorithm,

the green nodes represent the proteins in the true complex that are not detected by the algorithm, and the blue nodes represent the proteins that do not

belong to the true complex that are detected by the algorithm.

https://doi.org/10.1371/journal.pone.0194124.g008
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are enriched in 30 GO terms that are mostly related to small nuclear ribonucleoprotein

complex, spliceosomal complex, RNA splicing or mRNA metabolic process (with a p-

value < 7.43 � 10−3, and the minimum p-value is 3.19 � 10−25). All 10 proteins in complex-4

are enriched in 23 GO terms that are mostly related to spliceosomal complex, RNA splicing,

mRNA processing or mRNA metabolic process (with a p-value < 8.47 � 10−3, and the mini-

mum p-value is 6.19 � 10−20).

From the above GO analysis results, we observe that the proteins of each subgraph have

close relationships according to the enriched GO terms. Although these subgraphs have not

yet been characterized as complexes, they are very likely complexes in the biological sense. S8–

S11 Tables provide detailed results of these GO enrichment analyses.

Conclusion

The existing protein complex detection methods can be divided into two groups: unsuper-

vised clustering methods and supervised search methods. Unsupervised clustering methods

divide the PPI network into groups based on its topological structure, and most of these

Fig 9. The Pwp2p-containing subcomplex of 90S preribosome predicted by ClusterSS. The red nodes represent the proteins in the true complex that

are detected by the algorithm, the green nodes represent the proteins in the true complex that are not detected by the algorithm, and the blue nodes

represent the proteins that do not belong to the true complex that are detected by the algorithm.

https://doi.org/10.1371/journal.pone.0194124.g009
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types of methods are sensitive to the density of the PPI network. The complexes that are too

sparse or only a small part of highly dense subgraphs in the PPI network are difficult to

detect using density-sensitive types of methods. The supervised search methods can learn a

prediction model using the true complexes, but the noise in the PPI data and incomplete

benchmark may cause the trained model to be inaccurate, which may misguide the protein

complex search process.

In this paper, we provide a protein complex detection method that integrates these two

types of methods by designing a score function that combines a classification model and struc-

tural information. We train a supervised neural network model on known protein complexes

to obtain the supervised score, and we use a local structural score function to adjust the output

of the neural network on each step of the protein complex search process. Based on the score

function, we design a search method that works both forwards and backwards to detect the

protein complexes. We conduct several comparative experiments on six benchmark PPI data-

sets and three complex datasets. Compared with the latest supervised method ClusterEPs, our

method, ClusterSS, achieves a higher fraction score and composite score on all the PPI datasets

under the same conditions. ClusterSS outperforms the semi-supervised method NN on the

measures of precision, recall and F-measure. Compared with the unsupervised method, Clus-

terSS achieves the highest fraction, MMR and composite scores on all five PPI datasets when

using SGD as the test set. Finally, we provide four examples of new predicted complexes, and

Fig 10. The Pwp2p-containing subcomplex of 90S preribosome predicted by ClusterEPs. The red nodes represent the proteins in the true complex

that are detected by the algorithm, the green nodes represent the proteins in the true complex that are not detected by the algorithm, and the blue nodes

represent the proteins that do not belong to the true complex that are detected by the algorithm.

https://doi.org/10.1371/journal.pone.0194124.g010
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the GO enrichment analysis shows that these complexes are very likely true complexes in the

biological sense.

In future studies, we will integrate additional information, such as subcellular localization

information and gene expression data, to make the classification model more accurate for

detecting protein complexes.

Table 6. Four predicted complexes with low p-values that do not match the known complexes.

ID complex match score min p-value GO-Description

1 YNL308C YDL208W YHR072W-A

YGL078C YCL059C YDL213C

0.0 4.22E-09 rRNA processing

2 YNL182C YDR101C YHR197W

YER006W YCR072C YPR016C

YGR245C YLR074C YER126C

YPL093W YNR053C

0.0 3.11E-14 ribosome biogenesis

3 YDR235W YDL087C YPR057W

YDR240C YLR298C YKL012W

YBR119W YIL061C YLR275W

YML046W YHR086W YGR013W

0.050 3.19E-25 small nuclear ribonucleoprotein complex

4 YDL030W YDL043C YAL032C

YDR482C YMR240C YML049C

YJL203W YPL151C YMR288W

YOR319W

0.033 6.19E-20 spliceosomal complex

https://doi.org/10.1371/journal.pone.0194124.t006

Fig 11. The Pwp2p-containing subcomplex of 90S preribosome predicted by ClusterONE. The red nodes represent the proteins in the true complex

that are detected by the algorithm, the green nodes represent the proteins in the true complex that are not detected by the algorithm, and the blue nodes

represent the proteins that do not belong to the true complex that are detected by the algorithm.

https://doi.org/10.1371/journal.pone.0194124.g011
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