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Abstract

Control and synchronization of fractional-order chaotic systems have attracted wide atten-
tion due to their numerous potential applications. To get suitable control method and param-
eters for fractional-order chaotic systems, the stability analysis of time-varying fractional-
order systems should be discussed in the first place. Therefore, this paper analyzes the sta-
bility of the time-varying fractional-order systems and presents a stability theorem for the
system with the order 0<a<1. This theorem is a sufficient condition which can discriminate
the stability of time-varying systems conveniently. Feedback controllers are designed for
control and synchronization of the fractional-order LU chaotic system. The simulation results
demonstrate the effectiveness of the proposed theorem.

1. Introduction

Fractional-order calculus which extends the descriptive abilities of integer-order calculus can be
traced to the work of Leibniz and Hospital in 1695. The integer-order calculus depends only on
the local characteristics of a function’s, but fractional-order calculus accumulates all informa-
tion of the function in a certain time, which is also called memory property. Mathematical mod-
els based on fractional-order calculus can describe the dynamic behavior of an actual system
accurately in many areas, thereby it is necessary to facilitate the improvement of its design and
control stability for fractional-order dynamic systems [1]. Recently, fractional-order chaotic
control and synchronization have attracted increasing attention. In [2], Razminia A et al. syn-
chronized a unidirectional coupling structure for the two fractional order chaotic systems using
a sliding mode control methodology. In [3], Wu GC et al. presented a nonlinear coupling
method to study the master-slave synchronization for the fractional differential equation. In [4],
Golmankhaneh AK et al. have presented the chaos synchronization of two identical and non-
identical fractional orders of a new chaotic system by using active control. In [5], Jajarmi A

et al. used a linear state feedback controller together with an active control technique in order to
control a hyperchaotic financial system. In [6], a Lyapunov approach is adopted for deriving the
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parameter adaptation laws and proving the stability of the generalized projective synchroniza-
tion (GPS) of two incommensurate fractional-order chaotic closed-loop systems. A linear
feedback controller is proposed to achieve synchronisation of a fractional-order system with un-
certainties and disturbance and guarantees the bounded state error for any bounded interfer-
ence infinite time [7]. In [8], a simple but practical method to synchronize almost all familiar
fractional-order chaotic systems which are including the commensurate system and incommen-
surate case, autonomous system, and the nonautonomous case has been put forward, and suffi-
cient conditions are derived to guarantee synchronization of these systems. In [9], Shao SY et al.
studies the fractional-order disturbance observer (FODO)-based adaptive sliding mode synch-
ronization control for a class of fractional-order chaotic systems with unknown bounded distur-
bances. In [10], Soukkou A et al. proposed a fractional-order prediction-based feedback control
scheme (Fo-PbFC) to stabilize the unstable equilibrium points and to synchronize the fracti-
onal-order chaotic systems (FoCS). In [11], Nourian ef al. estimated the unknown coefficients
of the system and demonstrated the stabilization of the synchronizer system by using the adap-
tive rule and a proper Lyapunov candidate function. In [12], Maheri et al. put forward a robust
adaptive nonlinear feedback controller scheme to realize the synchronization of two different
fractional-order chaotic systems in the condition of fully unknown parameters, external distur-
bance and uncertainties. In [13], Zhou et al. designed an adaptive controller to synchronize two
entirely different fractional-order chaotic systems with uncertain parameters. Combining with
appropriate parameter estimation laws. In [14], Yang proposed a single-state proportional feed-
back method to synchronize two identical generalized Lorenz systems. Used Lyapunov stability
theory and a fractional-order differential inequality. In [15], Zhang et al. developed a modified
adaptive control scheme and adaptive parameter laws to robustly synchronize coupled with
fractional-order chaotic systems without certain parameters and perturbations. In [16], Xiang
et al. investigated a robust synchronization for a class of systems with external disturbances.

In addition, many scholars have made great contributions in the field of the control and sta-
bility of time-varying fractional order systems. In [17], Aguila-Camacho N et al. put forward a
new lemma for the Caputo fractional derivatives which has been proved to be useful in order
to find the fractional-order extension of Lyapunov functions and can be used to demonstrate
the stability of many fractional order systems including nonlinear and time-varying. In [18],
Bao HB et al. put forward sufficient conditions which ensure the drive-response systems to
achieve adaptive synchronization of fractional-order memristor-based neural networks with
time-varying delay. In [19], the authors dealt with the fractional-order neural networks with
impulsive effects and time-varying delay, and established several sufficient conditions guaran-
teeing the global Mittag-Leffler stability of the equilibrium point of the neural networks.

However, the most basic control and synchronization problem of chaotic systems are that
of stability. Stability is a precondition for normal operation of systems and the main factor of
system designs. A Lyapunov direct method is a core issue in integer-order stability theory,
which is also a basic stability theorem for control systems.

It has been proven that the Lyapunov direct method is a relatively complete theoretical for
integer-order systems both in theoretical study and practical application. As the transfer func-
tion of fractional-order systems is usually not a rational function of complex variable s, the sta-
bility analysis of fractional-order systems is far more complicated than that of integer-order
systems. Many scholars have carried out extensive research on time-invariant fractional-order
systems and made considerable achievements. For fractional-order LTI systems, in [20], Sem-
ary et al. discussed their physical and non-physical transfer functions, stability, poles, time
domain, frequency domain, their relationships for different fractional-order differential equa-
tions and other basic concepts. In [21], Wang et al. used the argument principle of complex
analysis to deduce two stability criteria for linear time-invariant fractional-order systems,
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which can determine system stability without utilizing characteristic roots. They also used
Laplace transform and residue theorem to discuss the internal and external stability conditions
of a linear time-invariant fractional-order system [22]. Pakzad put forward a practical analyti-
cal model to discuss the stability robustness of a class of linear time-invariant fractional-order
systems with single and multiple commensurate delays of retarded type, against delay uncer-
tainties [23].

All the above stability analyses are for time-invariant fractional-order systems. However,
the above results are not widely used due to various reasons. For example, the eigenvalue crite-
rion cannot be applied in time-varying fractional-order systems [24]. Therefore, this paper
analyzes the stability of the time-varying fractional-order systems and presents a stability theo-
rem for the system with the order 0<a<1. This theorem is a sufficient condition which can
discriminate the stability of time-varying systems conveniently. Feedback controllers are
designed for control and synchronization of the fractional-order Lii chaotic system.

The rest of the paper is organized as follows. Section 2 analyzes the development status and
the stability of fractional-order systems. Section 3 presents a stability theorem for these systems
with the order 0<a< 1. Feedback controllers for fractional-order Lii chaotic system’s control
and synchronization are designed on the basis of previous stability theorem in Section 4.
Finally, the conclusion is drawn according to the present study in Section 5.

2. Development status of fractional-order system and stability
2.1 Definition of fractional-order calculus

Nowadays, many different definitions of fractional-order calculation were presented, in [25].
The most common definition, with 0€(0,1), is shown as Eq 1 and was proposed by M. Caputo
in 1967. Eq 1 is important for integral transformation because the initial value expressions gen-
erated in integral transformation are all in the form of integer-order derivatives, which can be
effectively applied in practice.

oy L[ x()
t(JItx(t)l—(a)/to (t_r)l—ad‘c’ (1)

Where x(t) is a function with an arbitrary integer order; the fractional order meets 0<a<1;
i [¢" is a fractional-order integral with order ,, of function x(t) between [to,t]; I'(-); denotes the
gamma function.

Definition 1 For any real number g, | q] denotes the integer part of g, that is to say, | q] is
the largest integer no more than q. , D} is a Caputo fractional differential operator. Thus, the

differential of x(#) with fractional-order g is

ie(f) — 1 ¢ x(MJH)(T) -
th (t) = F(MJ +1-— q)/tn (t _ ,L.)q*m d (2)

2.2 Development of stability analysis of fractional-order system

Theorem 1 When 0<a<1, xeR", AcR™", the fractional-order system ( D*x(t) = Ax(t), t>ty is
asymptotically stable if and only if all the characteristic values of matrix A satisfy |arg(eig
(A))|>am/2. Furthermore, the system is stable if and only if all the characteristic values of
matrix A satisfy |arg(eig(A))|>omn/2, which can be found in [21].

Theorem 1 is the existing stability criterion of a linear time-invariant fractional-order sys-
tem with 0<o.<1. This theorem is suitable only for a linear time-invariant fractional-order sys-
tem, but it is often misused [26]. For time-invariant fractional-order nonlinear systems, if all
the eigenvalues of the Jacobi matrix at equilibrium are stable, then the equilibrium is called
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stable equilibrium point. However, Theorem 1 is not suitable for time-varying fractional-order
systems.

Considering the time-varying fractional-order system with order 0<o.<1 and initial value x
(to), the following is obtained:

W Dix(t) = f(#,x) (3)

Where ae(0,1), f:[to00]XQQ—R" is piecewise continuous and meets the local Lipschitz condi-
tion (QeR"is a domain that contains x = 0).

Definition 2 A continuous function S [0,£)—[0,00) is said to belong to class-k if it is strictly
increasing and 3(0) = 0.

Definition 3 If and only if f (£, x,) = , D;x,, then constant x, is the equilibrium point of the
Caputo-defined fractional-order dynamic system (3). Without loss of generality, we assume x,
=0.

Theorem 2 [25] Let x, = 0 be an equilibrium point of the fractional-order system (3).
Assume that Lyapunov function V(t,x(¢)) and class-k functions f;(i = 1, 2, 3) exist, which sat-

isfy
Bullxll) < Vit x) < By(1Ix[D), (4)

DIV (8, x(1)) < —By([lx[)), (5)

Where y€(0,1), then the equilibrium point of the system (3) is asymptotically stable.

3. Stability of time-varying fractional-order systems
3.1. Fractional-order system stability analysis

For linear time-varying fractional-order systems, the system (3) can be generally described in
the following form:

Dix(t) = A(t)x(t),t > ¢, (6)

For the system (6), we present stability Theorem 3 after introducing Lemma 1 as follows:
Lemma 1 For a continuous function flx) = xT Ax, x € R™ if Ac R™" s a positive definite
matrix, then

P A %]* < F(6) < Ay (A) |21 (7)

in which Apax(-) and Apin(+) are the maximum and minimum eigenvalues, respectively, of the
corresponding matrix.

Theorem 2 provides a guiding stability determination framework for general fractional-
order systems, but its complexity is inconvenient when analyzing specific problems. Further-
more, Theorem 1 is not suitable for time-varying systems (6) [21]. Hence, for the time-varying
fractional-order system (6), a stability analysis method will be given, we define a real symmet-
ric matrix H(t)as follows:

H(t)=A(t) +A"(¢) (8)

As H(t) is a real symmetric matrix, whose eigenvalues are real numbers. Let Apy,;, and Apyax
be the respective minimum and maximum eigenvalues of H(t). We thus obtain the following
asymptotic stability sufficiency with Theorem 3.

Theorem 3 The sufficient condition for asymptotic stability of the fractional-order system
(6) with equilibrium point x,=0 is that the maximum eigenvalue of H(t) satisfies A,y < 0.
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Proof: Let V(x, t) = x"(t)x(t) = ||x(t)|%,
Taking the a-order derivative of V(x,f)with respect to time t, we have

o o

V*(x,t) = @xT(t) x(t) +x"(¢) -%x(t)
= x"(1)[AT(£) + A(t)]x(t)
=xT(6)H(t)x(t)

AS Apin and App,iare the minimum and maximum eigenvalues of the real symmetric matrix
H(t), respectively, according to Lemma 1, we have

Zoinl KON < 6T (OVH()x() < 2y lIx (1)

Therefore V*(x,t) < A__||x(t)|*

Considering the theorem’s condition A, < 0, we can easily obtain the conclusion because
V(x,t)satisfies the condition (1) of Theorem 2, and V*(x,t) satisfies the condition (2) of Theo-
rem 2. Hence, according to Theorem 2, the time-varying fractional-order system (6) with equi-
librium point x, is asymptotically stable.

3.2 Examples of fractional-order system stability analysis

The stability analysis of two typical systems is given to demonstrate the effectiveness of the pro-
posed stability theory.
Example 1: Consider the linear time-varying fractional-order system (a = 0.95)

((=b+ a) + acos(wt))x, + (b — asin(wt))x,

DI(t) = | (i~ asin(@i))x, + ((~b + a) — acos()x, | ®)

fo

The system matrix of (9) is

(—b+ a) + acos(wt) b — asin(wt)
A(t)=|  _p— asin(owt) (=b+a) — acos(wt) |-

We assume that a = 0.25, b = 1, w = 2, the real symmetric matrix H(?) is:
—1.5 + 0.5cos(2t) —0.5sin(2t)

H(t)=A(t)+A'(t) =| _05in(2f)  —1.5— 0.5c0s(2f) |

The eigenvalues of H(t)can be obtained:
A=—-12,=-2

All the eigenvalues are negative, we can conclude that system (9) is stable from Theorem 3.
Example 2: Consider the following linear time-varying fractional-order system

(=b + asinwt)x, + a(coswt)x,

WDx(t) = a(coswt)x, + (—b — asinwt)x, |- (10)
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The system matrix A(t) and the corresponding real symmetric matrix H(t) of (10) are
acquired as follows:

—b + asinwt acoswt —2b + 2asinwt 2acoswt

A(t) = acoswt —b — asinwt 7H(t) = 2acosmt —2b — 2asinwt

The eigenvalues of H(t) can be calculated: A, , = -2b+2a Taking a = 0.25,b = 0.5 (A; = -0.5,
A, = -1.5),this system is stable according to Theorem 3. And if we takea=1,b =0.5(A; = 1,A, =
-3), it is unable to determine the stability of this system from Theorem 3.

These examples show that Theorem 3 can discriminate the stability of time-varying frac-
tional-order systems accurately. However, it is worth noting that this theorem is only a suffi-
cient condition rather than a sufficient and necessary condition.

4. Control and synchronization of fractional-order Lu chaotic
system

With the global boom of complex network research [27], chaotic systems as a part of complex
networks are being widely applied [28]. The robust control and synchronization of chaotic sys-
tems have been gaining increasing attention. However, because of the lack of a stability analy-
sis method for fractional-order systems, no systematic solution exists for the control and
synchronization of a fractional-order chaotic system. With the use of the time-varying frac-
tional-order stability theorem proposed in this paper, two controllers are designed for the frac-
tional-order Lii chaotic system’s tracking control and synchronization.

4.1 Tracking control of fractional-order Lii chaotic system

The mathematic model of fractional-order L chaotic system is described as follows [26]:

30(x2 - ‘xl)
—x,%; + 22.2x,
,UD;‘x(t) :g(x) = X Xy — 8.8x3/3 ’ (11)

Evidently, the above system is a typical nonlinear fractional-order system. To make the frac-
tional-order L chaotic system (11) stable, the controller is designed as follows:

u(t) = Kx(t). (12)
Where u = [u,usus] 5, x = [x1,%0,%3] % k = [k,kpks] T, and the real number k;,k,,k; must be
selected properly. By exerting the control action (12) into the system (11), we obtain
30(x, — x,) + 1,
—X, X3 + 22.2x, + u,
WDix(t) = X%, — 8.8%,/3 + uy | (13)

We then simplify the controller as u; - 0,u, = kx,,u; = 0 Single-variable linear feedback
needs to be used to control the system. The controlled fractional-order Lii system can thus be
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written in the form of the following linear time-varying fractional-order system:

~30 30 o |[x
0 k+222 —X X,
WDix(t) =1 g x o —88/3 | (14)

The matrix A(t) of the controlled system (14) is

30 30 0
0 k4222 —x
Alt) =1 x,  -88/3 (15)

The matrix A(t) the control parameter k and is a function of the state variable x;. Thus, it is
a time-varying matrix even if the control parameter k is fixed. According to Eq 8, H(t)is

60 30 0
30 2(k+222) 0
H(t)=| g 0 —248.8/3 (16)

By solving det(AI-H(t)) = 0, we obtain the eigenvalues of H(t).Combining the root locus
analysis, we determine that all the eigenvalues of H(t) are less than 0 if k<-29.7. According to
Theorem 3, the controlled Lii system (13) is uniformly asymptotically stable.

Fig 1. shows the fractional-order Lii system (13) controlled to the zero equilibrium point
with k = -35.

The solid lines in Fig 1. shows the motion curves of each state of the fractional-order Lii cha-
otic system when control action is added at t = 10s. Clearly, the system gradually converges to
equilibrium point Sy = (0,0,0) after the control action is added. The above design shows that we
can easily obtain a feedback control parameter k to make the system stable using H(t)-based
Theorem 3. Given the time-varying state x; contained in A (%), obtaining a feedback control
parameter k using A(t)-based Theorem 1 is difficult.

4.2 Synchronization of fractional-order Lii chaotic system

System (11) is selected as the driving system

30(x, — x;)
—x,%; + 22.2x,
WDix(t) = x,%, — 8.8%,/3 |
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Fig 1. The state diagram of fractional-order Lii chaotic system with robust controller. The motion curves of each
state of the fractional-order Lii chaotic system when control action is added at t = 10s.

https://doi.org/10.1371/journal.pone.0194112.g001

The response system is

300y, —») +u
) —yys +22.2y, + u,
t“D[y(t) Ty — 88y /34wy | (18)

The synchronization error is defined as follows:
€ =) Xy 6 =Yy T Xy, € =Yy T Xy

Our purpose is to design u(t) = [u,uzus]" to obtain lim |lell = lim ||y — x|| = 0. Then, the
t—00 t—0o0
error system is

30(e, —e,) +u, 30(e, —e)) +uy

X, X3 — y1¥5 + 22.2e, + u, —y,e; — x,e; + 22.2e, 4+ u,
D’e

t = == . 19
o Dre(?) ViVs — X, X, — 8.8¢5/3 + u, Joes + %6, — 8.8¢,/3 + uy (19)

The controller is designed as u; = 0, u, = yse;+ke,, us = -y,e;.The objective is to use a simple
signal feedback control to synchronize the systems. The controlled fractional-order Lii system
can be written as

30 30 I
0 k+222  —x |
WDiet) =1 ¢ X —88/3||, (20)

In accordance with the design process of the tracking controller in Section 4.1, the same
tfeedback coefficient k can guarantee the stability of the synchronization systems. The synchro-
nization results of the fractional-order Lii system when k = -35 are shown in Fig 2.

The solid lines in Fig 2 show the motion curves of each state of the fractional-order Lii cha-
otic driving system and response system when the control action is added at t = 10 s. Clearly,
the response curves tend to the driving curves after the control action is added. The error
curves in sub-figures d)-e) of Fig 2 show the quickness and effectiveness of the method.
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Fig 2. Synchronization results

of fractional-order Lii chaotic system. The motion curves of each state of the

fractional-order Lii chaotic driving system and response system when the control action is added at t = 10 s.

https://doi.org/10.1371/journal.pone.0194112.9002

The above design shows that we can easily obtain a feedback control parameter k to make

the system stable according to the proposed method. However, the time-varying state x; is

contained in A(%), so it is
1.

5. Conclusion

difficult to obtain a feedback control parameter k based on Theorem

A sufficient stability theorem for time-varying fractional-order systems is proposed because
the existing stability determination methods for fractional-order systems are complicated and
difficult to apply. On the basis of the proposed theorem, a feedback controller for the frac-
tional-order Lii chaotic system is designed for tracking control and synchronization. Simula-
tion results demonstrate the effectiveness of the method.
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