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Abstract

Control and synchronization of fractional-order chaotic systems have attracted wide atten-

tion due to their numerous potential applications. To get suitable control method and param-

eters for fractional-order chaotic systems, the stability analysis of time-varying fractional-

order systems should be discussed in the first place. Therefore, this paper analyzes the sta-

bility of the time-varying fractional-order systems and presents a stability theorem for the

system with the order 0<α<1. This theorem is a sufficient condition which can discriminate

the stability of time-varying systems conveniently. Feedback controllers are designed for

control and synchronization of the fractional-order Lü chaotic system. The simulation results

demonstrate the effectiveness of the proposed theorem.

1. Introduction

Fractional-order calculus which extends the descriptive abilities of integer-order calculus can be

traced to the work of Leibniz and Hospital in 1695. The integer-order calculus depends only on

the local characteristics of a function’s, but fractional-order calculus accumulates all informa-

tion of the function in a certain time, which is also called memory property. Mathematical mod-

els based on fractional-order calculus can describe the dynamic behavior of an actual system

accurately in many areas, thereby it is necessary to facilitate the improvement of its design and

control stability for fractional-order dynamic systems [1]. Recently, fractional-order chaotic

control and synchronization have attracted increasing attention. In [2], Razminia A et al. syn-

chronized a unidirectional coupling structure for the two fractional order chaotic systems using

a sliding mode control methodology. In [3], Wu GC et al. presented a nonlinear coupling

method to study the master-slave synchronization for the fractional differential equation. In [4],

Golmankhaneh AK et al. have presented the chaos synchronization of two identical and non-

identical fractional orders of a new chaotic system by using active control. In [5], Jajarmi A

et al. used a linear state feedback controller together with an active control technique in order to

control a hyperchaotic financial system. In [6], a Lyapunov approach is adopted for deriving the
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parameter adaptation laws and proving the stability of the generalized projective synchroniza-

tion (GPS) of two incommensurate fractional-order chaotic closed-loop systems. A linear

feedback controller is proposed to achieve synchronisation of a fractional-order system with un-

certainties and disturbance and guarantees the bounded state error for any bounded interfer-

ence infinite time [7]. In [8], a simple but practical method to synchronize almost all familiar

fractional-order chaotic systems which are including the commensurate system and incommen-

surate case, autonomous system, and the nonautonomous case has been put forward, and suffi-

cient conditions are derived to guarantee synchronization of these systems. In [9], Shao SY et al.
studies the fractional-order disturbance observer (FODO)-based adaptive sliding mode synch-

ronization control for a class of fractional-order chaotic systems with unknown bounded distur-

bances. In [10], Soukkou A et al. proposed a fractional-order prediction-based feedback control

scheme (Fo-PbFC) to stabilize the unstable equilibrium points and to synchronize the fracti-

onal-order chaotic systems (FoCS). In [11], Nourian et al. estimated the unknown coefficients

of the system and demonstrated the stabilization of the synchronizer system by using the adap-

tive rule and a proper Lyapunov candidate function. In [12], Maheri et al. put forward a robust

adaptive nonlinear feedback controller scheme to realize the synchronization of two different

fractional-order chaotic systems in the condition of fully unknown parameters, external distur-

bance and uncertainties. In [13], Zhou et al. designed an adaptive controller to synchronize two

entirely different fractional-order chaotic systems with uncertain parameters. Combining with

appropriate parameter estimation laws. In [14], Yang proposed a single-state proportional feed-

back method to synchronize two identical generalized Lorenz systems. Used Lyapunov stability

theory and a fractional-order differential inequality. In [15], Zhang et al. developed a modified

adaptive control scheme and adaptive parameter laws to robustly synchronize coupled with

fractional-order chaotic systems without certain parameters and perturbations. In [16], Xiang

et al. investigated a robust synchronization for a class of systems with external disturbances.

In addition, many scholars have made great contributions in the field of the control and sta-

bility of time-varying fractional order systems. In [17], Aguila-Camacho N et al. put forward a

new lemma for the Caputo fractional derivatives which has been proved to be useful in order

to find the fractional-order extension of Lyapunov functions and can be used to demonstrate

the stability of many fractional order systems including nonlinear and time-varying. In [18],

Bao HB et al. put forward sufficient conditions which ensure the drive–response systems to

achieve adaptive synchronization of fractional-order memristor-based neural networks with

time-varying delay. In [19], the authors dealt with the fractional-order neural networks with

impulsive effects and time-varying delay, and established several sufficient conditions guaran-

teeing the global Mittag–Leffler stability of the equilibrium point of the neural networks.

However, the most basic control and synchronization problem of chaotic systems are that

of stability. Stability is a precondition for normal operation of systems and the main factor of

system designs. A Lyapunov direct method is a core issue in integer-order stability theory,

which is also a basic stability theorem for control systems.

It has been proven that the Lyapunov direct method is a relatively complete theoretical for

integer-order systems both in theoretical study and practical application. As the transfer func-

tion of fractional-order systems is usually not a rational function of complex variable s, the sta-

bility analysis of fractional-order systems is far more complicated than that of integer-order

systems. Many scholars have carried out extensive research on time-invariant fractional-order

systems and made considerable achievements. For fractional-order LTI systems, in [20], Sem-

ary et al. discussed their physical and non-physical transfer functions, stability, poles, time

domain, frequency domain, their relationships for different fractional-order differential equa-

tions and other basic concepts. In [21], Wang et al. used the argument principle of complex

analysis to deduce two stability criteria for linear time-invariant fractional-order systems,
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which can determine system stability without utilizing characteristic roots. They also used

Laplace transform and residue theorem to discuss the internal and external stability conditions

of a linear time-invariant fractional-order system [22]. Pakzad put forward a practical analyti-

cal model to discuss the stability robustness of a class of linear time-invariant fractional-order

systems with single and multiple commensurate delays of retarded type, against delay uncer-

tainties [23].

All the above stability analyses are for time-invariant fractional-order systems. However,

the above results are not widely used due to various reasons. For example, the eigenvalue crite-

rion cannot be applied in time-varying fractional-order systems [24]. Therefore, this paper

analyzes the stability of the time-varying fractional-order systems and presents a stability theo-

rem for the system with the order 0<α<1. This theorem is a sufficient condition which can

discriminate the stability of time-varying systems conveniently. Feedback controllers are

designed for control and synchronization of the fractional-order Lü chaotic system.

The rest of the paper is organized as follows. Section 2 analyzes the development status and

the stability of fractional-order systems. Section 3 presents a stability theorem for these systems

with the order 0<α<1. Feedback controllers for fractional-order Lü chaotic system’s control

and synchronization are designed on the basis of previous stability theorem in Section 4.

Finally, the conclusion is drawn according to the present study in Section 5.

2. Development status of fractional-order system and stability

2.1 Definition of fractional-order calculus

Nowadays, many different definitions of fractional-order calculation were presented, in [25].

The most common definition, with α�(0,1), is shown as Eq 1 and was proposed by M. Caputo

in 1967. Eq 1 is important for integral transformation because the initial value expressions gen-

erated in integral transformation are all in the form of integer-order derivatives, which can be

effectively applied in practice.

t0
Ia

t xðtÞ ¼
1

GðaÞ

Z t

t0

xðtÞ
ðt � tÞ

1� a
dt; ð1Þ

Where x(t) is a function with an arbitrary integer order; the fractional order meets 0<α<1;

t0
It
α is a fractional-order integral with order α of function x(t) between [t0,t]; Γ(�); denotes the

gamma function.

Definition 1 For any real number q, ⌊q⌋ denotes the integer part of q, that is to say, ⌊q⌋ is

the largest integer no more than q. t0
Da

t is a Caputo fractional differential operator. Thus, the

differential of x(t) with fractional-order q is

t0
Dq

t xðtÞ ¼
1

Gðbqc þ 1 � qÞ

Z t

t0

xðbqcþ1ÞðtÞ

ðt � tÞ
q� bqc dt ð2Þ

2.2 Development of stability analysis of fractional-order system

Theorem 1 When 0<α<1, x∊Rn, A∊Rnxn, the fractional-order system t0
Dα

tx(t) = Ax(t), t�t0 is

asymptotically stable if and only if all the characteristic values of matrix A satisfy |arg(eig

(A))|>απ/2. Furthermore, the system is stable if and only if all the characteristic values of

matrix A satisfy |arg(eig(A))|�απ/2, which can be found in [21].

Theorem 1 is the existing stability criterion of a linear time-invariant fractional-order sys-

tem with 0<α<1. This theorem is suitable only for a linear time-invariant fractional-order sys-

tem, but it is often misused [26]. For time-invariant fractional-order nonlinear systems, if all

the eigenvalues of the Jacobi matrix at equilibrium are stable, then the equilibrium is called
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stable equilibrium point. However, Theorem 1 is not suitable for time-varying fractional-order

systems.

Considering the time-varying fractional-order system with order 0<α<1 and initial value x
(t0), the following is obtained:

t0
Da

t xðtÞ ¼ f ðt; xÞ ð3Þ

Where α∊(0,1), f:[t0,1]×Ω!Rn is piecewise continuous and meets the local Lipschitz condi-

tion (Ω∊Rnis a domain that contains x = 0).

Definition 2 A continuous function β: [0,t)![0,1) is said to belong to class-k if it is strictly

increasing and β(0) = 0.

Definition 3 If and only if f ðt; xeÞ ¼ t0
Da

t xe, then constant xe is the equilibrium point of the

Caputo-defined fractional-order dynamic system (3). Without loss of generality, we assume xe

= 0.

Theorem 2 [25] Let xe = 0 be an equilibrium point of the fractional-order system (3).

Assume that Lyapunov function V(t,x(t)) and class-k functions βi(i = 1, 2, 3) exist, which sat-

isfy

b1ðkxkÞ � Vðt; xÞ � b2ðkxkÞ; ð4Þ

0Dg

t Vðt; xðtÞÞ � � b3ðkxkÞ; ð5Þ

Where γ2(0,1), then the equilibrium point of the system (3) is asymptotically stable.

3. Stability of time-varying fractional-order systems

3.1. Fractional-order system stability analysis

For linear time-varying fractional-order systems, the system (3) can be generally described in

the following form:

t0
Da

t xðtÞ ¼ AðtÞxðtÞ; t � t0 ð6Þ

For the system (6), we present stability Theorem 3 after introducing Lemma 1 as follows:

Lemma 1 For a continuous function f(x) = xT Ax, x 2 Rnx1, if A2 Rnxn is a positive definite

matrix, then

lminðAÞkxk
2
� f ðxÞ � lmaxðAÞkxk

2
ð7Þ

in which λmax(�) and λmin(�) are the maximum and minimum eigenvalues, respectively, of the

corresponding matrix.

Theorem 2 provides a guiding stability determination framework for general fractional-

order systems, but its complexity is inconvenient when analyzing specific problems. Further-

more, Theorem 1 is not suitable for time-varying systems (6) [21]. Hence, for the time-varying

fractional-order system (6), a stability analysis method will be given, we define a real symmet-

ric matrix H(t)as follows:

HðtÞ ¼ AðtÞ þ ATðtÞ ð8Þ

As H(t) is a real symmetric matrix, whose eigenvalues are real numbers. Let λmin and λmax

be the respective minimum and maximum eigenvalues of H(t). We thus obtain the following

asymptotic stability sufficiency with Theorem 3.

Theorem 3 The sufficient condition for asymptotic stability of the fractional-order system

(6) with equilibrium point xe=0 is that the maximum eigenvalue of H(t) satisfies λmax < 0.
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Proof: Let Vðx; tÞ ¼ xTðtÞxðtÞ ¼ kxðtÞk2
,

Taking the α-order derivative of V(x,t)with respect to time t, we have

Vaðx; tÞ ¼
da

dta
xTðtÞ � xðtÞ þ xTðtÞ �

da

dta
xðtÞ

¼ xTðtÞ½ATðtÞ þ AðtÞ�xðtÞ

¼ xTðtÞHðtÞxðtÞ

As λmin and λmaxare the minimum and maximum eigenvalues of the real symmetric matrix

H(t), respectively, according to Lemma 1, we have

lminkxðtÞk
2
� xTðtÞHðtÞxðtÞ � lmaxkxðtÞk

2

Therefore Vaðx; tÞ � lmaxkxðtÞk
2

Considering the theorem’s condition λmax < 0, we can easily obtain the conclusion because

V(x,t)satisfies the condition (1) of Theorem 2, and Vα(x,t) satisfies the condition (2) of Theo-

rem 2. Hence, according to Theorem 2, the time-varying fractional-order system (6) with equi-

librium point xe is asymptotically stable.

3.2 Examples of fractional-order system stability analysis

The stability analysis of two typical systems is given to demonstrate the effectiveness of the pro-

posed stability theory.

Example 1: Consider the linear time-varying fractional-order system (α = 0.95)

t0
Da

t xðtÞ ¼ ½ ðð� bþ aÞ þ acosðotÞÞx1 þ ðb � asinðotÞÞx2

ð� b � asinðotÞÞx1 þ ðð� bþ aÞ � acosðotÞÞx2
�: ð9Þ

The system matrix of (9) is

AðtÞ ¼ ½ ð� bþ aÞ þ acosðotÞ b � asinðotÞ
� b � asinðotÞ ð� bþ aÞ � acosðotÞ �:

We assume that a = 0.25, b = 1, ω = 2, the real symmetric matrix H(t) is:

HðtÞ ¼ AðtÞ þ ATðtÞ ¼ ½ � 1:5þ 0:5cosð2tÞ � 0:5sinð2tÞ
� 0:5sinð2tÞ � 1:5 � 0:5cosð2tÞ �:

The eigenvalues of H(t)can be obtained:

l1 ¼ � 1; l2 ¼ � 2:

All the eigenvalues are negative, we can conclude that system (9) is stable from Theorem 3.

Example 2: Consider the following linear time-varying fractional-order system

t0
Da

t _xðtÞ ¼ ½ ð� bþ asinotÞx1 þ aðcosotÞx2

aðcosotÞx1 þ ð� b � asinotÞx2
�: ð10Þ
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The system matrix A(t) and the corresponding real symmetric matrix H(t) of (10) are

acquired as follows:

AðtÞ ¼ ½ � bþ asinot acosot
acosot � b � asinot �;HðtÞ ¼ ½ � 2bþ 2asinot 2acosot

2acosot � 2b � 2asinot �
The eigenvalues of H(t) can be calculated: λ1,2 = -2b±2a Taking a = 0.25, b = 0.5 (λ1 = -0.5,

λ2 = -1.5),this system is stable according to Theorem 3. And if we take a = 1, b = 0.5(λ1 = 1,λ2 =

-3), it is unable to determine the stability of this system from Theorem 3.

These examples show that Theorem 3 can discriminate the stability of time-varying frac-

tional-order systems accurately. However, it is worth noting that this theorem is only a suffi-

cient condition rather than a sufficient and necessary condition.

4. Control and synchronization of fractional-order Lü chaotic

system

With the global boom of complex network research [27], chaotic systems as a part of complex

networks are being widely applied [28]. The robust control and synchronization of chaotic sys-

tems have been gaining increasing attention. However, because of the lack of a stability analy-

sis method for fractional-order systems, no systematic solution exists for the control and

synchronization of a fractional-order chaotic system. With the use of the time-varying frac-

tional-order stability theorem proposed in this paper, two controllers are designed for the frac-

tional-order Lü chaotic system’s tracking control and synchronization.

4.1 Tracking control of fractional-order Lü chaotic system

The mathematic model of fractional-order Lü chaotic system is described as follows [26]:

t0
Da

t xðtÞ ¼ gðxÞ ¼ ½
30ðx2 � x1Þ

� x1x3 þ 22:2x2

x1x2 � 8:8x3=3 �: ð11Þ

Evidently, the above system is a typical nonlinear fractional-order system. To make the frac-

tional-order Lü chaotic system (11) stable, the controller is designed as follows:

uðtÞ ¼ KxðtÞ: ð12Þ

Where u = [u1,u2,u3]T, x = [x1,x2,x3]T, k = [k1,k2,k3]T, and the real number k1,k2,k3 must be

selected properly. By exerting the control action (12) into the system (11), we obtain

t0
Da

t xðtÞ ¼ ½
30ðx2 � x1Þ þ u1

� x1x3 þ 22:2x2 þ u2

x1x2 � 8:8x3=3þ u3
�: ð13Þ

We then simplify the controller as u1 = 0,u2 = kx2,u3 = 0 Single-variable linear feedback

needs to be used to control the system. The controlled fractional-order Lü system can thus be
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written in the form of the following linear time-varying fractional-order system:

t0
Da

t xðtÞ ¼ ½
� 30 30 0

0 kþ 22:2 � x1

0 x1 � 8:8=3 �½
x1

x2

x3

�: ð14Þ

The matrix A(t) of the controlled system (14) is

AðtÞ ¼ ½
� 30 30 0

0 kþ 22:2 � x1

0 x1 � 8:8=3 � ð15Þ

The matrix A(t) the control parameter k and is a function of the state variable x1. Thus, it is

a time-varying matrix even if the control parameter k is fixed. According to Eq 8, H(t)is

HðtÞ ¼ ½
� 60 30 0

30 2ðkþ 22:2Þ 0

0 0 � 2 � 8:8=3 � ð16Þ

By solving det(λI−H(t)) = 0, we obtain the eigenvalues of H(t).Combining the root locus

analysis, we determine that all the eigenvalues of H(t) are less than 0 if k<−29.7. According to

Theorem 3, the controlled Lü system (13) is uniformly asymptotically stable.

Fig 1. shows the fractional-order Lü system (13) controlled to the zero equilibrium point

with k = -35.

The solid lines in Fig 1. shows the motion curves of each state of the fractional-order Lü cha-

otic system when control action is added at t = 10s. Clearly, the system gradually converges to

equilibrium point S0 = (0,0,0) after the control action is added. The above design shows that we

can easily obtain a feedback control parameter k to make the system stable using H(t)-based

Theorem 3. Given the time-varying state x1 contained in A(t), obtaining a feedback control

parameter k using A(t)-based Theorem 1 is difficult.

4.2 Synchronization of fractional-order Lü chaotic system

System (11) is selected as the driving system

t0
Da

t xðtÞ ¼ ½
30ðx2 � x1Þ

� x1x3 þ 22:2x2

x1x2 � 8:8x3=3
�: ð17Þ
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The response system is

t0
Da

t yðtÞ ¼ ½
30ðy2 � y1Þ þ u1

� y1y3 þ 22:2y2 þ u2

y1y2 � 8:8y3=3þ u3

�: ð18Þ

The synchronization error is defined as follows:

e1 ¼ y1 � x1; e2 ¼ y2 � x2; e3 ¼ y3 � x3:

Our purpose is to design u(t) = [u1,u2,u3]T to obtain lim
t!1
kek ¼ lim

t!1
ky � xk ¼ 0. Then, the

error system is

t0
Da

t eðtÞ ¼ ½
30ðe2 � e1Þ þ u1

x1x3 � y1y3 þ 22:2e2 þ u2

y1y2 � x1x2 � 8:8e3=3þ u3

� ¼ ½
30ðe2 � e1Þ þ u1

� y3e1 � x1e3 þ 22:2e2 þ u2

y2e1 þ x1e2 � 8:8e3=3þ u3

�: ð19Þ

The controller is designed as u1 = 0, u2 = y3e1+ke2, u3 = -y2e1.The objective is to use a simple

signal feedback control to synchronize the systems. The controlled fractional-order Lü system

can be written as

t0
Da

t eðtÞ ¼ ½
� 30 30 0

0 kþ 22:2 � x1

0 x1 � 8:8=3 �½
e1

e2

e3

�: ð20Þ

In accordance with the design process of the tracking controller in Section 4.1, the same

feedback coefficient k can guarantee the stability of the synchronization systems. The synchro-

nization results of the fractional-order Lü system when k = -35 are shown in Fig 2.

The solid lines in Fig 2 show the motion curves of each state of the fractional-order Lü cha-

otic driving system and response system when the control action is added at t = 10 s. Clearly,

the response curves tend to the driving curves after the control action is added. The error

curves in sub-figures d)–e) of Fig 2 show the quickness and effectiveness of the method.

Fig 1. The state diagram of fractional-order Lü chaotic system with robust controller. The motion curves of each

state of the fractional-order Lü chaotic system when control action is added at t = 10s.

https://doi.org/10.1371/journal.pone.0194112.g001

Controlling and synchronizing a fractional-order chaotic system with time-varying

PLOS ONE | https://doi.org/10.1371/journal.pone.0194112 March 30, 2018 8 / 11

https://doi.org/10.1371/journal.pone.0194112.g001
https://doi.org/10.1371/journal.pone.0194112


The above design shows that we can easily obtain a feedback control parameter k to make

the system stable according to the proposed method. However, the time-varying state x1 is

contained in A(t), so it is difficult to obtain a feedback control parameter k based on Theorem

1.

5. Conclusion

A sufficient stability theorem for time-varying fractional-order systems is proposed because

the existing stability determination methods for fractional-order systems are complicated and

difficult to apply. On the basis of the proposed theorem, a feedback controller for the frac-

tional-order Lü chaotic system is designed for tracking control and synchronization. Simula-

tion results demonstrate the effectiveness of the method.
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