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Abstract

Textual representations play an important role in the field of natural language processing

(NLP). The efficiency of NLP tasks, such as text comprehension and information extraction,

can be significantly improved with proper textual representations. As neural networks are

gradually applied to learn the representation of words and phrases, fairly efficient models of

learning short text representations have been developed, such as the continuous bag of

words (CBOW) and skip-gram models, and they have been extensively employed in a vari-

ety of NLP tasks. Because of the complex structure generated by the longer text lengths,

such as sentences, algorithms appropriate for learning short textual representations are not

applicable for learning long textual representations. One method of learning long textual rep-

resentations is the Long Short-Term Memory (LSTM) network, which is suitable for process-

ing sequences. However, the standard LSTM does not adequately address the primary

sentence structure (subject, predicate and object), which is an important factor for producing

appropriate sentence representations. To resolve this issue, this paper proposes the depen-

dency-based LSTM model (D-LSTM). The D-LSTM divides a sentence representation into

two parts: a basic component and a supporting component. The D-LSTM uses a pre-trained

dependency parser to obtain the primary sentence information and generate supporting

components, and it also uses a standard LSTM model to generate the basic sentence com-

ponents. A weight factor that can adjust the ratio of the basic and supporting components in

a sentence is introduced to generate the sentence representation. Compared with the repre-

sentation learned by the standard LSTM, the sentence representation learned by the D-

LSTM contains a greater amount of useful information. The experimental results show that

the D-LSTM is superior to the standard LSTM for sentences involving compositional knowl-

edge (SICK) data.
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Introduction

Learning textual representations is a vital part of natural language processing (NLP) and

important for subsequent NLP tasks. Recently, the study of representations of phrases and sen-

tences has attracted the attention of many researchers, who have achieved a degree of success

[1].

Studies of short textual representations have attained a number of achievements, and Mik-

lov’s continuous bag of words (CBOW) model and the skip-gram model (continuous skip-

gram model) are among the most famous models. The word representations learned from

these models present a relatively good performance in many NLP tasks, including word analo-

gies [2, 3]. Recently, interests have shifted towards extensions of these ideas beyond the indi-

vidual word-level to larger bodies of text, such as sentences. Researchers hope to directly learn

sentence representation via the sum or average based on the word representation, and they

have achieved satisfactory results for certain simple NLP tasks [4]. Because of the variable

length and complex structure of sentences, these simple algorithms cannot handle complex

tasks (such as evaluating the similarity between two sentences). To resolve this problem, Kiros,

Tai and Le have proposed methods of learning fixed-length sentence representations [5–7].

Among all models for learning sentence representations, recurrent neural network (RNN)

models, especially the Long Short-Term Memory (LSTM) model [8], are among the most

appropriate models for processing sentences, and they have achieved substantial success

in text categorization [9] and machine translation [10]. Therefore, this paper has also intro-

duced LSTM networks into a dependency-based Siamese LSTM model (D-LSTM) for better

performance.

In this paper, a sentence is composed of two parts, namely, the basic component and the

supporting component. We have improved upon the traditional method, which employs stan-

dard LSTM to learn sentence representations, and proposed the D-LSTM, which is based on

sentence dependency to learn sentence representations. The D-LSTM can read sentences with

different lengths to generate fixed-length representations. The basic component, which con-

tains fundamental information about a sentence, is obtained by the standard LSTM language

model. The supporting component contains the main sentence information (primarily from

the subject, predicate and object of a sentence) and is generated after performing a dependency

parse on the sentence. While generating the sentence representation, the basic component

occupies the dominant position and the supporting component plays a supporting role. This

paper has introduced a weight factor (α) that can adjust the ratio of the basic component to

the supporting component in the sentence representation to learn the final sentence represen-

tation. In the sentence similarity task, the sentence representation learned by D-LSTM has

achieved suitable results.

The key contribution of this study is the division of the sentence representation into two

parts, i.e., the basic component and the supporting component. Inspired by this idea, this

paper proposes the D-LSTM model, which can capture richer information about a sentence

than the standard LSTM model and learn an efficient sentence representation. The effects of

the different proportions of the basic component and the supporting component in the sen-

tence representation have been carefully investigated via a series of experiments. The addition

of a supporting component in the basic representation can improve the performance of the

sentence representation.

Related work

After Bengio proposed the neural probabilistic language model [11], the popularity of neural

networks for learning text representations increased. Recently, numerous achievements have
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been made in learning word-level representations by neural networks, such as the famous

CBOW model [3]. Because of the natural advantages of RNNs and LSTMs in sequence pro-

cessing, researchers have begun to apply RNNs and LSTMs to learn better sentence representa-

tions. For example, Kiros proposed the skip-thoughts model, which can extend the skip-gram

approach of word2vec from the word level to the sentence level [5]. RNNs adapt standard feed-

forward neural networks for sequence data (x1,. . .xT), and at each t 2 {1,. . .,T}, updates to a

hidden-state vector ht are performed via

ht ¼ sigmoidðWxt þ Uht� 1Þ ð1Þ

Although RNNs present satisfactory performance in handling sequences, they also present

a considerable flaw related to long-term dependency, which has been discussed by many

researchers [12]. LSTMs networks are explicitly designed to avoid the long-term dependency

problem. Similar to RNNs, the LSTM sequentially updates a hidden-state representation; how-

ever, these steps also rely on a memory cell that contains four components (which are real-

value vectors): the memory state ct and the output gate ot, which determine how the memory

state affects other units, and the input and forget gates it and ft, respectively, which control

what is stored in and omitted from memory based on each new input and the current state.

The following updates were performed at each t 2 {1,. . .,T} in a LSTM parameterized by the

weight matrices Wi,Wf,Wc,Wo,Ui,Uf,Uc,Uo and bias vectors bi,bf,bc,bo:

it ¼ sigmoidðWixt þ Uiht� 1 þ biÞ ð2Þ

ft ¼ sigmoidðWfxt þ Uf ht� 1 þ bf Þ ð3Þ

~ct ¼ tanhðWcxt þ Ucht� 1 þ bcÞ ð4Þ

ct ¼ it ʘ ~ct þ ft ʘ ct� 1 ð5Þ

ot ¼ sigmoidðWoxt þ Uoht� 1 þ boÞ ð6Þ

ht ¼ ot ʘ tanhðctÞ ð7Þ

Many LSTM variants are available. One popular variant introduced by Gers and Schmidhu-

ber adds “peephole connections” [13]. Another variant is the gated recurrent unit (GRU) [14].

Although many LSTM variants are available, Greff performed a comparison of popular vari-

ants and identified their similarities, and the results indicated that the forget gate and output

activation function may be the most vital components in LSTMs [15].

Recently, a similar approach to neural network methods has achieved remarkable improve-

ments in performance. Tai, Socher, and Manning (2015) proposed the Tree-LSTMs, which

generalize the order-sensitive chain-structure of standard LSTMs to tree-structured network

topologies [6]. Each sentence is converted into a parse tree (using a separately trained parser),

and the Tree-LSTM composes its hidden state at a given tree node from the corresponding

word and the hidden states of all child nodes. Compared with the standard LSTM model,

Tree-LSTMs present a forget gate for each child node, which enables the Tree-LSTMs to selec-

tively obtain information about the child’s node and produce a better sentence representation.

With the development of neural networks, a new Siamese Network architecture is also

employed for learning sentence representations [16, 17]. Kenter, Borisov and Rijke proposed

the Siamese Continuous Bag of Words (Siamese CBOW) model, which was based on the Sia-

mese Network [18]. Their work highlighted that word embeddings trained with the currently
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available methods are not optimized for the task of sentence representation, whereas Siamese

CBOW handles this problem by directly training and then averaging word embeddings. The

underlying neural network learns word embeddings by predicting the surrounding sentences

from a sentence representation.

Jonas and Aditya combined the Siamese Network with LSTMs and proposed their Manhat-

tan LSTM model (MaLSTM) for modelling the semantic similarity among sentences [19]. The

MaLSTM model is shown in Fig 1.

Two LSTMs are used in the MaLSTM: LSTMa and LSTMb (LSTMa = LSTMb in their experi-

ment). Each LSTM processes a sentence in the input sentence pair. The LSTM learns a mapping

from the space of variable length sequences of din-dimensional vectors into Rdrep (din = 300, drep
= 50). Each sentence (represented as a sequence of word vectors) x1,.. . .,xT is passed to the

LSTM, which updates its hidden state at each sequence-index via Eqs (2)–(7). The final repre-

sentation of the sentence is encoded by hT 2 Rdrep , which is the last hidden state of the model.

For a given pair of sentences, a pre-defined similarity function g : Rdrep � Rdrep ! R is applied to

the LSTM representations (in their study, gðhðaÞTa ; h
ðbÞ
Tb Þ ¼ expð� khðaÞTa � hðbÞTb k1Þ 2 ½0; 1�). Similari-

ties in the representation space are subsequently employed to infer the sentences’ underlying

semantic similarities. Empirically, the results are fairly stable across various types of simple simi-

larity functions; however, the function g, which utilizes the Manhattan distance, slightly outper-

forms other reasonable alternatives, such as cosine similarity [20]. In addition, methods of pre-

training and synonym expansion for similar datasets have been applied to expand limited train-

ing data.

Materials and methods

Dependency-based Siamese LSTM model

The LSTM model has a natural advantage in handling sequences, such as sentences. Compared

with words, sentences have more complex structures, and a variety of relations are observed

among words in the same sentence. To learn more powerful sentence representations, the dif-

ference between sentences and words should be considered. As previously mentioned, a com-

plete sentence representation has two parts: the basic component vbasic, which contains the

basic sentence information, and the supporting component vsupp, which contains the main

sentence information (primarily from the subject, predicate and object of a sentence). Based

on this idea, this paper proposes the D-LSTM as shown in Fig 2.

A similar network structure as that in Mueller et al. [19] is used to design the D-LSTM

model. The D-LSTM reads sentences a and b using two LSTMs and generates fixed-length

Fig 1. MaLSTM model. The MaLSTM use a LSTM to read in word-vectors that represent each input sentence and

employs its final hidden state as a vector representation for each sentence. The similarities among these representations

are employed as predictors of semantic similarity.

https://doi.org/10.1371/journal.pone.0193919.g001
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vectors vðaÞbasic and vðbÞbasic as the basic components of a and b, respectively (described in another

section). While generating the basic component, the D-LSTM also performs a dependency

analysis of a and b to obtain the relations among the words in the sentence. The D-LSTM gen-

erates the supporting components vðaÞsupp and vðbÞsupp by summarizing the hidden states that corre-

spond to the input words that have a specific relationship in the sentence (described in

another section).

In this study, the basic component of a sentence occupies the dominant position and the

supporting component plays a supporting role. Thus, the D-LSTM introduces the weight fac-

tor α, which can adjust the ratio of the basic component to the supporting component in the

sentence representation to generate the complete sentence representation. The final sentence

representation can be calculated using the following formula:

v ¼ vbasic þ a � vsupp ð8Þ

When α = 0, D-LSTM = MaLSTM.

The output layer of the D-LSTM can be changed according to the specific problem. This

study investigates sentence similarity, and the similarity between v(a) and v(b) can be calculated

using the similarity function SimðvðaÞ; vðbÞÞ ¼ e� kvðaÞ� vðbÞk1 .

The basic component and supporting component of a sentence are described in the follow-

ing subsections.

Basic component

The basic component contains basic information about a sentence. A common method of

obtaining the basic component is the bag-of-words model, which does not consider the order

of the words in the sentence and directly obtains the sentence representation by summarizing

(or applying another mathematical calculation) the word representation that corresponds to

the word. However, sentence representations obtained in this manner disregard important

information, such as the order of each word in the sentence. To solve this problem, the LSTM

model is chosen in this study to learn the basic component of a sentence. First, the D-LSTM

converts each word in the input sentence into a word embedding (in the experiment, pre-

Fig 2. Dependency-based LSTM model. The D-LSTM uses a LSTM to read in word vectors and employs its final

hidden state as a basic component vbasic for each sentence. The D-LSTM performs a dependency parse on the input

sentence and generates the supporting component vsupp for each sentence. By introducing the weight factor α, the

D-LSTM generates the sentence representation v according to vbasic and vsupp, and it then predicts the similarities

among these representations.

https://doi.org/10.1371/journal.pone.0193919.g002
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trained word2vec vectors were employed). Second, the D-LSTM updates its memory state ct
and hidden state ht at each t 2 {1,2,. . .,T} according to formulas (2)–(7). Finally, the model

generates set C = {c1,c2,. . .,cT}, which contains all the memory states, and set H = {h1,h2,. . .,hT},

which contains all the hidden states, where T represents the total number of words in the

sentence.

Because the LSTM receives the inputs in sequence and generates the memory states and

hidden states at the current time based on the output at the previous time, the memory states

and hidden states that are generated at a particular moment contain all previously entered

information. Therefore, this paper chooses vbasic = hT as the basic component of the sentence,

which is similar to that of Mueller et al. [19]. For example, as shown in Fig 2, vðaÞbasic ¼ hðaÞ6 and

vðbÞbasic ¼ hðbÞ4 .

Supporting component

In addition to the basic component, the supporting component contains supporting informa-

tion in the sentence representation in this paper. To learn the supporting component of the

sentence, the Stanford Parser [21], which is a natural language parser that determines the

grammatical structure of sentences, such as the groups of words that go together (e.g., as

“phrases”) and the words that represent the subject or object of a verb, is used to perform a

dependency parse on the sentences. A total of 37 universal syntactic relations, such as the nom-

inal subject (nsubj), object (obj) and indirect object (iobj), are observed. From a linguistic per-

spective, a sentence is composed of different components, such as a subject, predicate, object,

attributive adjective, adverbial phrase and complements. Of all the components, the subject,

predicate and object serve the most important roles in a sentence; thus, the D-LSTM labels the

words in the analysis that have the relation �subj (including nominal and clausal subject),

which can identify the subject of a sentence, and �obj (including direct object and indirect

object), which can identify the predicate and object of a sentence and generates the one-hot

vector vd. The D-LSTM generates the supporting component by the following formula:

vsupp ¼
1
P

vdi

PT
i¼1
vdi � hi ð9Þ

where vdi 2 f0; 1g is the value at the i-dimensional dimension of the vd and hi 2 H is the hid-

den state that corresponds to the i-th word. The results produced by the Stanford Parser are

listed in Table 1.

Table 1. Results produced by the Stanford Parser.

A classroom is full of students A classroom is empty

((’full’, ’JJ’), ’nsubj’, (’classroom’, ’NN’)) ((’empty’, ’JJ’), ’nsubj’, (’classroom’, ’NN’))

((’classroom’, ’NN’), ’det’, (’A’, ’DT’)) ((’classroom’, ’NN’), ’det’, (’A’, ’DT’))

((’full’, ’JJ’), ’cop’, (’is’, ’VBZ’)) ((’empty’, ’JJ’), ’cop’, (’is’, ’VBZ’))

((’full’, ’JJ’), ’nmod’, (’students’, ’NNS’)) -

((’students’, ’NNS’), ’case’, (’of’, ’IN’)) -

Each triplet in the table represents a dependency that occurs in the sentence. For example, in the triplet ((’full’,’JJ’),

’nsubj’, (’classroom’, ’NN’)), ‘JJ’ and ‘NN’ denote the parts of speech of the corresponding word and ‘nsubj’ denotes

the relation between ‘full’ and ‘classroom’.

https://doi.org/10.1371/journal.pone.0193919.t001
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According to the analysis results shown in Table 1, vðaÞd ¼ ð0; 1; 0; 1; 0; 0Þ and vðbÞd ¼

ð0; 1; 0; 1Þ. The supporting components can be calculated according to formula (9):

vðaÞsupp ¼
1

0þ 1þ 0þ 1þ 0þ 0
vðaÞd � ðh

ðaÞ
1 ; h

ðaÞ
2 ; h

ðaÞ
3 ; h

ðaÞ
4 ; h

ðaÞ
5 ; h

ðaÞ
6 Þ

T
¼

1

2
hðaÞ2 þ hðaÞ4

� �

vðbÞsupp ¼
1

0þ 1þ 0þ 1
vðbÞd � ðh

ðbÞ
1 ; h

ðbÞ
2 ; h

ðbÞ
3 ; h

ðbÞ
4 Þ

T
¼

1

2
hðbÞ2 þ hðbÞ4

� �

Experiment

Data. Two data sets are employed in the experiment: a sentence involving a compositional

knowledge (SICK) data set and a pre-training data set.

The SICK data set is a labelled data set that contains 9927 (5000 for training/4927 for test-

ing) pairs of sentences [1]. Each sentence pair is annotated with a relatedness label 2 [1,5] that

corresponds to the average relatedness judged by ten different individuals, and each of the

SICK sentence pairs has also been labelled as one of three classes: entailment, contradiction, or

neutral, which are to be predicted for the test examples.

The pre-training data set consists of separate sentence-pair data provided for the previous

SemEval 2013 Semantic Textual Similarity task. The pre-training data set contains approxi-

mately 11000 pairs of sentences that also have a label 2 [1,5] [22].

Semantic relatedness scoring

Evaluation metrics. There are three evaluation metrics in the semantic relatedness task:

the Pearson correlation coefficient, the Spearman correlation and the mean squared error

(MSE). The Pearson correlation coefficient is the official ranking basis and we mainly evaluate

the model based on the Pearson correlation coefficient.

The Pearson correlation coefficient (PCC), which is also referred to as the Pearson’s r, is a com-

mon metric for the semantic textual similarity tasks, and the Pearson product-moment correlation

coefficient (PPMCC), or the bivariate correlation, is a measure of the linear correlation between

the two variables X and Y. The PPMCC has a value between +1 and -1, where 1 represents a total

positive linear correlation, 0 denotes no linear correlation, and -1 represents a total negative linear

correlation [23]. The goal of the task is to obtain the largest possible PCC for the test set.

The Spearman rank correlation coefficient between two variables is equal to the Pearson

correlation between the rank values of those two variables [24]; whereas the Pearson correla-

tion assesses linear relationships, the Spearman correlation assesses monotonic relationships

(whether linear or not). If there are no repeated data values, a perfect Spearman correlation of

+1 or −1 occurs when each of the variables is a perfect monotonic function of the other. Intui-

tively, the Spearman correlation between two variables will be high when observations have a

similar (or identical, for a correlation of 1) rank (i.e., relative position label of the observations

within the variable: 1st, 2nd, 3rd, etc.) between the two variables, and low when observations

have a dissimilar (or fully opposite, for a correlation of −1) rank between the two variables.

The MSE of an estimator (of a procedure for estimating an unobserved quantity) measures

the average of the squares of the errors—that is, the difference between the estimator and what

is estimated. MSE is a risk function, corresponding to the expected value of the squared error

loss or quadratic loss [25].

Training details. The D-LSTM has two versions: the D-LSTM with pre-trained data and

the D-LSTM without pre-trained data.

The parameters of the D-LSTM are initialized with a Gaussian distribution (μ = 0.0, σ =

0.02) and a separate large value of 2.5 for the forget gate bias to facilitate the modelling of long-
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range dependence. In the pre-training version, the pre-training data set is used to pre-train the

model, and the pre-trained model will continue to be trained as the initial model of the train-

ing phase.

In the training phase, the 300-dimensional word2vec embeddings are employed, and they

are not updated during the training process. The D-LSTM uses the 50-dimensional hidden

representations ht and the memory cells ct. The parameter optimization is performed using the

Adadelta method of Zeiler [26] and gradient clipping (rescaling gradients in which the norm

exceeds a threshold) to avoid the exploding gradients problem [27].

Results. We implement the MaLSTM (without regression calibration and synonym aug-

mentation) and D-LSTM (pre-trained and no pre-trained versions) with Tensorflow. The

code will soon be made publicly available.

Pearson’s r values, the Spearman correlations and the MSEs for all models using the SICK

test data are listed in Table 2. The bolded model names represent models with pre-training,

and the numbers in brackets represent the alpha values for the model. The first four models

are the top SemEval 2014 submissions [28].

From the results shown in Table 2, D-LSTM(0.5) has a better Pearson correlation coeffi-

cient and Spearman correlation coefficient on the test set than the top SemEval 2014 submis-

sions and MaLSTM, whether pre-trained or not. At the same time, we noticed that D-LSTM

(0.5) has a slightly worse MSE than the top 1 SemEval 2014 submission (about 0.019 higher).

However, we think the MSE is an unstable metric, and we performed an extra experiment to

Table 2. Pearson’s r values, Spearman correlation and MSE for all models.

Model PEARSON SPEARMAN MSE

ECNU_run1 0.8280 0.7689 0.3250

StanfordNLP_run5 0.8272 0.7559 0.3230

The_Meaning_Factory_run1 0.8268 0.7722 0.3224

UNAL-NLP_run1 0.8043 0.7458 0.3593

MaLSTM 0.8211 0.7671 0.3601

D-LSTM(0.1) 0.8232 0.7659 0.3569

D-LSTM(0.2) 0.8268 0.7678 0.3513

D-LSTM(0.3) 0.8280 0.7721 0.3493

D-LSTM(0.4) 0.8280 0.7698 0.3488

D-LSTM(0.5) 0.8305 0.7729 0.3442

D-LSTM(0.6) 0.8298 0.7693 0.3454

D-LSTM(0.7) 0.8292 0.7711 0.3468

D-LSTM(0.8) 0.8284 0.7689 0.3479

D-LSTM(0.9) 0.8259 0.7663 0.3528

D-LSTM(1.0) 0.8217 0.7620 0.3602

MaLSTM 0.8177 0.7585 0.3693

D-LSTM(0.1) 0.8184 0.7583 0.3667

D-LSTM(0.2) 0.8230 0.7659 0.3600

D-LSTM(0.3) 0.8222 0.7637 0.3606

D-LSTM(0.4) 0.8270 0.7673 0.3527

D-LSTM(0.5) 0.8212 0.7599 0.3615

D-LSTM(0.6) 0.8200 0.7580 0.3623

D-LSTM(0.7) 0.8247 0.7638 0.3570

D-LSTM(0.8) 0.8231 0.7631 0.3592

D-LSTM(0.9) 0.8204 0.7579 0.3626

D-LSTM(1.0) 0.8216 0.7593 0.3619

https://doi.org/10.1371/journal.pone.0193919.t002
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show that the MSE is less stable than the Pearson correlation. With a total of 4927 samples in

the test set, we removed the worst 50 model predictions (approximately 1%) and recalculated

the Pearson correlation coefficient and the MSE. Upon doing so, we found that the MSE

changed by 7%, while the Pearson correlation coefficient only changed by 1%, which shows

that, compared with the MSE, the Pearson correlation coefficient is a relatively stable and reli-

able evaluation metric. This is also the reason why most similarity tasks use Pearson correla-

tion coefficient rather than the MSE as the main evaluation metric.

Entailment classification

Evaluation metrics. Each of the SICK sentence pairs is also labelled as one of three classes:

entailment, contradiction, or neutral. The models are evaluated in terms of classification accu-

racy. The goal of the task is to obtain the highest accuracy for the test set.

Training details. We use the best performing model in the similarity experiment to get

the sentence representation hðaÞTa ; h
ðbÞ
Tb , whereupon we compute the simple features (also success-

fully used by [6]): the element-wise (absolute) differences, jhðaÞTa � hðbÞTb j. Using only these fea-

tures, we train a radial-basis-kernel SVM using the same method as [19] to classify the

entailment labels.

Results. The test set accuracy of all the models are shown in Table 3. The first four models

are the top SemEval 2014 submissions [28], the last model is a simple SVM model with features

learned by D-LSTM, and the others are the more recently proposed methods [29–31].

Discussion

Impact of the supporting component vsupp on the model

To study the changes in model performance after adding the supporting component, this sec-

tion compares the D-LSTM (α = 0.5) with the MaLSTM. In this experiment, both versions of

each model (pre-trained and non-pre-trained) have been investigated, and the results are

shown in Fig 3.

The curve indicates that both the performance of the MaLSTM and D-LSTM models can be

enhanced by pre-training and shows that D-LSTM has higher training efficiency (Pearson’s r

of the D-LSTM is higher than that of the MaLSTM with the same training epochs). When

training is finished, the D-LSTM has a higher Pearson’s r than the MaLSTM. Although the

Table 3. Test set accuracy for the SICK semantic entailment classification.

Model Accuracy

Illinois-LH_run1 84.6

ECNU_run1 83.6

UNAL-NLP_run1 83.1

SemantiKLUE_run1 82.3

Reasoning-based n-best 80.4

LangPro Hybrid-800 81.4

SNLI-transfer 3-class LSTM 80.8

SVM with MaLSTM features 84.2

SVM with D-LSTM features 85.2

From the results of the entailment classification, the simple SVM model with features learned by D-LSTM achieved

higher classification accuracy than the other methods. Therefore, the addition of a supporting component does play a

role in optimizing sentence representation, and our model can learn more meaningful sentence representations.

https://doi.org/10.1371/journal.pone.0193919.t003
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standard LSTM does focus sufficient attention on the main structure of the sentence, our

D-LSTM incorporates this structure information when generating the sentence representation;

thus, a better representation can be obtained.

Influence of the weight factor α on model training

To describe the effects of different weight factors on model training, we selected weight factors

of α = 0.0 (the same as in the MaLSTM), α = 0.2, α = 0.5 for further analysis, and the results

are shown in Fig 4 (some weight factors are not shown as the curves are partially overlapped).

When the weight factor increases within a certain range, the slope of the curve will increase,

which indicates that the parameters of the model have been better optimized. This result dem-

onstrates that the structure information of the sentence (which primarily refers to the subject,

predicate and object) has an important impact on the sentence similarity task. With an

increase in the proportion of the structure information in the sentence representation, the

model can capture more powerful sentence representations to accurately evaluate the similari-

ties among sentences.

Influence of the weight factor α on model performance

This section chooses α 2 {0.0,0.1,0.2,. . ., 1.0} to study the influence of the weight factor on

model performance. The Pearson’s r values of the D-LSTM with each α are shown in Fig 5.

Fig 3. Change of Pearson’s r over training steps. The horizontal axis represents the number of training epochs, and

the vertical axis represents Pearson’s r. The solid line indicates the model with pre-training, and the dashed line

indicates the model without pre-training (the thick line indicates the D-LSTM, and the thin line indicates the

MaLSTM).

https://doi.org/10.1371/journal.pone.0193919.g003

Fig 4. Pearson’s r of different weight factors over training steps. The horizontal axis represents the number of

training epochs, and the vertical axis represents the Pearson’s r value. The dotted line indicates the MaLSTM, the thick

solid line indicates the D-LSTM with α = 0.2, and the fine solid line indicates the D-LSTM with α = 0.5.

https://doi.org/10.1371/journal.pone.0193919.g004
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As shown in Fig 5, the Pearson’s r values of the D-LSTM in the test set are higher than the

Pearson’s r values of the MaLSTM (α = 0.0), regardless of whether the model was pre-trained.

Based on the trend of the solid line, the Pearson’s r values of the D-LSTM increase and then

decrease. When α 2 [0.5,0.6], the Pearson’s r value has reached a maximum for the test set. Con-

versely, the dotted line does not follow a law similar to the solid line. The difference between the

solid and dotted lines is that only 9927 pairs of sentences are in the SICK data set without pre-

training data, and this number is insufficient for training a suitable LSTM model. Additional

pre-training data enhance the ability of the D-LSTM to capture powerful representation.

Examples of MaLSTM and D-LSTM predictions

To study the specific predictions of D-LSTM and MaLSTM after adding the supporting com-

ponent, this section selects specific pairs of sentences from the test set as shown in Table 4.

For the first pair, the MaLSTM only focuses on the basic information of the sentence and

pays minimal attention to the main components of the sentence. Thus, the adjective “brown

and white” before subject “dog” interferes with the MaLSTM predictions, whereas the

D-LSTM avoids this problem by paying adequate attention to the subject, predicate and object

of the sentence. In the third pair, these two sentences are longer than the first pair, which indi-

cates more noise, such as “small”, in the sentence. However, the D-LSTM exhibits satisfactory

performance.

Fig 5. Pearson’s r of D-LSTM with each weight factor. The horizontal axis represents the weight factor, and the

vertical axis represents the Pearson’s r. The dotted line indicates the model without pre-training, and the solid line

indicates the model with pre-training.

https://doi.org/10.1371/journal.pone.0193919.g005

Table 4. Examples of MaLSTM and D-LSTM predictions.

Sentence pair G M D

A brown and white dog is running through the water 3.1 3.47 3.14

A dog is emerging from a lake

A man is lazing 2.8 3.08 2.78

A man is doing exercises

A small child is showing excitement on a swing set at the park 3.8 3.97 3.81

A small child is showing boredom on a swing set at the park

A man is cutting a paper plate 3.6 3.69 3.66

The man is not cutting a paper plate

G denotes the ground truth relatedness 2 [1, 5], M = MaLSTM predictions, and D = D-LSTM (α = 0.5) predictions.

https://doi.org/10.1371/journal.pone.0193919.t004
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For the second pair, the meanings of the two sentences are opposite but the structure of the

two sentences are similar, and although this information is appropriately captured by

D-LSTM, the MaLSTM does not recognize this finding. As a result, the D-LSTM yields more

accurate predictions than the MaLSTM. The fourth pair of sentences also presents opposite

meanings, although the main difference is that the latter has the word “not”, which may have a

strong effect on the meaning of the sentence (especially in the sentiment analysis). This differ-

ence does affect the MaLSTM predictions. However, the D-LSTM can weaken the effect of

“not” on the sentence representation via the dependency analysis, which allows the D-LSTM

to focus greater attention on the man/cutting/plate in the sentence than the other components.

Thus, the D-LSTM prediction is similar to the true label.

Conclusions

This paper proposes the novel D-LSTM model for learning powerful sentence representations,

which are divided into two parts: a basic component and a supporting component. The

D-LSTM learns the basic component and the supporting component of the sentence via differ-

ent methods. To learn the basic component, the D-LSTM employs the standard LSTM net-

work. To overcome the lack of labelled data, the training data were expanded with additional

sentence pairs. To learn the supporting component, the D-LSTM employs a pre-trained Parser

to analyse the input sentence, and then it labels the subject, predicate and object in the sen-

tence to generate the dependency representation and finally learns the supporting component.

The weight factor α is introduced to adjust the importance of the basic component and the

supporting component and learn the sentence representation.

This study experimentally demonstrated that increasing the proportion of the supporting

component in the sentence representation increases the power of the representation. The effect

of the weight factor α on the training process and results was carefully investigated. The results

indicate that increasing the value of the weight factor improves the training efficiency within a

certain range as well as the performance of the model. To explain why the performance of the

D-LSTM is superior to the standard LSTM, this paper selected pairs of sentences in the test set

and compared their predictions. In sentences with more adjectives or turning words, such as

“not”, the D-LSTM can weaken the noise and learn more powerful sentence representations,

which is useful for identifying the similarities among sentences.

Acknowledgments

The work of this paper is supported by National Natural Science Foundation of China (No.

61572434 and No. 61303097).

Author Contributions

Data curation: Tengjun Yao, Jianyue Ni.

Formal analysis: Wenhao Zhu, Tengjun Yao.

Methodology: Wenhao Zhu, Tengjun Yao.

Project administration: Wenhao Zhu, Baogang Wei, Zhiguo Lu.

Resources: Tengjun Yao, Jianyue Ni.

Software: Tengjun Yao.

Supervision: Wenhao Zhu, Tengjun Yao, Jianyue Ni, Baogang Wei, Zhiguo Lu.

Validation: Tengjun Yao.

Dependency-based Siamese LSTM for learning sentence representations

PLOS ONE | https://doi.org/10.1371/journal.pone.0193919 March 7, 2018 12 / 14

https://doi.org/10.1371/journal.pone.0193919


Writing – original draft: Tengjun Yao.

References
1. Marelli M, Bentivogli L, Baroni M, Bernardi R, Menini S, Zamparelli R, et al. SemEval@ COLING. 2014:

1–8.

2. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space.

arXiv:1301.3781v3 [Preprint]. 2013 [cited 2017 Dec 27]: [12 p.]. Available from: https://arxiv.org/abs/

1301.3781

3. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases

and their compositionality. Advances in neural information processing systems. 2013: 3111–3119.

4. Iyyer M, Manjunatha V, Boyd-Graber J. Deep Unordered Composition Rivals Syntactic Methods for

Text Classification. ACL (1). 2015: 1681–1691.

5. Kiros R, Zhu Y, Salakhutdinov R R, Zemel R, Urtasun R Torralba A. Skip-thought vectors. Advances in

neural information processing systems. 2015: 3294–3302.

6. Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-

term memory networks. arXiv:1503.00075v3 [Preprint], 2015 [cited 2017 Dec 27]: [11 p.]. Available

from: https://arxiv.org/abs/1503.00075

7. Le Q, Mikolov T. Distributed representations of sentences and documents. Proceedings of the 31st

International Conference on Machine Learning (ICML-14). 2014: 1188–1196.

8. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation, 1997, 9(8): 1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

9. Graves A. Supervised sequence labelling with recurrent neural networks. Springer Science & Business

Media. 2012.

10. Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. Advances in neu-

ral information processing systems. 2014: 3104–3112.

11. Bengio Y, Ducharme R, Vincent P, Jauvirr C. A neural probabilistic language model. Journal of machine

learning research. 2003, 3(Feb): 1137–1155.

12. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult.

IEEE transactions on neural networks. 1994, 5(2): 157–166. https://doi.org/10.1109/72.279181 PMID:

18267787

13. Gers F A, Schmidhuber J. Recurrent Nets that Time and Count. Neural Networks, 2000. IJCNN 2000,

Proceedings of the IEEE-INNS-ENNS International Joint Conference on. IEEE, 2000, 3: 189–194. doi:

10.1109/IJCNN.2000.861302
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