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Abstract

In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference sys-

tem), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-

DE (differential evolution) has been investigated for the prediction of monthly and weekly

wind power density (WPD) of four different locations named Mersing, Kuala Terengganu,

Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-

PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform.

The performance of the proposed hybrid ANFIS models is determined by computing differ-

ent statistical parameters such as mean absolute bias error (MABE), mean absolute per-

centage error (MAPE), root mean square error (RMSE) and coefficient of determination

(R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and

accuracy than other models, and they can be suggested for practical application to predict

monthly and weekly mean wind power density. Besides, the capability of the proposed

hybrid ANFIS models is examined to predict the wind data for the locations where measured

wind data are not available, and the results are compared with the measured wind data from

nearby stations.

Introduction

The primary energy sources (fossil fuels) will soon be exhausted since they are used at a much

higher rate than they are found in the earth’s crust. Moreover, the price of fossil fuels is highly

unstable, and it causes huge greenhouse gases (GHG) emissions and environmental pollutions

[1, 2]. On the other hand, the wind energy is free, environmentally friendly and clean renew-

able energy. Consequently, in the fight of global climate change, wind energy is a major solu-

tion [3–5]. Globally, installed wind power capacity has reached 432.9GW at the end of 2015

where 63GW was added in 2015 alone [6].
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However, wind energy is unstable and subject to intermittent characteristics thus, the accu-

rate prediction of the wind speed and the wind power is a vital part of the successful establish-

ment of the wind energy conversion system [7]. Again, to build a wind farm in any particular

location, analysis of wind data, estimation of wind power and energy density are essential [8,

9]. The wind power density (WPD) of a particular location is the measure of the potentiality of

wind resources and the chance of extracting wind energy at different wind speed from that

location. The knowledge of WPD also helps the designer and investor to understand the per-

formance of wind turbine and to choose the optimal number of a wind turbine with a suitable

power rating [10, 11].

The wind power can be computed from several numerical methods [12, 13]. The problem

in numerical methods is that they need high computation time. In the recent years, artificial

intelligence (AI) techniques have received overwhelming popularity in the field of the wind

energy system and other engineering applications as they offer better advantages, including

fast computation time, require no knowledge of internal system parameters and compact solu-

tions [14–20]. Generally, wind speed and power prediction are divided into three categories,

namely, short-term (30 min to 6 h), medium-term (6h to 24h), and long-term (24h and longer)

predictions [7, 21].

Short-term wind prediction

In ref. [22], two different short-term wind power prediction methods namely; individual ANN

and hybrid strategy based on the physical and statistical methods were developed, where indi-

vidual ANN and hybrid strategy resulted in 10.67% and 2.01% root mean square error (RMSE)

respectively in the prediction. However, the hybrid strategy was 5 times slower than individual

ANN. An ANFIS based hybrid model was developed in [23] to predict short-term wind power

in Portugal that resulted in MAPE of 5.41%, outperforming five other approaches. The authors

used historical wind power data as inputs. In [24], the authors applied both ANN and ANFIS

models for hourly wind power prediction for a wind farm located in Southern Italy and their

prediction accuracy resulted worse when the prediction horizon was increased. More literature

review regarding the application of AI methodologies for the prediction of short-term wind

speed and power can be found in the ref. [16, 21].

Medium-term wind prediction

In [25], an ANN model was employed for the prediction of daily mean wind speed of 11 loca-

tions in India where actually measured wind data are not available. The authors used meteoro-

logical variables of the target locations from NASA surface meteorology and solar energy

database, and the prediction accuracy is compared with measured wind data that was collected

from a nearby meteorological station in Hamirpur. A hybrid method consists of wavelet trans-

form (WT), ANFIS, SVM, and GS was proposed in [26] for 6h ahead wind power forecasting.

This study showed that the proposed method can predict wind power with MAPE of 12.16%

to 13.83%. More literature review regarding the application of soft computing methodologies

for the prediction of medium-term wind speed and power can be found in the ref. [21].

Long-term wind prediction

An ELM model was developed in ref. [27] to predict the monthly wind power density of a par-

ticular location in Iran. The authors compared the WPD obtained from ELM model with that

from ANN, GP, and SVM. The results showed the performance of ELM higher than other

models. The suitability of ANFIS to estimate monthly WPD for the location of Aligoodarz,

Iran has been shown in the article [28]. For the prediction of long-term wind speed and
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power, an ANN and statistical based models were conducted in ref. [7] where the proposed

method showed rather promising results in view of the very small mean absolute error (MAE).

In study [29], a hybrid model denoted by WT+FA+FF+SVM was reported and the computed

MAPE were in the range of 13.46–18.74% for weekly prediction. More literature review

regarding the application of soft computing methodologies for the prediction of long-term

wind speed and power can be found in the ref. [21, 30].

Long-term prediction of wind speed has become a research hotspot in many different areas

such as restructured electricity markets, energy management, and wind farm optimal design.

Although ANFIS merges the learning power of the ANNs with the knowledge representation

of fuzzy logic, there are still some difficulties in ANFIS in constructing membership functions

(MFs). The difficulty of using ANFIS in constructing membership functions lies in tuning the

function to build the best model with high accuracy and better performance. Therefore, this

study proposed hybrid ANFIS; ANFIS-PSO, ANFIS-GA, and ANFIS-DE to predict long-term

(monthly and weekly) wind power density for four different places in Malaysia namely; Mer-

sing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas. The main benefit of combining

these three techniques (PSO/GA/DE) with ANFIS is to reduce the error rates by tuning and

optimizing the membership functions. Besides, this study examined the wind speed prediction

capabilities of the proposed models for the locations where measured wind data are not avail-

able, and the result of the wind speed extrapolation is compared with the measured wind data

collected from the nearby meteorological station.

Data collection and analysis

Site description

The aim of this study is to predict long-term (monthly and weekly) wind power of four differ-

ent locations situated under four distinctive state of Malaysia shown in Table 1. For this pur-

pose, wind speed data were collected from Malaysian Meteorological Department (MMD)

situated in the respective locations during the period (2004–2014). As presented in Table 1, the

wind data were measured at different heights above sea level by a rotating cup-type anemome-

ter. Those are 43.6m, 5.2m, 6.4m and 2.46m for Mersing, Kuala Terengganu, Pulau Langkawi

and Bayan Lepas respectively. It is important to mention that the wind data recorded in differ-

ent heights need to adjust to the same height because of various characteristics of wind speed

with altitude. The wind shear, which is the variation of wind velocity with altitudes, is most

pronounced near the surface (sea and land). Due to the drag of surface and viscosity of air, the

wind blows faster at higher altitudes.

Typically, the variation of wind speed at daytime follows the 1/7th power law whereas, when

the temperature become stable or better at night time, the wind speed close to the ground usu-

ally subsidies and at turbine altitudes, it does not decrease that much or may even increase.

Thus, the daily average wind speed data collected from the meteorological stations were

Table 1. Location and description of the sites.

Locations State

Geographical coordinate of meteorological

stations

Measured height of wind speed (m)

Latitude Longitude

Mersing Johor 2˚ 27’ N 103˚ 50’ E 43.6

Kuala Terengganu Terengganu 5˚ 23’ N 103˚ 60’ E 5.2

Pulau Langkawi Kedah 6˚ 20’ N 99˚ 44’ E 6.4

Bayan Lepas Pulau Penang 5˚ 17’ N 100˚ 16’ E 2.46

https://doi.org/10.1371/journal.pone.0193772.t001
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adjusted at turbine hub height of 50m using the power law. The power law for wind speed

adjustment at the different hub height is defined as [12]:

v
vo
¼

h
ho

� �a

ð1Þ

where v is the wind speed at is desired height h and vo is the wind speed at measured height ho.
While α is the power law coefficient. The exponent (α) is an empirically derived coefficient

that varies depending upon the stability of the atmosphere. For neutral stable conditions, it is

approximately 1/7, or 0.143, which is commonly assumed to be constant in wind resource

assessments. This is because the differences between the two levels are not usually so great as

to introduce substantial errors into the estimation (usually<50m). The value of the coefficient

varies from less than 0.10 for very flat land, water or ice to more than 0.25 for heavily forested

landscapes and the typical value of 0.14 for low roughness surfaces. The value 0.143 for the

coefficient has been chosen for this assessment [12, 31, 32].

Wind power density (WPD)

The wind power density (WPD) is an essential indicator to estimate wind potentiality in a spe-

cific location. The computation methods of WPD include; application of measured wind data

and the use of Weibull distribution function. The power in the wind at a measured wind speed

v passing through a blade sweep area can be expressed as [13, 33]:

P ¼
1

2n
� r �

Pn
i¼1

v3 ¼
1

2
� r � v3

W
m2

� �

ð2Þ

where n is the number of data points over a time period, v3 is the mean of cube of wind speed

and ρ is the air density (kg/m3), taken 1.175 kg/m3 in this study.

As presented in [12, 31], the 2-parameters Weibull distribution function is the most appro-

priate, recommended and acceptable model for wind potentiality analysis. In Weibull distribu-

tion, the probability distribution function (PDF) determines the probability of the wind at a

given velocity V and it can be expressed as [12, 34]:

f Vð Þ ¼
k
c

� �
V
c

� �k� 1

exp �
V
c

� �k
" #

ð3Þ

On the other hand, cumulative distribution function (CDF) of wind speed V indicates the

probability that the wind velocity is equal to or lower than V or within a given wind speed

range. CDF can be expressed as [12, 34]:

F Vð Þ ¼ 1 � exp �
V
c

� �k
" #

ð4Þ

where V is wind speed (m/s), k (dimensionless) is shape factor and c (m/s) is scale factor.

As earlier mentioned, the k and c (m/s) can be computed by several empirical methods.

Commonly used is standard deviation method, k and c are defined as follows [12, 13]:

k ¼
s

v

� �� 1:086

ð5Þ

c ¼
v

G 1þ 1

k

� � ð6Þ
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where v is the average wind speed (m/s), σ is standard deviation and Γ(x) is the gamma func-

tion which is defined as [35, 36]:

GðxÞ ¼
R1

0
tx� 1e� tdt ð7Þ

Another empirical method is power density or energy pattern factor method. In this

method, Epf is needed to be estimated to compute the shape factor k and scale factor c (m/s).

The Epf is known as wind pattern factor which is used for wind turbine aerodynamic design

and it is defined as follows [33, 37]:

Epf ¼
1

n

Pn
i¼1

vi
3

1

n

Pn
i¼1

vi

� �3
¼

v3

v3
¼

G 1þ 3

k

� �

G3 1þ 1

k

� � ð8Þ

In simple word, Epf is the ratio of mean of cube wind speed to cube of mean wind speed.

When Epf is known then shape factor k can be easily estimated by following formula [33, 37]:

k ¼ 1þ
3:69

ðEpf Þ
2

ð9Þ

The wind power density on the basis of Weibull probability density function is estimated

using the following equation [13]:

P ¼
1

2
r
R1

0
v3f wðvÞdv ¼

1

2
r c3G 1þ

3

k

� �

W=m2ð Þ ð10Þ

Methodology

As mentioned in section 2.1, to accomplish the study objective, 11 years (2004–2014) long-

term wind speed data measured by the rotating cup-type anemometer were collected from the

four different locations in Malaysia; Mersing, Kuala Terengganu, Pulau Langkawi and Bayan

Lepas. The raw data was thereafter adjusted to turbine hub height of 50m. The raw data used

in this study is presented in S1 Dataset: Supporting Information.rar. Afterward, the monthly

and weekly mean wind speed at 50m and the corresponding wind power density from mea-

sured data were applied on the developed standalone ANFIS and hybrid ANFIS models. In

this study, the data size used for the training and testing the prediction models are defined as P

and Q respectively. The purpose of the training process in ANFIS model is to minimize the

error between the actual target and the ANFIS output. Based on the literature on ANN, the

percentage of training data must be higher than testing data for effective learning of the system

before the system can produce a good result. The developed models were trained and validated

with several data segments such as P = 80%, Q = 20%; P = 70%, Q = 30% and P = 60%, Q =

40% for training and testing respectively. The percentage of data selected for training and test-

ing has been carefully tested based on the minimal error obtained in the statistical indicator. It

is important to mention that no specific rules were considered to choose the data size for train-

ing and testing the models. Application of different training and testing data size on the pre-

diction models helps to observe the error metrics and to choose best data size providing the

minimum error in the prediction.

ANFIS (adaptive neuro-fuzzy inference system)

The term adaptive neuro-fuzzy inference system (ANFIS) was first introduced by Jang in

1993. ANFIS is a hybrid intelligent scheme that merges the learning power of ANNs with the

knowledge representation of fuzzy logic to produce a powerful processing tool [38]. The fuzzy

inference system (FIS) is the core of ANFIS. FIS is based on expertise expressed in terms of

Hybrid ANFIS for wind power density prediction
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‘IF–THEN’ rules, thus it can be used to predict the behavior of many uncertain systems. One

of the advantages of FIS is that it does not require knowledge of the main physical process as a

pre-condition for operation. Thus, ANFIS integrates FIS with a back propagation learning

algorithm of a neural network. These techniques provide a method for the fuzzy modeling pro-

cedure to learn from the available data set, in order to compute the membership function

parameters that best allow the associated fuzzy inference system to track the given input/out-

put data as shown in Fig 1. For one input, two fuzzy ‘IF-THEN rule are generated for the maxi-

mum equal to 1 and minimum equal to 0. The fuzzy inference system employed in this study

uses one input x and one output f. A first-order Sugeno fuzzy model with two fuzzy if-then
rules is used as follows [39]:

Rule 1 : if x is A then f1 ¼ p1x þ t1 ð11Þ

Rule 2 : if x is B then f2 ¼ p2x þ t2 ð12Þ

Layer 1 contains membership functions (MFs) of input variables and provides the input val-

ues for the next layer. In the 1st layer, each node is adaptive as O = μAB(x), where μAB(x) are

MFs. The bell-shaped MFs is presented in Eq 13, for which the lowest and highest amounts are

0 and 1, respectively.

f x; a; b; cð Þ ¼
1

1þ x� c
a

� �2b ð13Þ

The function is subject to the following parameters, namely a, b and c. Each of these param-

eters defines as follows: a is half width of the curve; b define the gradient together with a, and c
is the midpoint of the membership function as shown in Fig 2.

In the 2nd layer (the membership layer), the weight of membership functions (MFs) is con-

sidered. Input values for this layer are supplied from the first layer. The nodes in the second

layer are a fixed node. The output is the product of all incoming signals and be described as,

wi ¼ mðxÞi � mðxÞiþ1
; for i ¼ 1; 2 ð14Þ

The output of each node indicates the weight strength of a rule.

In layer 3 or the rule layer, every node does the pre-condition matching of the fuzzy rules,

that calculate each rule’s activation level as well as the normalized firing strength. This is a

Fig 1. ANFIS structure.

https://doi.org/10.1371/journal.pone.0193772.g001
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fixed layer as well, and every node computes the ratio of the ith rule of the firing strength to

the sum of ith firing strengths of all rules as:

w�i ¼
wi

w1 þ w2

; for i ¼ 1; 2 ð15Þ

The outputs of this layer are named as normalized weights or firing strengths.

In layer 4 or defuzzification layer, all the adaptive nodes provide the resulting output values

from the inference of rules.

O4

i ¼ w�i � f ¼ w�i ðpix þ tiÞ ð16Þ

Here, the parameters set are shown as {pi,t}.
Layer 5 or the output layer summarizes the inputs and output from layer 4. This layer also

converts the results of fuzzy classification into a crisp. Here, the single node is fixed node, and

the whole incoming signal is sum up to produce overall output as below,

O5

i ¼
P

iw
�

i � f ¼
P

i wi � fP
i wi

ð17Þ

Three optimization techniques namely; PSO, GA, and DE were employed to adjust the

ANFIS membership function parameters. The main benefit of combining these three tech-

niques with ANFIS is to reduce the error rates by tuning and optimizing the membership

functions.

ANFIS-PSO

Particle swarm optimization (PSO) is an approach for optimizing “continuous” and “discon-

tinuous” decision-making functions as developed by Kennedy and Eberhart in 1995 [40]. PSO

Fig 2. Three parameters bell-shaped membership function; a, b and c.

https://doi.org/10.1371/journal.pone.0193772.g002
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has been used to model animals’ sociological and biological behavior such as groups of birds

searching for food [41]. PSO has also been employed in population-based search approach, in

which a particle of a population is present for each individual potential solution or swarm. In

this method, the position of each particle is changed constantly in a search space until getting

to the optimum solutions and computational limitations are reached [42]. In PSO, swarm

starts with a group of random solutions, each of which is called a particle, and s*i represents the

particle’s position. Likewise, a particle swarm moves in the problem space, where v*i expresses

the particle’s velocity. A function f is evaluated at each time step through input s*i. Every particle

records its best position related to the best fitness gained to this point, in p*i vector. p*i
g tracks

the most appropriate position identified by any neighborhood member. In universal form of

PSO, p*i
g represents the best appropriate position in the entire population. A new velocity is

achieved for any particle i in each iteration according to the best positions of individual, p*iðtÞ
and p*i

gðtÞ neighborhood. The new velocity can be presented by:

v*iðt þ 1Þ ¼ wv*iðtÞ þ c1 ;1

*

:ðp*iðtÞ � x*iðtÞÞ þ c2 ;2:
*

ðp*i
gðtÞ � x*iðtÞÞ ð18Þ

where w represents the inertia weight and positive acceleration coefficients are represented by

c1 and c2. ;1

*

and ;2

*

represent uniformly-distributed random vectors [0,1], in which a random

value is tried for every dimension. v*i limit in the [� vmax*; vmax*] range is relent on the problem

provided the velocity exceeds the mentioned limit. In some cases, it is rearranged within its

suitable limits. The position of every particle alters depending upon the velocities as:

s*iðt þ 1Þ ¼ s*iðtÞ þ v*iðt þ 1Þ ð19Þ

According to Eqs (18) and (19), the particles incline to gather around the best. Fig 3 depicts

the sequential PSO and ANFIS combination [43].

The PSO use for designing a fuzzy system (FS) or parameter optimization is expressed as

[44]:

Ri : if x1ðkÞ is Ai1 And . . .And xnðkÞ is Ain ; Then uðkÞ is ai ð20Þ

where, ai is a crisp value, k represents the time step, the input variables are x1(k),. . .,xn(k), Aij is

a fuzzy set and u(k) signifies the system output variable.

For the FS in Eq (20) which comprises r rules and n input variables, it’s free parameters are

defined through a position vector:

s
*
¼ ½m11; b11; . . . ;m1n; b1n; a1; . . . . . . ;mr1; br1; . . . ;mrn; brn; ar� 2 R

D
ð21Þ

mrj ¼ xjðkÞ; brj ¼ bfix; j ¼ 1; . . . ; n ð22Þ

Following the process of rule creation and initialization, the preliminary antecedent part

parameters are outlined. According to Eq (21) and Eq (22), the ith solution vector si* is created

as:

si
*
¼ ½si1 si2 . . . siD�
¼ ½m11 þ Dmi

11
; bfix þ Dbi

11
; . . . ;m1n þ Dmi

1n; bfix þ Dbi
1n; a1; . . . ;mr1 þ Dmi

r1; bfix
þ Dbir1; . . . ;mrn þ Dmi

rn; bfix þ Dbirn; ar� ð23Þ

In Eq (23), Δmij and Δbij represent small random numbers, ai designates a random number

distributed arbitrarily and homogeneously in the FS output range. The f (evaluation function)

for si* is calculated based upon the FS performance.

Hybrid ANFIS for wind power density prediction
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PSO looks for the best originator part parameters. PS represents the population size. Eq (21)

sets the elements in position s*. When t = 0, the s1*ð0Þ; . . . ; sp*ð0Þ or initial positions are created

arbitrarily according to the best-performing FS found in PSO (s*PSO). s1*ð0Þ is considered similar

to s*PSO. The left PS − 1 particles, s2*ð0Þ; . . . ; sps
*ð0Þ, are created by addition of uniformly-distrib-

uted random numbers to s*PSO shown as:

si
*
ð0Þ ¼ s*PSO þ wi

*
; i ¼ 2; . . . ; Ps ð24Þ

where, wi
* represents a random vector. The primary speed values of all particles, vi*ð0Þ;

i ¼ 1; . . . ; Ps, are generated randomly. Each particle’s performance is evaluated according to

Fig 3. The sequential combination of PSO and ANFIS.

https://doi.org/10.1371/journal.pone.0193772.g003
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the FS it signifies. f is described as the E(t) or error index mentioned above. The best position

(pi*) of each particle and the best particle pig
*

in the whole population is obtained according to f.
Eqs (18) and (19) overhaul the velocity and position of each particle. The whole learning pro-

cedure is accomplished as soon as a pre-defined paradigm is obtained [44].

There are five PSO main parameters used during conducting the experiment as shown in

Table 2, this includes; a maximum number of iterations, the population size of the domain, inertia

weight damping ratio and inertia weight, global and personal learning coefficient. For this case

studies, the optimum values of these parameters are determined by trial and error procedure.

ANFIS-GA

Genetic Algorithm is global search heuristics technique used to find solutions for optimization

and solve highly complex search problems. It is a particular class of evolutionary computing

method inspired by the idea of natural selection evolutionary process which implemented

inheritance, mutation, selection, and recombination [45]. In this hybrid approach, GA is com-

bined with ANFIS to extend its prediction proficiency. GA is implemented to improve ANFIS

performance and minimize the error rates by tuning and optimizing the membership func-

tions of a Sugeno type fuzzy inference system. The ANFIS-GA forecast allows reforming of the

upcoming behavior of the wind power density and therefore, determines the viability of the

wind power plants from any location.

The Hybrid ANFIS-GA model used is shown in Fig 4 [46].

GA model begins with a set of solutions (referred to as chromosomes) represented as popu-

lation. A new population is drawn from the completion of a previous population. New solu-

tions that formed from selected solution (offspring) are designated according to their fitness.

This process is repeated until some condition is occurred (for example, number of popula-

tions or improvement of the optimal solution) is fulfilled. To achieve this, ANFIS algorithm

plays an important role as part of the fitness function, f(x). The fitness with intervention of

ANFIS fitness function is represented by;

f1 xð Þ ¼
1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i¼0
ðdi � aiÞ

2

q

ð25Þ

where m is a number of feature attributes, ai is output derived through ANFIS, di is desired

wind power density.

The next fitness function can be presented as:

f2 xð Þ ¼
1

n � m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼mðdi � aiÞ
2

q

ð26Þ

where n is the total number of input features, di is set to minimum, ai is actual value of wind

power density and n − m represents remaining undesired features. The final equation is mini-

mized f(x), describe as,

f xð Þ ¼
f1ðxÞ þ f2ðxÞ

2
ð27Þ

Table 2. Parameter characteristics for ANFIS-PSO.

Population Size Iterations Inertia Weight Damping Ratio Learning coefficient

Personal Global

100 500 1 0.99 2 2

https://doi.org/10.1371/journal.pone.0193772.t002
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For this case study, we determined the specific parameters initialization for the GA. These

include; number of iterations, population size, mutation and crossover percentage. Selection

of these parameters decides, to a great extent, the ability of the designed controller. The range

of the tuning parameters is listed in Table 3.

Fig 4. ANFIS-GA model.

https://doi.org/10.1371/journal.pone.0193772.g004
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After the fitness f(x) of each chromosome x in the population is evaluated, new population

is created and following steps are repeated until it is completed. The better fitness gives bigger

chance to parent chromosomes from a population to be selected. Then it is crossover the

parents to form a new offspring with the crossover probability. Next mutation probability

mutates new offspring at each position in chromosome. As the solution goes under Reproduc-

tion, Crossover and Mutation with parameters setting from 3, the best solution in current pop-

ulation is returned if end condition is satisfied. The optimal solution calculated will help GA to

search for optimized membership function.

ANFIS-DE

Differential evolution (DE) is first introduced as a heuristic method by Storn and Price [47] to

solve problems involving global optimization as the solution to minimizing possibly nonlinear

and non-differentiable continuous space functions. Since both DE and GA are part of evolu-

tionary computing methodologies, DE functions almost in the same manner as GA. The differ-

ent in DE is using actual real numbers in a strict mathematical sense, which can be applied to

real-valued problems over a continuous space. As a result, the designs of crossover and muta-

tion are significantly different. The idea behind the method of DE is that the difference

between two vectors produces a difference vector which is used with a scaling factor to traverse

the search space [48].

In ANFIS-DE hybrid approach, DE is combined with ANFIS to improve the performance

of ANFIS prediction proficiency. Differential Evolution initialize with population size of (pop
size) individuals solutions which can be represented as xti ¼ 1; 2; . . . ; popsize for each individ-

ual where i represents the population and tth represents the generation to which the population

belongs. Then the algorithm depends on the operation of three main operators; mutation,

crossover and selection as shown in Fig 5 [46].

Mutation operator is the main operator of DE which differs from other EAs. We imple-

mented DE/rand/1 mutation strategy as described in Eq 28.

uti ¼ xtr1 þ F:ðxtr2 � xtr3Þ ð28Þ

where uti is the mutant individual for xti and r1,r2,r3 are randomly selected and satisfy individu-

als. Moreover, they are not equal to running index (i) and mutually different. F is control

parameter in the range of [0, 2]

Process crossover is carried out after the mutation phase is completed and can be described

as,

ytid ¼
utid if rand � CR;

xtid otherwise;
ð29Þ

(

where yti the trial individual, d is representing the dth component of individuals. The rand and

crossover rate CR is a parameter in the range of [0, 1].

Table 3. Parameter characteristics of ANFIS-GA.

Population Size Number of Iterations Crossover Percentage Mutation Percentage Mutation Rate Selection Pressure Selection Function

100 500 0.8% 0.3% 0.02 8 Roulette Wheel

https://doi.org/10.1371/journal.pone.0193772.t003
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Selection operation in DE is also different from other evolutionary algorithms. Once all pop
size trial individuals are generated, the selection operation is processed as:

xtþ1

id ¼
yti if fitness ðy

t
iÞ � fitness ðxtiÞ;

xti otherwise;
ð30Þ

(

where fitness(x) is the fitness function. Table 4 shows the initial parameters of the ANFIS-DE

model.

Fig 5. ANFIS-DE model.

https://doi.org/10.1371/journal.pone.0193772.g005

Table 4. Parameter characteristics for ANFIS-DE.

Population Size No. of Iterations Crossover Percentage Lower bound of scaling factor Upper bound of scaling factor

100 500 0.2% 0.2 0.8

https://doi.org/10.1371/journal.pone.0193772.t004
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Statistical indicators model performance evaluation

The performance of the proposed system can be checked by computing several statistical

parameters. The most popular statistical error indicators are the mean absolute bias error

(MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coeffi-

cient of determination (R2). The MABE is the average quantity of the summation of all abso-

lute bias error between the predicted and the measured value represented as:

MABE ¼
1

N
PN

i¼1
jðVi;P � Vi;MÞj ð31Þ

The MAPE is the mean absolute percentage difference between the predicted and measured

wind power density represented:

MAPE ¼
1

N
PN

i¼1

Vi;P � Vi;M

Vi;M

 !�
�
�
�
�

�
�
�
�
�
� 100 ð32Þ

The RMSE presents the accuracy of the model by comparing the deviation between pre-

dicted and measured wind power density. The value of RMSE is always positive and it is

defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
PN

i¼1
ðVi;P � Vi;MÞ

2

r

ð33Þ

The coefficient of determination (R2) indicates the strength of linear relationship between

the predicted and measured wind power density. R2 is obtained by:

R2 ¼ 1 �

PN
i¼1
ðVi;P � Vi;MÞ

2

Px
i¼1
ðVi;M � VM;avgÞ

2
ð34Þ

In the Eqs (31–34), Vi,P and Vi,M are wind power density estimated from developed predic-

tion models and measured data respectively.

Result and discussion

Monthly wind power density prediction

In the current study, hybrid ANFIS (ANFIS-PSO, ANFIS-GA, ANFIS-DE) and standalone

ANFIS models were developed to predict wind power density. The above-mentioned models

were trained and tested with different data size. Tables 5 and 6 shows descriptive values of

input and output parameters respectively such as; maximum (Max.), minimum (Min.), stan-

dard deviation (St Dev.) and range for different locations. On the other hand, Fig 6 shows

visual presentation of wind speed at 50m hub height for study locations. It can be found in Fig

6 that maximum wind speed prevails in Mersing and followed by Pulau Langkawi, Bayan

Lepas, and Kuala Terengganu. The raw data used in this study is presented in S1 Dataset: Sup-

porting Information.rar.

Table 7 presents the error metrics, including MAPE, MABE, RMSE obtained while training

the prediction models with the input-output data set for Mersing, Langkawi, Bayan Lepas and

Kuala Terengganu. The data size for training and testing the models were P = 105 and Q = 27

respectively. In this study, the performance of the prediction models is categorized based on

lowest RMSE. It can be observed from Table 7 that ANFIS-PSO model has lowest RMSE,

MAPE and MABE in the training stage for the data set of Mersing, Bayan Lepas, and Kuala

Terengganu whereas, ANFIS-GA ranks in the first for the data set of Pulau Langkawi. Table 8
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summarizes the RMSE, MAPE and MABE performance metrics when testing data set of differ-

ent underlying locations is applied to the predictions models. As can be seen from Table 8, the

ANFIS-GA model ranks in the first for the underlying data sets of Mersing and Kuala Tereng-

ganu. On the other hand, ANFIS-PSO model provides the smallest error metrics for the data

set of Pulau Langkawi and Bayan Lepas.

It is important to mention that sometimes ANFIS model provides better performance than

hybrid ANFIS models but does not provide the best model performance for any of the under-

lying locations. For instance, ANFIS shows second and third best performance for the data set

of Bayan Lepas and Mersing respectively when testing the prediction models.

The R2 is the correlation between measured and predicted WPD, which has the highest

value of one. A pronounced observation of R2 from Tables 7 and 8 revealed a very good corre-

lation between measured and predicted WPD obtained when training and testing the predic-

tion models using the data set from Mersing, Pulau Langkawi, and Bayan Lepas. On the other

hand, the measured and predicted WPD of Kuala Terengganu suffers comparatively lower cor-

relation when training and testing the prediction models.

Furthermore, the performance of the developed prediction models is compared to different

training and testing data size to illustrate the effect of data size on the prediction accuracy.

Tables (9–12) summarize the RMSE, MABE, MAPE, and R2 when input-output data sets of

Mersing, Pulau Langkawi, Bayan Lepas and Kuala Terengganu respectively are applied to the

prediction models. In this case, training and testing dataset consists of P = 92 (70%) and

Q = 40 (30%) observations during the period January 2004 to August 2011 and September

2011 to December 2014 respectively. Furthermore, in order to choose the best data size that

will provide optimal error in WPD prediction, all the developed models were trained and

tested with another input-output data size, which consists of P = 80 (60%) and Q = 52 (40%)

observations during the period January 2004 to August 2010 and September 2010 to December

2014 respectively. The statistical error metrics (RMSE, MABE, MAPE, and R2) for this cate-

gory of training and testing data set are also shown in Tables (9–12).

A profound observation on Tables (7–12) reveals that:

i. For WPD prediction of Mersing, ANFIS-PSO is the best model when training the models

and the value of RMSE obtained are 4.96, 5.23 and 5.41 for the data size P = 105, Q = 27;

Table 5. Descriptive statistical parameters of input (wind speed, m/s) for different locations.

Parameters Locations

Mersing Kuala Terengganu Pulau Langkawi Bayan Lepas

Max. 6.05 4.50 5.35 4.80

Min. 2.15 1.84 1.72 2.12

St dev. 0.87 0.57 0.72 0.52

Range 3.91 2.66 3.63 2.68

https://doi.org/10.1371/journal.pone.0193772.t005

Table 6. Descriptive statistical parameters of measured WPD (W/m2) for different locations.

Parameters Locations

Mersing Kuala Terengganu Pulau Langkawi Bayan Lepas

Max. 152.85 90.35 104.50 78.31

Min. 6.44 4.49 4.07 6.66

St dev. 33.80 17.75 17.28 13.73

Range 146.41 100.43 71.66 85.86

https://doi.org/10.1371/journal.pone.0193772.t006
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P = 92, Q = 40, and P = 80, Q = 52 respectively. On the other hand, when testing the predic-

tion models ANFIS-GA is the best for the data size P = 105, Q = 27 and having RMSE of

5.04 whereas, ANFIS-PSO is the best model when data size P = 92, Q = 40, and P = 80,

Q = 52 resulting RMSE of 5.37 and 5.22 respectively.

Fig 6. Visual presentation of wind speed at 50m hub height of underlying locations.

https://doi.org/10.1371/journal.pone.0193772.g006

Table 7. A Statistical model comparison in training the models when P = 105 and Q = 27.

Locations Rank Prediction

Models

Training

RMSE MAPE (%) MABE R2

Mersing 1 ANFIS-PSO 4.96 5.14 2.61 0.9781

2 ANFIS-GA 5.41 5.77 2.63 0.9756

3 ANFIS-DE 5.50 9.70 3.03 0.9749

4 ANFIS 5.82 10.88 3.07 0.9728

Pulau

Langkawi

1 ANFIS-GA 3.13 10.17 1.89 0.9709

2 ANFIS-PSO 3.16 10.96 1.90 0.9703

3 ANFIS 3.26 11.70 1.96 0.9684

4 ANFIS-DE 3.30 10.10 1.90 0.9676

Bayan Lepas 1 ANFIS-PSO 2.14 7.88 1.65 0.9762

2 ANFIS 2.28 9.06 1.74 0.9709

3 ANFIS-GA 2.34 8.52 1.72 0.9692

4 ANFIS-DE 2.54 9.04 1.83 0.9638

Kuala Terengganu 1 ANFIS-PSO 3.73 8.90 1.91 0.9523

2 ANFIS-GA 4.0 10.30 2.19 0.9449

3 ANFIS 4.03 14.57 2.29 0.9448

4 ANFIS-DE 4.37 18.30 2.88 0.9392

https://doi.org/10.1371/journal.pone.0193772.t007
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ii. For WPD prediction of Bayan Lepas, ANFIS-PSO shows the best performance for all above

data size when training the prediction models. In this case, the computed values of RMSE

are 2.14, 2.17 and 2.18 when the training data sizes are of P = 105, Q = 27; P = 92, Q = 40,

and P = 80, Q = 52 respectively. Then again, ANFIS-PSO shows best performance for a test-

ing data size of P = 105, Q = 27 and P = 92, Q = 40 resulting RMSE of 2.37 and 2.54 respec-

tively. It is not surprising that ANFIS model has the best accuracy when testing data size of

P = 80, Q = 52 having RMSE of 2.65.

iii. For WPD prediction of Pulau Langkawi, ANFIS-GA and ANFIS-PSO show the best per-

formance in training and testing the models respectively with data size of P = 105, Q = 27

which results in RMSE of 3.13 and 1.53 in training and testing respectively. In case of the

data size P = 92 and Q = 40, ANFIS-PSO ranks in first both training and validation with

RMSE of 3.29 and 1.69 respectively. For the training and testing data size P = 80, Q = 52;

ANFIS and ANFIS-GA model show optimal RMSE, which are 3.45 and 2.04 in training

and testing respectively.

Table 8. A Statistical model comparison in testing the models when P = 105 and Q = 27.

Locations Rank Prediction

models

Testing

RMSE MAPE (%) MABE R2

Mersing 1 ANFIS-GA 5.04 5.25 2.52 0.9701

2 ANFIS-PSO 5.10 5.88 2.67 0.9691

3 ANFIS 5.14 6.65 2.74 0.9690

4 ANFIS-DE 5.56 9.22 3.26 0.9636

Pulau

Langkawi

1 ANFIS-PSO 1.53 11.11 1.21 0.9774

2 ANFIS-DE 1.59 13.07 1.19 0.9775

3 ANFIS-GA 1.72 10.27 1.23 0.9737

4 ANFIS 2.17 23.07 1.79 0.9578

Bayan Lepas 1 ANFIS-PSO 2.37 8.17 1.82 0.9749

2 ANFIS 2.49 9.02 1.92 0.9720

3 ANFIS-GA 2.75 7.27 1.83 0.9659

4 ANFIS-DE 2.81 8.84 1.96 0.9643

Kuala Terengganu 1 ANFIS-GA 4.79 13.65 3.06 0.9412

2 ANFIS-PSO 4.92 10.77 3.54 0.9456

3 ANFIS-DE 5.01 21.67 3.70 0.9355

4 ANFIS 5.37 12.97 3.15 0.9261

https://doi.org/10.1371/journal.pone.0193772.t008

Table 9. Effect of data size for the prediction wind power density of Mersing.

Data

Size

Training Testing

Rank Prediction models RMSE MABE MAPE (%) R2 Rank Prediction models RMSE (W) MABE (W) MAPE (%) R2

P = 92, Q = 40

1 ANFIS-PSO 5.23 2.64 6.88 0.9786 1 ANFIS-PSO 5.37 2.75 5.95 0.9663

2 ANFIS-GA 5.36 2.92 9.45 0.9712 2 ANFIS-GA 5.46 2.89 6.53 0.9651

3 ANFIS 5.39 2.92 10.28 0.9767 3 ANFIS 5.55 2.94 7.06 0.9640

4 ANFIS-DE 5.52 2.81 7.84 0.9756 4 ANFIS-DE 5.72 2.84 5.68 0.9617

P = 80, Q = 52 1 ANFIS-PSO 5.41 2.82 6.40 0.9780 1 ANFIS-PSO 5.22 2.79 6.40 0.9662

2 ANFIS-GA 5.59 3.33 8.95 0.9765 2 ANFIS-DE 5.33 3.58 11.56 0.9652

3 ANFIS 5.82 3.13 12.46 0.9745 3 ANFIS-GA 5.46 3.34 8.95 0.9634

4 ANFIS-DE 6.21 4.29 11.56 0.9709 4 ANFIS 5.48 3.12 7.55 0.9632

https://doi.org/10.1371/journal.pone.0193772.t009
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iv. For WPD prediction of Kuala Terengganu, ANFIS-PSO and ANFIS-GA show the best per-

formance in training and testing the models respectively with data size of P = 105, Q = 27

which results in RMSE of 3.73 and 4.79 respectively. For the data size P = 92, Q = 40;

ANFIS model shows optimal RMSE, which is 3.45 in training stage and ANFIS-PSO pres-

ents optimal RMSE of 2.23 in the testing stage. In case of data size P = 80 and Q = 52,

ANFIS-PSO ranks in first both training and validation of the prediction models with

RMSE of 3.99 and 4.58 respectively.

Based on the above discussion, it is clear that P = 105, Q = 27 data size applied to the predic-

tion models provides minimal error for WPD prediction of all underlying locations. For this

data size, overall ANFIS-PSO and ANFIS-GA showed a higher correlation between measured

and predicted WPD all locations both in training and testing stages.

On the other hand, when P = 92, Q = 40 data set are applied to the prediction models,

ANFIS-PSO shows the best performance in both training and testing stages for predicting

WPD of Mersing, Pulau Langkawi, and Bayan Lepas. However, when predicting WPD of

Kuala Terengganu, ANFIS-PSO ranks second in training and first in the testing stage. It is

important to mention that P = 80, Q = 52 data size shows the largest error for predicting WPD

of all underlying locations, and therefore, we do not want to use P = 80, Q = 52 data set for

model performance justification.

Figs 7–10 depicts the visual presentation of measured and predicted WPD when testing

using ANFIS-PSO and ANFIS-GA for Mersing, Bayan Lepas, Pulau Langkawi and Kuala

Terengganu respectively with best data size i.e. P = 105, Q = 27.

However, both ANFIS-PSO and ANFIS-GA seem to be able to provide an overall good per-

formance both in training and testing stages. Therefore, hybrid ANFIS, especially ANFIS-PSO

Table 10. Effect of data size for the prediction wind power density of Bayan Lepas.

Data

Size

Training Testing

Rank Prediction models RMSE MABE MAPE (%) R2 Rank Prediction models RMSE (W) MABE (W) MAPE (%) R2

P = 92, Q = 40

1 ANFIS-PSO 2.17 1.64 7.85 0.9748 1 ANFIS-PSO 2.54 1.74 7.83 0.9684

2 ANFIS-GA 2.22 1.69 7.99 0.9740 2 ANFIS-GA 2.62 1.78 7.67 0.9584

3 ANFIS 2.24 1.72 8.95 0.9698 3 ANFIS 2.73 1.93 9.95 0.9541

4 ANFIS-DE 2.38 1.73 7.98 0.9738 4 ANFIS-DE 2.80 1.87 8.25 0.9577

P = 80, Q = 52 1 ANFIS-PSO 2.18 1.56 7.29 0.9770 1 ANFIS 2.65 1.96 11.67 0.9441

2 ANFIS 2.25 1.73 8.35 0.9756 2 ANFIS-PSO 2.74 1.98 11.14 0.9409

3 ANFIS-GA 2.46 1.77 7.71 0.9707 3 ANFIS-DE 2.77 2.18 11.76 0.9398

4 ANFIS-DE 3.34 2.34 10.23 0.9461 4 ANFIS-GA 3.38 2.0 9.39 0.9252

https://doi.org/10.1371/journal.pone.0193772.t010

Table 11. Effect of data size for the prediction wind power density of Pulau Langkawi.

Data

Size

Training Testing

Rank Prediction models RMSE MABE MAPE (%) R2 Rank Prediction models RMSE (W) MABE (W) MAPE (%) R2

P = 92, Q = 40

1 ANFIS-PSO 3.29 1.92 10.28 0.9707 1 ANFIS-PSO 1.69 1.38 12.28 0.9717

2 ANFIS-GA 3.34 1.92 10.09 0.9698 2 ANFIS-GA 1.71 1.31 11.89 0.9707

3 ANFIS 3.38 2.03 11.60 0.9690 3 ANFIS-DE 1.88 1.44 11.55 0.9650

4 ANFIS-DE 3.43 2.21 13.08 0.9682 4 ANFIS 2.23 1.84 20.39 0.9508

P = 80, Q = 52 1 ANFIS 3.45 2.14 11.64 0.9705 1 ANFIS-GA 2.04 1.64 18.18 0.9572

2 ANFIS-GA 3.58 2.19 12.61 0.9668 2 ANFIS 2.20 1.66 17.19 0.9501

3 ANFIS-DE 4.06 3.04 19.24 0.9591 3 ANFIS-PSO 2.37 1.68 13.91 0.9421

4 ANFIS-PSO 4.15 2.55 11.60 0.9572 4 ANFIS-DE 3.23 2.68 26.17 0.8921

https://doi.org/10.1371/journal.pone.0193772.t011
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and ANFIS-GA can be suggested for practical utilization in WPD prediction for the locations

having similar wind resource conditions. The Fig 11 shows the error distribution of WPD pre-

diction using ANFIS-PSO and ANFIS-GA for underlying locations. According to the defini-

tion of relative percentage error (RPE) presented in [27, 28], the RPE falls in an interval of

-10% to 10% can be considered acceptable. The computed value of RPE presented in the Fig 11

is obtained from the proposed ANFIS-PSO and ANFIS-GA when 27 months testing data set of

underlying locations applied to the models. It can be observed that most of the wind power

Table 12. Effect of data size for the prediction wind power density of Kaula Terengganu.

Data

Size

Training Testing

Rank Prediction models RMSE MABE MAPE (%) R2 Rank Prediction models RMSE (W) MABE (W) MAPE (%) R2

P = 92, Q = 40

1 ANFIS 4.07 2.28 12.61 0.9407 1 ANFIS-PSO 4.15 2.72 12.74 0.9436

2 ANFIS-PSO 4.15 2.32 11.61 0.9385 2 ANFIS-DE 4.24 2.50 13.07 0.9531

3 ANFIS-GA 4.32 2.33 12.40 0.9421 3 ANFIS 4.61 2.68 11.83 0.9448

4 ANFIS-DE 4.39 2.37 12.06 0.9307 4 ANFIS-GA 5.16 2.78 11.95 0.9307

P = 80, Q = 52 1 ANFIS-PSO 3.99 2.05 10.06 0.9438 1 ANFIS-PSO 4.58 2.85 12.43 0.9405

2 ANFIS-GA 4.06 2.36 13.13 0.9415 2 ANFIS 4.73 3.27 16.18 0.9307

3 ANFIS 4.11 2.23 12.85 0.9401 3 ANFIS-DE 4.92 3.74 24.15 0.9363

4 ANFIS-DE 4.70 3.04 21.10 0.9217 4 ANFIS-GA 4.94 3.64 19.35 0.9312

https://doi.org/10.1371/journal.pone.0193772.t012

Fig 7. Comparison of WPD prediction from proposed methods when testing with measured WPD value for Mersing.

https://doi.org/10.1371/journal.pone.0193772.g007
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values obtained via the proposed ANFIS-PSO and ANFIS-GA model fall within the range of

-5% up to 5%. In case of Mersing and Kuala Terengganu, only one prediction RPE falls outside

(-10% to 10%) range for both ANFIS-PSO and ANFIS-GA.

Based on the above discussion, the performance of ANFIS-PSO can be considered the best

among other the models. The Figs 12 and 13 show the visual presentation of regression analy-

sis of measured and predicted WPD computed from ANFIS-PSO for all underlying locations

when P = 105, Q = 27. The Fig 12 shows the correlation between actual and predicted WPD

obtained from ANFIS-PSO method. The correlation coefficient (R2) is the agreement between

measured and predicted values, which has the highest value of one. The R2 obtained when

training proposed the ANFIS-PSO model are 0.9781, 0.9703, 0.9762 and 0.9523 for Mersing,

Pulau Langkawi, Bayan Lepas and Kuala Terengganu respectively, which indicates a very high

and adequate prediction performance of ANFIS-PSO model.

Again, the linear regression analysis presented in Fig 13 shows the correlation between

actual and predicted WPD obtained from ANFIS-PSO when testing the prediction models

with data from different underlying locations. The R2 obtained while testing the proposed

ANFIS-PSO model for Mersing, Pulau Langkawi, Bayan Lepas and Kuala Terengganu are

0.9691, 0.9774, 0.9749 and 0.9456 respectively, which supports that ANFIS-PSO has a high pre-

cision for the prediction of WPD.

Fig 8. Comparison of WPD prediction from proposed methods when testing with measured WPD value for Bayan Lepas.

https://doi.org/10.1371/journal.pone.0193772.g008
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Weekly wind power density prediction

The detailed explanation of data collection and site description can be found in section 2. For

weekly wind power density prediction, 11 year’s (2004–2014) long-term daily average wind

speed data were converted into the weekly average for all underlying locations in Malaysia

namely Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas. Afterward, the weekly

mean wind speed at 50m and the corresponding wind power density from measured data were

applied on the developed standalone ANFIS and hybrid ANFIS models. The first 80% data and

rest 20% data for training and testing were used respectively. The results presented in Figs

(14–19) mainly obtained when training and testing the ANFIS-PSO and ANFIS-GA models as

they were best prediction models for monthly wind power density prediction presented in sec-

tion 5.1.

Figs 14 and 15 show the error distribution, RMSE, and MAPE whereas, Fig 16 presents

regression analysis when training and testing data sets of Mersing were applied on ANFIS-PSO

and ANFIS-GA prediction models. It can be observed from Figs 15 and 16 that most of the

wind power values obtained via the proposed ANFIS-PSO and ANFIS-GA model fall within

the range of -5% up to +5%. The RMSE were 5.72 and 4.82 when testing the ANFIS-PSO and

ANFIS-GA respectively. It is mentioned in section 5.1 that the R2 is the correlation between

measured and predicted WPD, which has the highest value of one. In Fig 17, the R2 were

0.9899 and 0.9703 when testing the ANFIS-PSO and ANFIS-GA respectively.

Fig 9. Comparison of WPD prediction of the proposed method with measured value for Pulau Langkawi.

https://doi.org/10.1371/journal.pone.0193772.g009
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Similarly, Figs 17 and 18 show the error distribution, RMSE, and MAPE whereas, Fig 19

presents regression analysis when training and testing data sets of Langkawi were applied on

ANFIS-PSO and ANFIS-GA prediction models. It can be observed from Figs 18 and 19 that

most of the wind power values obtained via the proposed ANFIS-PSO and ANFIS-GA model

fall within the range of -5% up to +5%. The RMSE were 1.76 and 2.11 when testing the

ANFIS-PSO and ANFIS-GA respectively. It is mentioned in section 5.1 that the R2 is the corre-

lation between measured and predicted WPD, which has the highest value of one. In Fig 19,

the R2 were 0.9844 and 0.9701 when testing the ANFIS-PSO and ANFIS-GA respectively.

Extrapolation capabilities of the proposed models

Measured wind speed data are not available for many locations in Malaysia, including remote

islands (less than 200 km2) and decentralized places to identify possible wind energy applica-

tions. In this dissertation, extrapolation capabilities of the wind speed of the proposed hybrid

ANFIS models have been examined for a location in Tioman Island having latitude 2˚ 48’ 30"

N and longitude 104˚ 8’ 29" E, where measured wind data are not available. And then, the

result is compared with the measured wind data at Mersing station (latitude 2˚ 27’ N and lon-

gitude 103˚ 50’ E) which is the nearby station having similar climate conditions. As the study

location does not have any actual measured meteorological data, the daily average solar

Fig 10. Comparison of WPD prediction of proposed methods with measured value for Kuala Terengganu.

https://doi.org/10.1371/journal.pone.0193772.g010
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radiation (kWh/m2/day), daily average air temperature, maximum and minimum air temper-

ature, air pressure, relative humidity and altitude data were collected from NASA surface

meteorology and solar energy database for the whole year of 2004 for the prediction of daily

average wind speed (m/s). The Figs 20 and 21 show the prediction of daily average wind speed

for Tioman Island using ANFIS-PSO and ANFIS-GA respectively, which are compared with

Fig 11. Error distribution when testing ANFIS-PSO and ANFIS-GA for (a, b) Mersing, (c, d) Bayan Lepas (e, f) Pulau Langkawi, (g, h) Kuala Terengganu.

https://doi.org/10.1371/journal.pone.0193772.g011
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measured wind speed at Mersing meteorological station that was measured at 50m above the

sea level in 2004.

From error analysis, it was found that the MAPE and MABE for ANFIS-PSO were 31.56%,

0.9672% respectively whereas, they were found to be 32.21% and 0.9872% for ANFIS-GA

respectively. It can be observed from the figures that the wind characteristics in Tioman Island,

Fig 12. Measured versus predicted WPD when training ANFIS-PSO model (a) Mersing, (b) Pulau Langkawi, (c) Bayan Lepas and (d) Kuala

Terengganu.

https://doi.org/10.1371/journal.pone.0193772.g012

Fig 13. Measured versus predicted WPD when testing ANFIS-PSO model (a) Mersing, (b) Pulau Langkawi, (c) Bayan Lepas and (d) Kuala

Terengganu.

https://doi.org/10.1371/journal.pone.0193772.g013

Hybrid ANFIS for wind power density prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0193772 April 27, 2018 24 / 31

https://doi.org/10.1371/journal.pone.0193772.g012
https://doi.org/10.1371/journal.pone.0193772.g013
https://doi.org/10.1371/journal.pone.0193772


obtained with the proposed ANFI-PSO and ANFIS-GA, is not exactly similar with the mea-

sured wind at Mersing in many cases. However, it is important to take note that the perfor-

mance of the prediction models can be justified accurately when measured wind data in

Tioman Island will be available for comparison.

Fig 14. Error distribution when (a,b) Training and (c,d) Testing the ANFIS-PSO model for weekly WPD prediction of Mersing.

https://doi.org/10.1371/journal.pone.0193772.g014

Fig 15. Error distribution when (a,b) Training and (c,d) Testing the ANFIS-GA model for weekly WPD prediction of Mersing.

https://doi.org/10.1371/journal.pone.0193772.g015
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Fig 16. Regression plot of weekly WPD prediction for Mersing when training and testing the ANFIS-PSO and ANFIS-GA prediction model.

https://doi.org/10.1371/journal.pone.0193772.g016

Fig 17. Error distribution when (a,b) Training and (c,d) Testing the ANFIS-PSO model for weekly WPD prediction of Pulau Langkawi.

https://doi.org/10.1371/journal.pone.0193772.g017
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Fig 18. Error distribution when (a, b) Training and (c, d) Testing the ANFIS-GA model for weekly WPD prediction of Pulau Langkawi.

https://doi.org/10.1371/journal.pone.0193772.g018

Fig 19. Regression plot of weekly WPD prediction for Pulau Langkawi when training and testing the ANFIS-PSO and ANFIS-GA prediction model.

https://doi.org/10.1371/journal.pone.0193772.g019
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Conclusion

The wind energy potential assessment is very important for independent power producer and

governmental organization to determine how efficiently wind power can be extracted from a

certain location. The wind power density (WPD) is the key assessment parameter in wind

Fig 20. Extrapolation of daily average wind speed for Tioman Island using proposed ANFIS-PSO.

https://doi.org/10.1371/journal.pone.0193772.g020

Fig 21. Extrapolation of daily average wind speed for Tioman Island using proposed ANFIS-GA.

https://doi.org/10.1371/journal.pone.0193772.g021
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potentiality analysis. Therefore, an efficient soft computing technique based on ANFIS-PSO,

ANFIS-GA, ANFIS-DE and standalone ANFIS prediction models were developed in this

paper to predict long-term (monthly and weekly) average wind power density of four different

locations in Malaysia. The choice of the ANFIS technique was made due to its simplicity, reli-

ability as well as its efficient computational capability; its ease of adaptability to optimization

and other adaptive techniques, and its adaptability in handling complex parameters. The most

significant advantage of hybrid ANFIS is that PSO/GA/DE tune the membership functions of

the ANFIS model to ensure minimum error. The prediction models were trained and tested

using wind speed data collected from meteorological stations of the underlying locations and

measured wind power density. Moreover, different training and testing data size were applied

to the prediction models to obtain best data size that provides a minimal error. The first 80%

of data used for training and remaining 20% data for testing provide the optimal error in

WPD prediction. Based on the result from best data size, there is no model that performed

uniformly superior to other for all locations in both training and testing stages. Overall,

ANFIS-PSO and ANFIS-GA out-performed ANFIS standalone and ANFIS-DE. Therefore, the

results and analysis confirmed that the proposed hybrid ANFIS, especially ANFIS-PSO and

ANFIS-GA have the excellent capability to predict the WPD with higher accuracy and preci-

sion. Other soft computing techniques applicable to wind speed and power density prediction

for other parts of the world can be developed and compare with hybrid ANFIS in the further

study.
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