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Abstract

The Sch9 kinase of Saccharomyces cerevisiae is one of the major TOR pathway effectors

and regulates diverse processes in the cell. Sch9 belongs to the AGC kinase family. In

human, amplification of AGC kinase genes is connected with cancer. However, not much is

known about the effects of Sch9 overproduction in yeast cells. To fill this gap, we developed

a model system to monitor subcellular location and aggregation state of overproduced Sch9

or its regions fused to a fluorescent protein. With this system, we showed that Sch9-YFP

forms detergent-resistant aggregates, and multiple protein regions are responsible for this.

This finding corroborated the fact that Sch9-YFP is visualized as various fluorescent foci. In

addition, we found that Sch9 overproduction caused cell elongation, and this effect was

determined by its C-terminal region containing kinase domains. The constructs we present

can be exploited to create superior yeast-based model systems to study processes behind

kinase overproduction in cancers.

Introduction

The Sch9 kinase of Saccharomyces cerevisiae has a plethora of functions. Sch9 is one of the

major TOR effectors [1]. It takes part in regulation of protein synthesis in response to nutrient

availability [1] and cell cycle progression [2]. Sch9 is also linked to such important processes as

aging (as deletion of SCH9 promotes longevity [3]) and maintenance of genome stability (as

stable tetraploid clonal populations were characterized by increased Sch9 activity [4]). Strains

deleted for SCH9 are characterized by overall growth defect, which is expressed as significantly

decreased cell size and growth rate [5]. However, such strains possess increased thermotoler-

ance, chronological [3] and replicative [6] lifespan. This effect may be explained by constitu-

tively active oxidative stress response system [7] preventing accumulation of age-related
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mutations [8], perturbed sphingolipid levels [9] or, more likely, a combined effect of these

factors.

Sch9 belongs to the AGC kinase family [10]. The AGC (the abbreviation stands for protein

kinases A, G and C) kinases are widespread in eukaryotes including both the animal and fun-

gal kingdoms [11]. In S. cerevisiae the AGC group contains 17 members, which the Ypk1 and

Ypk2 are the closest relatives to Sch9 [10]. Together, the corresponding genes form a co-ortho-

logous group to PKB/SGK kinase genes in mammals, and all members of this group arise from

several consequent duplications of a single sequence in the fungal and animal ancestor [12]. In

mammals, the PKB and SGK kinases together with RSK and S6K comprise a subfamily of

AGC kinases, activated by phosphorylation, members of which are implicated in different dis-

eases including cancer [11]. RSK2 gene overexpression was detected in skin cancer tissues

[13]. Amplifications of genome fragments increasing production of PKB/AKT kinases were

found in carcinomas of the stomach, ovary, pancreas, and breast [14]. Some data were received

about the role of SGK kinase activation in cancer [15, 16], however, S6K is the most extensively

studied AGC member. Mammals contain two homologous S6Ks, S6K1 and S6K2, functions of

which overlap only partially [17, 18]. The chromosomal region including the gene for S6K1 is

amplified in different breast cancer cell lines and in 10-30% of primary tumors [19–21] and

was determined as prognostic of metastatic capacity of human breast cancer [22]. At the same

time, overexpression of either S6K1 or S6K2 correlates with worse prognosis in breast cancer

[23]. Taken together, these data show that protein kinases of the AGC family constitute an

important target for cancer therapy, and thus studies in the yeast model might provide impor-

tant insight into the mechanisms of their functioning.

Although SCH9 encodes one of the best studied AGC kinases in yeast, the effects of its

overexpression have not been studied in detail. Overexpression of SCH9 is neither lethal nor

significantly toxic for the yeast cell [2], even though it causes heat sensitivity [24] and slightly

increases the rate of age-dependent mutations [8]. However, evidence on Sch9 overproduction

effects is scarce and does not significantly extend beyond the phenotypes listed above.

Results

Sch9-YFP is functional and not toxic when overproduced

To study effects of SCH9 overexpression and localization of the corresponding protein we

made a plasmid construct for production of Sch9 fused with YFP, under control of strong con-

stitutive GPD (TDH3) promoter (p426GPD-SCH9YFP). The control construct (p426GPD-

YFP) was identical to the experimental one but did not contain the SCH9 gene sequence. Then

we transformed a wild-type strain (BY4742) and a similar strain deleted for SCH9 (sch9Δ-

BY4741) with these constructs and confirmed that full-length Sch9-YFP was produced in both

cases (S1A Fig). Moreover, we tested whether the overproduced protein could be phosphory-

lated and found that at least a fraction of Sch9-YFP had phosphorylated Thr737 residue; impor-

tantly, Sch9-YFP overproduction did not abolish phosphorylation of the native (genome-

encoded) Sch9 (S1B Fig). SCH9-YFP overexpression was not toxic in either strain (S1C Fig),

which corresponds well to the known data [2]. Interestingly, sch9Δ-BY4741 colonies overpro-

ducing SCH9 still did not grow as well as the SCH9 BY4742 colonies (S1C Fig). It means that

these strains have growth differences, and thereafter will only be compared to the correspond-

ing internal control. We also observed that SCH9 overexpression caused elongation of cells

(Fig 1); this fact will be described in detail below.

To check whether the C-terminal YFP tag disturbs functioning of Sch9, we transformed the

strain deleted for SCH9with a centromeric plasmid bearing SCH9 driven by its own promoter,

analogous construct with SCH9-YFP and the corresponding empty vector. Then we compared
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growth of the transformants on medium containing galactose and raffinose as carbon sources

(S1D Fig), as SCH9 deletion had been found to impede growth on galactose/raffinose-contain-

ing media [1]. Indeed, we found that cells with SCH9 grew better on this medium than the

empty vector control (S1D Fig, compare lanes 1 and 2 on galactose/raffinose medium). Impor-

tantly, the Sch9-YFP construct was indistinguishable from the one with untagged Sch9 (com-

pare lanes 2 and 3). These data suggest that the YFP tag does not interfere with normal Sch9

functioning.

In addition, we tested whether overproduced Sch9-YFP compensated for this galactose uti-

lization defect and found that it acted in the same way as single-copy SCH9-YFP, i. e. improved

growth on galactose/raffinose-containing medium. Interestingly, we also noticed that the

strains overproducing Sch9-YFP grew slower on SC-Ura, as after three days of incubation they

formed smaller colonies, but after six days there was almost no difference (S1D Fig). Thus,

overproduced Sch9-YFP is at least partially functional (it can be phosphorylated and compen-

sates for the growth defect of the SCH9-deleted strain); it is not toxic but decreases cell division

rate.

Overproduced Sch9-YFP forms fluorescent foci and SDS-resistant

aggregates

The Sch9-YFP fusion allowed us to monitor subcellular localization of this protein with fluo-

rescent microscopy. Dissimilar to overproduced YFP, which showed the expected diffuse fluo-

rescence (Fig 1, right) and served as a negative control for protein aggregation, overproduced

Sch9-YFP formed distinct fluorescent foci, either one or multiple foci per cell (Fig 1, left). We

wondered what can determine the fluorescence pattern in particular cells. Importantly, diver-

sity of fluorescent patterns in BY4742 and sch9Δ-BY4741 strains was very similar (Fig 1), and

Fig 1. Overproduced Sch9-YFP forms distinct fluorescent foci. Scale bar indicates 5 μm. BF, bright-field microscopy. Dashed lines separated

different fields of view.WT and Δ designate BY4742 and sch9Δ-BY4741 strains, respectively. Arrowheads mark elongated cells.

https://doi.org/10.1371/journal.pone.0193726.g001
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for subsequent experiments we preferentially used the SCH9 strain (BY4742) because of its

higher growth rate.

The Sch9 protein was listed in several screens for potentially amyloidogenic proteins [25,

26]; however, its amyloidogenic properties have not been closely examined. We hypothesized

that fluorescent foci visible in the cells may correspond to amyloid aggregates. To check this

hypothesis, we performed an SDD-AGE analysis, a method routinely used for analysis of

detergent-resistant aggregates [27], and found that overproduced Sch9-YFP indeed formed

detergent-resistant aggregates, which dissolved upon boiling with SDS (Fig 2A). This result

was further confirmed with SDS-PAGE: only minor fraction of Sch9 was present on lanes with

unboiled samples (Fig 2B).

Different Sch9 domains determine the pattern of its aggregation

Sch9 is enriched with asparagine residues. This feature is typical for yeast aggregation-prone

proteins. To determine specific region(s) that might be responsible for aggregation, we chose

ArchCandy [28] among several available software tools for amyloidogenicity prediction [29].

Among a variety of different analogs we chose this due to accumulating evidence of its accu-

racy [28, 30, 31]. This analysis returned several regions in the N-terminal part of the protein

(Fig 2C). At the same time, the kinase domains are located in the C-terminal part of the pro-

tein. Finally, there are two distinct C2 domains (Fig 2C), which are responsible for membrane

binding [32].

We made several deletion constructs removing: the potentially amyloidogenic region with

the highest cumulative ArchCandy score (Δ183-256), all regions predicted by ArchCandy

(Δ91-138Δ183-256), the N-terminal of the protein until the end of the last of these regions

(Δ2-250), the N-terminal part of the protein up to the beginning of the protein kinase domain

(Δ2-402), and a reciprocal construct lacking the kinase domains (Δ403-824) (Fig 2D). Each

construct was checked with sequencing and SDS-PAGE with Western blotting for produc-

tion of proteins of expected weights (S2A Fig). Then we tested aggregation with simultaneous

analysis with SDD-AGE and SDS-PAGE. In each case, the proteins aggregated, even though

in the case of Δ403-824 we could not detect signal on SDD-AGE (Fig 2E, S2B Fig), probably

because of low amount of the target protein in cell lysates as judged by SDS-PAGE results

(S2B Fig).

Interestingly, even the construct with the longest N-terminal stretch deleted (Δ2-402)

formed aggregates indistinguishable from those formed by the full-length protein (Fig 2A, S2B

Fig). As both this construct (Δ2-402) and the reciprocal deletion construct (Δ403-824) formed

aggregates, as well as all other truncated variants of Sch9, we conclude that this protein con-

tains multiple determinants of aggregation. Nevertheless, we observed changes in aggregates

morphology upon overexpression of different constructs. Lack of amino acids 2-250 preserved

formation of small foci, while the absence of region 183-256, and potentially 91-38, led to

amorphous shape of big aggregates, which are almost spheric in case of wild type.

The formation of foci is not connected with the [PIN+] prion, the IPOD compartment

or vacuole. As we observed a number of fluorescent phenotypes (cells with different combi-

nations of large and small dots), we wondered what could determine the observed intracellular

location of Sch9 and its aggregation.

First, we posed a question whether Sch9-YFP interacts with the Rnq1 amyloid aggregates.

The prion form of the Rnq1 protein, the [PIN+] (or [RNQ+]), is present in many wild and labo-

ratory strains [33, 34], particularly in the BY4741 strain [35], which is closely related to the

BY4742 strain we used [36]. We obtained a [pin−] derivative of the BY4742 strain by passaging

the strain on guanidinium chloride-containing medium [35]. The different [PIN+] status of

Sch9 overproduction in yeast
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Fig 2. Overproduced Sch9-YFP forms SDS-resistant aggregates. A: Western blotting after SDD-AGE analysis of representative constructs

(shown below). Anti-(CGY)FP antibody was used. B: Western blotting after SDS-PAGE analysis. The same lysates as in A were used. Anti-

732-743-Sch9-antibody was used. Dashed line separates different lanes from the same blot. Numbers to the left of blots correspond to the

molecular weights (kDa) of protein ladder. aggr., aggregated fraction; mon., monomeric fraction. C: Schematic of the Sch9 domain structure

according to the Saccharomyces genome database (https://www.yeastgenome.org/locus/S000001248) and amyloidogenic regions were

predicted using ArchCandy [28] (see Materials and methods for details). PK, protein kinase domain; PKC, protein kinase C domain; C2,

domain involved in membrane contact. D: Sch9 deletion constructs used in this work. E: Summary of amyloidogenicity checks for the

deletion constructs shown in (C). For detail see S2 Fig.

https://doi.org/10.1371/journal.pone.0193726.g002
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each strain was verified by decoration of the [PIN+] aggregates with Rnq1-GFP (S3 Fig, upper

row). The [PIN+] and [pin−] strains showed similar Sch9-YFP fluorescence patterns (S3 Fig,

lower row). At least 250 cells for each condition were quantified, and the distributions of cells

with different fluorescent patterns were not significantly different (data not shown). Thus, we

conclude that the aggregation of Sch9-YFP is independent of [PIN+].

Second, Sch9 is known to at least partially reside in the vacuolar membrane [2, 37]. To test

whether Sch9-YFP foci might correspond to vacuoles, we used FM4-64, or SynaptoRed C2, to

stain vacuolar membranes, and did not see clear colocalization; instead, Sch9-YFP foci were

visualized close to the vacuole, but not inside this organelle (Fig 3A). So, our data strongly sug-

gest that even if some of the Sch9-YFP fusion protein is localized in the vacuolar membrane,

this fact cannot explain the fluorescence patterns.

Finally, many aggregation-prone proteins are stored in the IPOD compartment localized

near the vacuole [38]. Using co-overproduction of Sch9-YFP and Hsp42-mCherry (a marker

of IPOD [39]), we checked whether large Sch9-YFP foci might correspond to IPOD. This

hypothesis also proved wrong, as in absolute majority (99 out of 100 cells analyzed) Hsp42-

mCherry and Sch9-YFP foci did not overlap. A typical example is shown at Fig 3B.

Fig 3. Large Sch9-YFP foci colocalize with neither vacuolar membranes nor IPOD. A: Vacuolar membranes were

stained with FM4-64, and these images were merged computationally to study relative location of the stained vacuolar

membranes and YFP. B: Co-localization of the Sch9-YFP and Hsp42-mCherry constructs were visualized with the 74

HE GFP+mRFP shift free filter (GR) to observe both proteins at the same time. The scale bar corresponds to 5 μm. BF,

bright-field microscopy. Dashed lines separated different fields of view.

https://doi.org/10.1371/journal.pone.0193726.g003
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Overproduction of Sch9 leads to cell elongation, and the C-terminal part of

the protein is responsible for this effect

We noticed that BY4742 cells overproducing Sch9-YFP were elongated (Fig 1). To find out

which region of the protein was responsible for this effect, we compared form of the cells over-

producing either the N-terminal or the C-terminal halves of the protein and found that the

cells overproducing the C-terminal region (Sch9Δ2-402) were elongated, while those overpro-

ducing the N-terminal region (Sch9Δ403-824) were not (Fig 4A). Interestingly, the fluorescent

phenotypes of cells overproducing these constructs were also different: while the C-terminal

part of the protein formed either very small dots or large dots (the latter often had irregular

shape), the N-terminal part mostly formed clearly visible round dots of varying size (Fig 4A).

Fig 4. The C- and N-terminal regions of the Sch9 proteins play different roles in its aggregation and phenotype. A: Representative microphotographs of cells

overproducing the indicated constructs. Dashed lines separated different fields of view. The scale bar corresponds to 5 μm. BF, bright-field microscopy. B: Box plot

summarizing major / minor cell diameter ratios of 200 cells with each construct shown below the graph. Each dot corresponds to individual cell, the central line is the

median, box edges show the interquartile range, and whisker length correspond to maximum or minimal values within 1.5 interquartile ranges up and down from the

box. ��, p< 0.01; ���, p< 0.001; n.s., p> 0.05. Mann-Whitney test with Holm correction was used. C: Schematic of measurements producing values in panels B and D.

D: Scatterplot visualizing the relationship between relative bud length and major / minor mother diameter ratio (the vertical axis is the same as in panel B). The line

shows predicted values according to a linear regression model; 95% confidence intervals are shown. Bud size, which was determined as the ratio of lengths of daughter

and mother cells and, can be used to roughly estimate cell cycle stage [40].

https://doi.org/10.1371/journal.pone.0193726.g004
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The elongation of cells seemed even more prominent in the case of the C-terminal part

(Δ2-402) than in the case of the full-length protein (WT) (Fig 4A cf. Fig 1). To test this effect

statistically, we quantified the ratio of major and minor ellipse diameters (Fig 4C) of at least

200 cells overproducing either Sch9-YFP, Sch9Δ2-402-YFP, Sch9Δ403-824-YFP or the YFP

control. Indeed, the C-terminal construct led to the most prominent cell elongation (the high-

est major/minor diameter ratio), while the cells overproducing the Sch9Δ403-824-YFP con-

struct were indistinguishable from the control ones overproducing YFP (Fig 4B). Thus, cell

elongation upon Sch9 overproduction is mediated by the C-terminal part of the protein,

which contains its kinase domains.

To find out whether this effect was TOR-dependent, we treated the cells with rapamycin, an

antibiotic blocking TORC1 [41]. This treatment led to rounding of cells and abolished the

effect of Sch9-YFP, as cells overproducing YFP and Sch9-YFP looked similar (S4A Fig). Thus,

the cell elongation we observed upon Sch9 overproduction might be TOR-dependent, as it was

dominated by the effect of rapamycin treatment.

To further delve into the mechanism behind cell elongation, we measured bud sizes for the

cells and explored the relationship between relative bud size and cell elongation. Relative bud

size, which can be used as a parameter characterizing the position of the cell in the cell cycle

[40], was determined as the ratio of major diameters of the daughter and mother cells (Fig

4C). This analysis was performed for the control construct (YFP) and the Sch9 allele that had

the most pronounced effect (Sch9Δ2-402-YFP). While in the control cell population cell shape

(ratio of major/minor diameters of the cell) does not depend on bud size (slope = -0.04,

p = 0.46; Fig 4D), when Sch9Δ2-402-YFP is overproduced, cell elongation and bud size have a

clear positive relationship (slope = 0.24, p = 0.003; Fig 4D). Then we performed the same anal-

ysis for YFP overproduction vs. an empty vector control and found no difference (S4B and

S4C Fig). In addition, we compared distributions of cells with different bud sizes between

Sch9Δ2-402-YFP overproduction and control (YFP overproduction) and found that the distri-

butions were different (p = 0.0009 in Kolmogorov-Smirnov test) with more cells with large

buds in the case of Sch9-Δ2-402-YFP overproduction. So, cell elongation caused by Sch9 over-

production is correlated with bud size.

Discussion

In this work, we show that the Sch9 protein forms detergent-resistant (i.e., amyloid-like) aggre-

gates upon overproduction in yeast cells (Fig 2, S2 Fig). Intriguingly, it seems that both the N-

terminal and the C-terminal halves of the protein contain some determinants of aggregation,

even though aggregation-prone regions were predicted only in the N-terminal part. This is the

distinctive feature of Sch9 because in most cases aggregation-prone region and functional

domain do not overlap [42]. Nevertheless, at least one protein (Rnq1) with multiple regions

responsible for aggregation was described earlier [43]. Since the C-terminal part of the protein

contains conservative kinase domains [24], our data on Sch9 aggregation might turn out to be

relevant for similar proteins in other organisms. Thus, it might be important to consider possi-

bility of protein aggregation when studying the mammalian AGC kinases, which are some-

times overproduced in cancers.

The aggregation of Sch9 probably causes its accumulation in large intracellular structures,

which we in our system visualize as fluorescent foci. All constructs formed aggregates resistant

to cold SDS treatment, as revealed by protein analysis with Western blotting (Fig 2A and 2B

and S2B Fig). However, not in all cases aggregates could be visualized with SDD-AGE, proba-

bly because of low protein level in the case of constructs lacking the longest N-terminal protein

stretches, namely Δ2-250 and Δ2-402 (S2B Fig, SDS-PAGE). As these short proteins were

Sch9 overproduction in yeast
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produced at high level, as checked with a fast method of protein extraction based on alkaline

lysis (S2A Fig), we suggest that the N-terminal region of the protein is important for its stabil-

ity. We faced the same problem when trying to analyze aggregation of full length untagged

Sch9 encoded by the chromosomal SCH9 copy. The protein could be detected by Western

blotting only if alkaline lysis procedure was used to prepare the sample. Unfortunately, this

method of protein extraction requires boiling in SDS and thus does not allow analysis of deter-

gent resistant aggregates in the probe. Thus, we could not directly check whether the wild-type

Sch9 forms aggregates. Nevertheless, we suppose that the untagged protein also can aggregate,

as there are no obvious limitations. The problem of low-copy Sch9 visualization also did not

allow us to check if its aggregates possess prion-like properties, i.e., are self-propagated even

after the end of overproduction. This question is very interesting especially in the light of a

recent work that revealed that overproduction of different yeast proteins leads to appearance

of new phenotypic traits [44]. Thus, from this point of view it is very important to investigate

changes of the level of Sch9 upon different treatments. So far, it has been shown that at least

carbon source may affect this parameter [2].

Interestingly, for almost all constructs, we noted within-clone variability of fluorescent phe-

notypes, from multiple small dots to one large dot with possible combinations in between (Fig

1, S2C Fig and Fig 4A). As we could not sort cells prior to protein extraction, we cannot deter-

mine which type or types of foci corresponds to detergent resistant aggregates. However, lack

of some regions led to visible changes in shape of fluorescent foci. We noticed that constructs

lacking one or both C2 domains, which are important for protein-lipid interaction [32], tend

to form aggregates of irregular shape (S2C Fig). This result could suggests a link between Sch9

aggregation and its location in the vacuolar membrane, but we did not see colocalization even

between round aggregates vacuolar membrane (Fig 3A). Furthermore, these aggregates did

not also correspond to IPOD, the structure in which many aggregation-prone proteins are

stored in the yeast cell (Fig 3B); thus, we could not identify the subcellular compartment, in

which these aggregates are located. It might be possible that overproduced Sch9 forms a spe-

cific intracellular structure.

Formation of protein aggregates or phase separated particles may be implicated into differ-

ent processes [45, 46]. Such examples have been accumulating extensively during past decade.

Although the first examples were basically described as different kinds of misfolded protein

deposits [47], recent findings demonstrate more and more complicated functions of such com-

plexes. For instance, aggregation of the Whi3 protein in yeast cells acts as a mnemon and

changes cellular behavior [48]). In addition, a set of constitutive and likely functional yeast

amyloids has been replenished by new examples [49]. Moreover, activation of T cell receptors

has been recently shown to lead to formation of liquid droplets enriched by kinases in a model

system. These complexes promote actin filament assembly [50]. Following these numerous

examples, we can speculate that Sch9 complexes also are implicated in some regulatory

processes.

We also found a phenotype connected with SCH9 overexpression, elongation of cells. Inter-

estingly, even though large cell phenotype was shown for SCH9 overexpression [2], changes in

cell shape, to the extent of our knowledge, has not been reported yet. This difference might be

explained by the fact that we exploited a system with high-level constitutive overexpression

driven by the GPD (TDH3) promoter. Here we showed that Sch9-YFP overproduction led to

cell elongation, and this effect was more pronounced for cells with larger buds (Fig 4D). We

also noted that Sch9-YFP overproduction slowed growth rate (S1D Fig). Taken together, these

results suggest that cell elongation caused by Sch9 overproduction is correlated with mitotic

delay.
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Cell elongation was likely strain specific, as this effect was observed in BY4742 cells but was

not so prominent in sch9Δ-BY4741 cells (Fig 1). These two strains are closely related and

should differ by only a handful of genetic markers: mating type, LYS2 andMET15 alleles and

of course the presence of SCH9. However, the feature determining this phenotypic effect is not

either, as there are other BY4741-based strains that react to Sch9 overproduction with clearly

seen elongation and at least one SCH9 strain not closely related to S288C that does not elongate

in response to Sch9 overproduction (data not shown). Thus, the mechanism underlying strain

specificity of this trait is still to be uncovered.

Our findings for the first time demonstrate the ability of the Sch9 protein to form specific

intracellular structures, at least some of which possess amyloid-like properties. In addition,

here we attempt to separately analyze functions of the different Sch9 domains and reveal spe-

cific effect of the C-terminal region overproduction on cell elongation and existing of several

aggregation-prone regions in different parts of the protein. Even though this analysis may be

considered as incomplete, we believe that the obtained results complement prior knowledge

about Sch9 functions and create a basis for further investigation. Finally, the constructs we

present can be exploited to create superior yeast-based model systems to study processes

behind AGC kinase overproduction in cancers. These potential model systems could also be

useful for testing novel inhibitors of AGC kinases, for example p70S6K, inhibitors of which are

already being developed [51–53].

Materials and methods

Microbial strains and cultivation procedures

Throughout this work, two S288C-related S. cerevisiae strains were used: an sch9Δ strain JW 03

038 BY4741 (genotypeMATa his3Δ1 leu2Δ0met15Δ0 ura3Δ0 sch9Δ::NATMX4 [9, 54]), which

is also referred to in the text as sch9Δ-BY4741, and SCH9 strain BY4742 (MATα his3Δ1 leu2Δ0
lys2Δ0 ura3Δ0 [36]).

Escherichia coli strain DH5α [55] was used for plasmid selection, maintenance and amplifi-

cation. Standard yeast and bacterial media with minor modifications were used [56, 57]. The

Gal/Raff medium contained 2% galactose and 1% raffinose instead of glucose. For curing of

the [PIN+] prion, guanidinium chloride was added into the YEPD medium in the final concen-

tration of 5 mM, and cells were passaged three times. Rapamycin treatment was performed

with 100 nM rapamycin in liquid SC-Ura medium for 2 hours. Yeast strains were grown at 30

˚C and the E. coli strain was grown at 37 ˚C.

Plasmid construction

Plasmids used in this work and primers used for their construction are listed in S1 and

S2 Tables, respectively. Cloning was performed in accordance with standard protocols [57].

To construct p426GPD-SCH9YFP, the SCH9ORF without the stop codon was amplified

with primers Sch9-F-SpeI and Sch9-R-BamHI and inserted into BamHI/SpeI cut

p426GPDSWI1YFP [58]. p426GPD-YFP was constructed by blunting the ends of BamHI/

SpeI cut p426GPDSWI1YFP with Klenow fragment and subsequent ligation. p426GPD-

SCH9Δ183-256-YFP was made with NheI/XmaJI restriction of p426GPD-SCH9YFP and

subsequent vector self-ligation. 426GPD-SCH9Δ2-250-YFP was made from p426GPD-

SCH9YFP via obtaining long PCR product and recombination in bacteria [59]. The same

method was applied to obtain p426GPD-SCH9Δ91-138Δ183-256-YFP, but in this case

p426GPD-SCH9Δ183-256-YFP was used as a template. p426GPD-SCH9Δ2-403-YFP and

p426GPD-SCH9Δ403-824-YFP were constructed by replacing the full length SCH9with its

shorter alleles (obtained as PCR products with the same template) at SpeI/BamHI sites.
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pRS416-SCH9YFP was constructed by subcloning the XmaJI/KpnI restriction fragment of

p426GPD-SCH9YFP into pJU675 [1]. All constructs were verified with restriction digest

and insert sequencing. Plasmid maps are available in S1 Maps.

pRS415CUP-RNQ1GFP (Derkatch, unpublished) was used to monitor the [PIN+] status of

the strain, and pAG415GPD-Hsp42-mCherry [39] was used to locate IPOD. pRS416 [60] and

pRS426 [61] were used as empty vector controls. Maps of pRS plasmids were modified accord-

ing to the published corrections [62].

Microscopy

Staining with FM4-64 (Invitrogen) was performed according to the published protocol [63]

with slight modifications: YEPD was used instead of YES, and cells were grown for 120 min-

utes after washing off non-bound dye. Cells producing YFP or mCherry fusion proteins were

grown in synthetic media until late logarithmic phase (cell density about 107 cells/ml), mixed

with glycerol (25% final concentration) and observed with Zeiss Axio Scope.A1. The following

filters were used: 46 (excitation peak 500 nm / emission peak 535 nm) for Sch9-YFP fusions,

63 HE mRFP shift free (excitation peak 572 nm / emission peak 629 nm) for the Hsp42-

mCherry fusion and FM4-64, 74HE GFP+mRFP shift free for detection of autofluorescence or

simultaneous detection of YFP and mCherry (excitation peaks 483 and 569 nm / emission

peaks 636 nm). Shooting exposure was chosen empirically for informativeness and may not

necessarily be the same for different constructs.

Biochemical methods

For protein extraction, cells were grown in synthetic media until late logarithmic phase (cell

density about 107 cells/ml) and collected with centrifugation (about 107 cells for alkaline lysis

[64] or about 2×108 cells for mechanical cell disruption [65]). As alkaline lysis allows to achieve

higher protein concentration [64] and reduced degradation (compare S2A and S2B Fig), but

due to the procedure requires sample boiling, it was used to check protein production, while

mechanical cell disruption was used to assess protein aggregation.

SDS-PAGE [57] or SDD-AGE [27] was used for separation of the proteins, and PVDF

membranes (GE Healthcare) were used for semi-dry [57] or capillary transfer [66], respec-

tively. Blots were probed with either anti-732-743-Sch9 and anti-phospho-Thr737-Sch9 [67]

or anti-Tag(CGY)FP (Evrogen AB121) antibodies and photographed with GeneGnome

(SynGene).

Data analysis

The ArchCandy [28] program was used for prediction of amyloidogenic regions (0.575 was

used as threshold value without any additional built-in filters). Following the recommendation

of the developers, we considered only those β-arches that were located in unstructured regions.

The IUPred program [68] with long option was used for prediction of such regions, the recom-

mended threshold 0.5 was used.

ImageJ [69] was used for measuring major and minor axes of cells with the fit ellipsemea-

surement option. Custom R [70] scripts were also used for data analysis. The Mann-Whitney

U test implemented in the coin package [71] was used to test differences in ellipse axis ratio.

Distribution of cells with buds of different sizes were compared with the ks.test function, and

linear regression models were built with the lm function of the base R package [70]. The

ggplot2 package [72] was used to plot scatterplots with regression lines and 95% confidence

intervals.
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Supporting information

S1 Fig. Sch9-YFP is functional and not toxic when overproduced. A: Western blot probed

with anti-732-743-Sch9 antibody. B: Western blots probed with anti-732-743-Sch9 or anti-

phospho-Thr737-Sch9 antibody. The same lysates were loaded into both gels. Approximate

molecular weight in kDa is shown according to a standard protein weight ladder. C: Five-fold

serial dilutions of the respective transformants. A-C:WT and Δ designate BY4742 and sch9Δ-

BY4741 strains, respectively. Dashed lines mark additional lanes removed for clarity. SCH9-

YFP, p426GPD-SCH9YFP; YFP, p426GPD-YFP. D: Five-fold serial dilutions of representative

transformants of the sch9Δ-BY4741 strain. Plasmids used (from left to right): pRS416, pJU675,

pRS416-SCH9YFP, p426GPD-YFP, p426GPD-SCH9YFP. C-D: Cell concentration decreases

from top to bottom.

(TIF)

S2 Fig. Representative examples of results of the amyloidogenicity analysis of different

Sch9 deletion constructs. A: Western blotting of membranes with boiled cell lysates obtained

with alkaline lysis and separated with SDS-PAGE. The primary antibodies used for probing

are shown under each blot. B: Results of fluorescent microscopy, SDD-AGE and SDS-PAGE

analysis of cells overproducing each Sch9 construct (shown in the leftmost column). Dashed

lines separated different fields of view chosen from the same slide or different lanes from the

same blot. Lysates of cells overproducing the full-length protein (WT) are shown for compari-

son on each blot image. The plus and minus signs indicate whether the sample was boiled.

Scale bars on microphotographs correspond to 5 μm. Numbers to the left of blots show the

position of the corresponding protein molecular weight standard (kDa).

(TIF)

S3 Fig. Sch9-YFP fluorescent patterns are independent of the [PIN+] prion status. Dashed

lines separated different fields of view chosen from the same slide. The scale bar corresponds

to 5 μm. BF, bright-field microscopy. For Rnq1-GFP overproduction, CuSO4 was added to the

final concentration of 50 μM, and then cells were incubated for 3 hours.

(TIF)

S4 Fig. YFP overproduction does not affect cell shape, while rapamycin treatment over-

comes the effect of Sch9-YFP overproduction. A: Microphotographs of cells treated with

rapamycin. Dashed lines separated different fields of view from the same slide. The scale bar

indicates 8 μm. B: Box plot summarizing major / minor cell diameter ratios of at least 90 cells

with each construct shown below the graph. Each dot corresponds to individual cell, the cen-

tral line is the median, box edges show the interquartile range, and whisker length correspond

to maximum or minimal values within 1.5 interquartile ranges up and down from the box.

n.s., p> 0.05 in Mann-Whitney test. C: Scatterplot visualizing the relationship between relative

bud length and major / minor mother diameter ratio.

(TIF)

S1 Table. List of plasmids used in this work. The description column lists the characteristics

in the following order: S. cerevisiae replication origin, S. cerevisiae selective marker gene, E. coli
selective marker gene, promoter, and gene of interest.

(XLS)

S2 Table. List of primers used in this work.

(XLS)
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S1 Maps. Maps of the plasmids constructed in this work and other plasmids used (if avail-

able).

(ZIP)
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