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Abstract

Diffuse intrinsic pontine glioma (DIPG) is a universally fatal childhood cancer of the brain.

Despite the introduction of conventional chemotherapy and radiotherapy, improvements in

survival have been marginal and long-term survivorship is uncommon. Thus, new targets for

therapeutics are critically needed. Early phase clinical trials exploring molecularly-targeted

therapies against the epidermal growth factor receptor (EGFR) and novel immunotherapies

targeting interleukin receptor-13α2 (IL-13Rα2) have demonstrated activity in this disease. To

identify additional therapeutic markers for cell surface receptors, we performed exome

sequencing (16 new samples, 22 previously published samples, total 38 with 26 matched nor-

mal DNA samples), RNA deep sequencing (17 new samples, 11 previously published sam-

ples, total 28 with 18 matched normal RNA samples), and immunohistochemistry (17 DIPG

tissue samples) to examine the expression of the interleukin-4 (IL-4) signaling axis compo-

nents (IL-4, interleukin 13 (IL-13), and their respective receptors IL-4Rα, IL-13Rα1, and IL-

13Rα2). In addition, we correlated cytokine and receptor expression with expression of the

oncogenes EGFR and c-MET. In DIPG tissues, transcript-level analysis found significant

expression of IL-4, IL-13, and IL-13Rα1/2, with strong differential expression of IL-13Rα1/2 in

tumor versus normal brain. At the protein level, immunohistochemical studies revealed high

content of IL-4 and IL-13Rα1/2 but notably low expression of IL-13. Additionally, a strong pos-

itive correlation was observed between c-Met and IL-4Rα. The genomic and transcriptional

landscape across all samples was also summarized. These data create a foundation for the

design of potential new immunotherapies targeting IL-13 cell surface receptors in DIPG.

Introduction

Brainstem gliomas account for up to 20% of all central nervous system tumors in children less

than 15 years of age, with a median age at presentation of 6–7 years[1]. Diffuse intrinsic brain-

stem gliomas (DIPG) comprise 80% of all brainstem gliomas and are typically anaplastic
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astrocytoma (AA), glioblastoma multiforme (GBM) or Grade 2 lesions[2]. No trials have yet

shown benefit of chemotherapy for management of patients with diffuse intrinsic pontine gli-

oma[3]. In the United States, approximately 350 new patients per year are diagnosed with

DIPG. Prognosis for patients with DIPG is poor, with a median survival of less than 1 year;

fewer than 20% of children are alive at 2 years[4]. Standard therapy consists of conventional

local field radiotherapy to a dose of 54–60 Gy for 6 weeks. Without radiotherapy, median sur-

vival is approximately 20 weeks[1, 5]. Radiotherapy leads to transient improvements in neuro-

logical function and improves overall survival by approximately 2–3 months[6]. Multiple

studies using a variety of conventional, high-dose and targeted therapies have demonstrated

no survival advantage in patients with DIPG [7–13]. Thus, novel therapies are clearly needed

for patients with DIPG.

Early phase clinical trials evaluating the safety and efficacy of the EGFR inhibitors gefitinib

and erlotinib have demonstrated modest activity in brainstem gliomas similar to DIPG[14].

Although many previous small molecule inhibitors have demonstrated no significant benefit,

an expanding understanding of the mutational landscape and defined therapeutic targets have

led us to discoveries of a set of potentially effective small molecule inhibitors. Recently pub-

lished work from our group prioritized panobinostat[15], an epigenome-modifying small mol-

ecule histone deacetylase, via in vitro and in vivo validation on DIPG primary cell cultures.

An alternative approach focuses on antibody drug conjugates (ADCs); the emergence of

bivalent antibodies makes targeting both receptors and receptor tyrosine kinases in DIPG a

viable therapeutic avenue. Based on our newly-generated data, IL-4, IL-13 and their receptors

IL-4Rα, IL-13Rα1, IL-13Rα2may be reasonable therapeutic targets in DIPG due to differential

overexpression on the cell surface of cancerous cells. This is consistent with previous research

showing the potential of IL-4 and IL-13Rα2 as potential therapeutic targets in pediatric brain

tumors such as glioblastoma [16–22].

IL-4 and IL-13 tethered exotoxins have already led to clinical trials, e.g., the IL-13PE38QQR

trial NCT00880061 at NIH[16, 23] and the IL-4::Pseudomonas Exotoxin product PRX321 in

development by Protox Therapeutics as NCT00797940[24]. Similarly, IL-13Rα2 as an immu-

nogen is the basis of a DIPG/high grade glioma vaccine trial [NCT01130077]. This pilot clini-

cal trial evaluated the safety and efficacy of subcutaneous vaccination with glioma-associated

antigens (GAAs) and their epitope peptides including IL-13Rα2, EphA2, and Survivin. Five of

twenty-six patients experienced inflammatory-associated pseudoprogression, defined as six-

month progression-free survival following transient clinical progression, with one patient

experiencing an event free survival of greater than three years [25, 26]. Thus, targeting overex-

pressed glioma-specific receptors or receptor tyrosine kinases in combination with targeted

antibodies may further improve survival. A case report of IL13RA2-targeted chimeric antigen

receptor T-cell therapy showed regression of glioblastoma in a human patient[27]. Dual recep-

tor targeting of EGFR and c-Met, possible using certain bivalent antibody approaches [28–30],

may be reasonable combination therapeutic targets in high grade glial tumors based on expres-

sion studies [31–35] from which one DIPG clinical trial employing the EGFR inhibitor, erloti-

nib, has opened [NCT01182350].

Based on the newly-generated sequencing data, IL-4 and IL-13 axis components were iden-

tified as being targets of interest in DIPG. Thus, in this work we explore IL-4 or IL-13 axis

components as well as EGFR or c-MET as combination therapy targets in DIPG. We have sur-

veyed archived human DIPG cases (28 by RNA-seq, 17 by immunohistochemistry (IHC)) for

IL-4, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, EGFR and c-Met expression. The studies herein dem-

onstrate that most DIPG tissues displayed a high content of IL-4 and weak or absent expres-

sion of IL-13, yet modest but significant expression of IL-4 and IL-13was observed at the

transcript level. By contrast, IL-13Rα1 and IL-13Rα2were found to be significantly enriched at

IL-13R in DIPG
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the transcript level in DIPG tissues and expression by IHC was found to be high with 41% of

these tissues also staining positive for the oncogenes EGFR and c-Met.

Results

Comparison of gene expression in DIPG tissues with matched normal

samples

To characterize the mutation status and gene expression levels of the cytokines IL-4 and IL-13,
their receptors IL-4Rα, IL-13Rα1/2, and the oncogenes c-Met and EGFR, we performed exome

and RNA-seq analysis on DIPG tissues (38 tumor exome, 26 normal exome, 28 tumor RNA, 18

normal RNA, Fig 1,S1 and S2 Figs). Exome sequencing did not identify any somatic point muta-

tions or copy number variations in IL-4 signaling axis genes. At the transcript level, we observed

statistically significant differential gene expression in IL-4 (p = 0.035), IL-13 (p = 0.016), IL-13Rα1
(p = 5.3e-3), and IL-13Rα2 (p = 8.0e-4). IL-13Rα1 (2.02-fold overexpression, p = 0.0007) and IL-
13Rα2 (17.32-fold overexpression, p = 0.0003) were statistically differentially overexpressed in

DIPG samples, with IL-13Rα2 overexpression notably higher. No statistically significant differen-

tial expression was observed in EGFR (p = 0.68), c-Met (p = 0.23), or IL-4Rα (p = 0.88) (Fig 1B).

Statistical analysis revealed a significant correlation between expression of c-Met and both IL-4Rα
(r = 0.734, p< 0.0001) and IL-13Rα1(r = 0.5325, p = 0.004, respectively); correlation was also

observed between EGFR and IL-13Rα2 (r = 0.3865, p = 0.04) (Table 1 and Table 2).

RNA-seq identified 3,577 (11.6% of 30,796 genes) differentially upregulated and 3,365 (10.9% of

30,796 genes) differentially downregulated genes in tumor samples relative to normal samples.

Among genes frequently mutated (defined as 7 or more variations in that gene across the 38

sequenced samples), 8 genes were significantly downregulated (p< 0.01) in tumor samples

(CAMK1G,MINK1, PARD6A, CDC42BPA,CDC42BPB,MAP3K9,RPS6KA5) and 17 genes were

significantly upregulated (p< 0.01) in tumor samples (MYC, ACVR1,NTRK1,MAPKAPK2, IL-
13RA1, IL-13RA2,TP53,CLK2,HIST1H3B,ABL2, IL2RG,DDR2,MAPK7, PSENEN, STK36,
H3F3A, IKBKE). Several genes located in the 1q cytogenetic band (DDR2,HSPA6, MAP3K9,ABL2,
CDK18, IKBKE,MDM4,NUAK2, PIK3C2B,CAMK1G,NEK2,MARK1, PARP1, CDC42BPA,

AKT3) were noted to have gain events in several samples. Frequent 1q gain events have been asso-

ciated with poor prognosis in a variety of pediatric diseases including neuroblastoma and medullo-

blastoma[36]. This analysis was generated solely from the Illumina sequencing data, and may not

completely capture the mutational landscape of these DIPG samples due to coverage limitations of

high throughput sequencing technology. A complete table of genomic variants is provided in S1

Table, and a complete table of gene expression data is provided in S2 Table.

Key mutations identified by Sanger sequencing

Sanger sequencing was performed on VUMC-DIPG-7 and VUMC-DIPG-8 samples indepen-

dently of the main body of research. Sanger sequencing identified H3F3A (K27M) mutations

(Fig 1A), consistent with other DIPG samples[37]. In previously reported samples, 6/16

(37.5%) samples carryH3F3Amutations; in new samples for this report, 5/22 (22.7%) carry

H3F3Amutations. H3F3Amutations were not identified in the Illumina sequencing due to

lack of coverage at theH3F3A loci; nonetheless, coverage for other regions was sufficient to

identify mutations in other genes.

Immunohistochemical studies of the IL-4R signaling axis

To interrogate protein-level status of the IL-4 signaling axis in DIPG, we performed IHC anal-

ysis of a cohort of formalin fixed paraffin embedded DIPG tumor tissues. Pathologist scoring

IL-13R in DIPG
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is detailed in the methods; briefly, 0 = no labeling, 1 =< 10% positive labeling of tumor cells,

2 = 10–50% positive labeling of tumor cells, 3 => 50% positive labeling of tumor cells. The

labeling of tumor cells, when present, was also visually quantified as weak,medium, or strong.
Samples not stained for a specific antibody are listed as NP (not performed). For IL-4, 12/17

(70.5%) cases scored above 0 (Fig 2A). In 6/12 (50.0%) positive cases the expression was

medium or strong, and 9/12 (75.0%) were scored as 2 or 3; 2/17 cases (11.8%) scored 0 and 3/

17 (17.6%) were not performed (NP). For IL-4Rα, 12/17 (70.5%) cases scored above 0 (Fig 2B).

In 5/12 (41.6%) cases the expression was strong, and 9/12 (75.0%) were scored as 2 or 3; 3/17

Fig 1. Landscape of exome mutations and differential gene expression of frequently-mutated DIPG genes and IL-4 pathway targets in DIPG samples. (A)

Mutational landscape of frequently-mutated DIPG genes and IL-family genes. Exome sequencing was performed on 38 DIPG samples to identify somatic mutations and

copy number variations. When possible, tumor samples were compared against matched normal samples. (B) Gene expression of frequently-mutated DIPG genes and

IL-family genes. The set of genes is identical to those in Fig A. RNA sequencing was performed on 28 DIPG samples: 18 tumor samples with matched normal samples,

10 unmatched tumor samples. Average fold change and tumor vs. normal p-values were calculated across the set of expressed genes. Note that IL-13Rα1 and IL-13Rα2
are significantly overexpressed in tumor compared to normal, but are mutationally silent.

https://doi.org/10.1371/journal.pone.0193565.g001

IL-13R in DIPG
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(17.6%) cases scored 0 and 2/17 (11.8%) were NP. For IL-13, 1/13 (7.69%) cases scored above 0

(Fig 2C). The positive case had weak labeling with a score of 2; 13/17 (76.5%) cases scored 0

and 3/17 (17.6%) were NP. In many cases scored as 2 or 3, 50% or more of the cells were

labeled with different markers. While not all cells were labeled, a significant percentage were;

from an immunotherapy perspective, a significant number of tumor cells would be targeted.

The most significant findings were for IL-13Rα1/2. For IL-13Rα1, 13/17 (76.5%) cases

scored above 0 (Fig 2D). All 13 positive cases had weak or medium expression; of these cases,

5/13 (38.5%) had medium expression; 10/13 (76.9%) positive cases had scores of 2 or 3; 3/17

(17.6%) cases scored 0. 1/17 (5.88%) were NP. For IL-13Rα2, 12/17 (70.5%) cases scored above

0 (Fig 2E) and 6/12 (50.0%) positive cases had medium or strong expression, all with a score of

2 or 3; 4/17 (23.5%) cases had no labeling and 1/17 (5.88%) were NP.

For reference, we have provided several normal tissue images stained with the different

IHC stains, as well as several scored experimental IHC samples (S3 and S4 Figs, respectively).

Correlation of IL-4R staining with other receptors

For EGFR, 7/17 (41.1%) cases scored above 0 for EGFR and IL-4Rα (Fig 2F); 5/7 (71.4%) posi-

tive cases had medium or strong expression with a score of 2 or 3; 8/17 cases scored 0 and 2/17

(11.8%) were NP. For c-Met, 7/17 (41.1%) cases scored above 0 (Fig 2G). Only 3/7 (42.8%) pos-

itive cases were scored as 2 or 3 and 3/7 (42.8%) positive cases had medium or strong labeling,

7/17 (41.2%) cases scored 0 and 3/17 (17.6%) were NP. Table 3 represents correlation of c-Met
expression with IL-4 signaling axis genes.

Discussion

Previous studies have reported that IL-4 blockade exhibits antitumor activity in rodent models

of glioma. Follow-up reports elucidated the role of IL-4 and IL-13Rα2 as mediators of aberrant

Stat3 signaling driving increased expression of anti-apoptotic genes[38, 39]. IL-13Rα1 and IL-
13Rα2 are known tumor-associated antigens and recent clinical trials have explored inocula-

tion with IL-13Rα2 and other tumor associated antigens as an immunotherapy[40]. However,

Table 1. Summary of immunohistochemical staining.

Antibody Positive M/S Labeling Score 2 or 3 Negative Not Performed # of cases

IL-4 12 6/12 9/12 2 3 17

IL-4R 12 5/12 9/12 3 2 17

IL-13 1 0/1 0/1 13 3 17

IL-13A1 13 5/13 10/13 3 1 17

IL-13A2 12 6/12 6/12 4 1 17

EGFR 7 5/7 5/7 8 2 17

MET 7 5/7 5/7 7 3 17

For Table 1, staining definitions are as follows: 0 = no labeling, 1 = < 10%, 2 = 10–50%, 3 = >50%; W = Weak, M = Medium, S = Strong.

https://doi.org/10.1371/journal.pone.0193565.t001

Table 2. EGFR correlation with IL-4 signaling axis genes and correlation between IL-4 tumor and normal.

EGFR vs. IL-4 EGFR vs. IL-4R EGFR vs. IL-13 EGFR vs. IL-13Rα1 EGFR vs. IL-13Rα2 IL-4R Tu vs. IL-4R Nm
R squared 0.1162 0.0176 0.0984 0.0065 0.1494 0.2718

P value (two-tailed) 0.0818 0.5092 0.111 0.6905 0.0464 0.0265

# of paired samples 27 27 27 2 27 18

https://doi.org/10.1371/journal.pone.0193565.t002

IL-13R in DIPG
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the roles of IL-4 and IL-4Rα have not been investigated in DIPG. To this end, we sought to

characterize expression of the extended targets of the IL-4/IL-13 signaling axis in DIPG tissues.

Of note, exome sequencing did not identify any somatic point mutations or copy number vari-

ations in IL-4/IL-13 signaling axis genes. However, consistent with previous reports, RNA-seq

gene expression studies revealed significant upregulation of IL-13Rα1 and IL-13Rα2 but no sta-

tistically significant differential of IL-4Rα. Immunohistochemistry revealed a high content of

IL-4, but not IL-13. However, the receptors for these cytokines (IL-4Rα, IL-13Rα1 and IL-
13Rα2) were all expressed in 85% of the cases analyzed. In 41%, expression of these receptors

were all labeled as strong and/or the number cells expressing these receptors was more than

25% of the tumor cell population. These results show that IL-4 and IL-13 receptor upregulation

is prevalent in DIPG tissues which may be driven by global dysregulation of gene expression

mediated by epigenetic mechanisms. Therefore, the potential exists for therapeutic drug tar-

geting of these receptors. The oncogenes EGFR and c-MET were co-expressed in approxi-

mately 41% of these gliomas. Additionally, significant correlations with IL-13Rα2 (EGFR) and

IL-4Rα and IL-13Rα1 (c-MET), respectively. These results raise the possibility that EGFRmay

be an epitope worth exploring in combination with IL-13Rα2 immunotherapies. Previous

reports have identified the expression of epidermal growth factor variant III (EGFRvIII) in a

subset of DIPG tissues with a vaccine pilot study ongoing (NCT01058850)[41, 42]. While we

did not examine these tissues for expression of EGFRvIII, we found no significant difference in

EGFR gene expression in tumor tissues versus matched normal and 41% of cases surveyed

expressed EGFR at the protein level. However, recent sequencing efforts in larger sample sizes

have shown that recurrent EGFRmutations are infrequent[43]. While the EGFR inhibitors

erlotinib and gefitinib have demonstrated activity in this disease, this activity may be due in

part to off-target kinase inhibition[44, 45]. In summary, we have identified IL-4Rα, IL-13Rα1
and especially IL-13Rα2 as potential therapeutic targets in DIPG. The co-expression of these

receptors with EGFR and c-METmay further expand immunotherapy options for this disease.

Materials and methods

Patient selection for sequencing experiments

We obtained tumor tissues from sixteen (16) new DIPG samples for exome sequencing. Eight

(8) samples were provided by Dr. Xiao-Nan Li of Texas Children’s Cancer and Hematology

Center, four (4) were obtained from OHSU patients, one (1) was obtained from a cell line pro-

vided by Dr. Michelle Monje at Stanford University, and three (3) samples were provided by

Dr. Esther Hulleman at Vrije Universiteit University Medical Center.

We also obtained tumor tissues from seventeen (17) new DIPG samples for transcriptome

sequencing. Nine (8) samples were provided by Dr. Xiao-Nan Li, four (4) were obtained from

OHSU patients, one (1) was obtained from a cell line provided by Dr. Michelle Monje, and

Fig 2. Immunohistochemical studies of the IL-4R signaling axis, EGFR and c-Met protein expression. Representative immunohistochemical

staining of DIPG archival cases for (A) IL-4 (B) IL-4Rα (C) IL-13 (D) IL-13Rα1 (E) IL-13Rα2 (F) EGFR (G) c-Met.

https://doi.org/10.1371/journal.pone.0193565.g002

Table 3. MET correlation with IL-4 signaling axis genes.

c-MET vs. IL-4 c-MET vs. IL-4R c-MET vs. IL-13 c-MET vs. IL-13Ra1 c-MET vs. IL-13Ra2
R squared 0.0269 0.5387 0.0642 0.2836 0.0006

P (two-tailed) 0.4135 < 0.0001 0.2022 0.0042 0.8991

# of paired samples 27 27 27 27 27

https://doi.org/10.1371/journal.pone.0193565.t003

IL-13R in DIPG
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four (4) samples were provided by Dr. Esther Hulleman. All studies with human tissue were

performed with approval of the Oregon Health and Science University (OHSU) institutional

review board. Expanded patient data is available in S3 Table.

Patient selection for immunohistochemistry experiments

We obtained tumor tissues from six (6) autopsy cases at OHSU, and from two (2) patients that

underwent a surgical biopsy of their DIPG tumor at OHSU. Eight (8) samples with matched

normal brain tissue samples were provided by collaborator Dr. Xiao-Nan Li of Texas Chil-

dren’s Cancer and Hematology Center. Nine (9) additional cases were provided by Dr. Cyn-

thia Hawkins of Toronto Sick Children’s Hospital, in the form of a paraffin block tissue

microarray, with an accompanying legend for diagnostic classification of the tissues on the

microarray grid. All internal and external cases were morphologically re-evaluated to ensure

sample adequacy and diagnostic accuracy. All studies with human tissue were performed with

approval of the Oregon Health and Science University (OHSU) institutional review board.

Additional information is available in S4 Table.

RNA-seq

RNA-seq libraries were constructed using the standard TruSeq protocol (Illumina). Briefly,

poly(A)+ RNA was isolated from total RNA using oligo-dT attached to magnetic beads. The

poly(A)+ was chemically fragmented. Double stranded cDNA was generated using random

hexamers as primers for both strands. The cDNAs were blunted-end, then a single A was

attached to the 3’ end of each strand to promote ligation. Standard Illumina adapters with indi-

ces were ligated to the cDNAs. The resulting ligations were amplified using a limited number

of rounds of polymerase chain reaction (PCR). Libraries were separated from unincorporated

material using AmpPure beads (Beckman Coulter). Libraries were evaluated using the Bioana-

lyzer (Agilent) and the concentration of each library was determined by real time PCR (Kapa

Biosystems) on a StepOnePlus real time PCR machine (Life Technologies). Sequencing was

performed on either a HiSeq 2000 (Illumina) or HiSeq 2500 (Illumina). Sequence assembly

was performed using either CASAVA (Illumina) or Bcl2Fastq (Illumina).

Somatic point mutation identification by exome capture sequencing

The methodology described below is a minor modification of the approach described in[46].

All captured DNA libraries were sequenced with the Illumina HiSeq in paired- end mode,

yielding 80 base pairs from the final library fragments. The reads that passed the chastity filter

of Illumina BaseCall software were used for subsequent analysis. Matepairs were pooled and

mapped as single reads to the reference human genome (NCBI build 36.1, hg18), excluding

unordered sequence and alternate haplotypes, using Bowtie[47], keeping unique best hits, and

allowing up to two mismatched bases per read. Likely PCR duplicates, defined as reads with

equal match intervals on the reference genome, were removed; and individual basecalls with

Phred quality less than Q20 were excluded. A mismatched base (SNV) was identified as a vari-

ant when 1) it had at least six reads of support, 2) it constituted at least 10% of the coverage at

that position, 3) it was observed on both strands, and 4) it fell within 50 bases of a region tar-

geted for capture.

In matched samples (samples with matched normals), a variant was called somatic if 1)

there was 8× coverage in the matched normal, 2) it did not occur in the matched normal sam-

ple in more than two reads and 2% of the coverage (or 4% of the coverage if the tumor variant

fraction was at least 20%), 3) if it had any support in the matched normal, and 4) it was not

present in either dbSNP (v137) or the Exome Sequencing Project data set (ESP6500). In

IL-13R in DIPG
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unmatched samples, a variant was called probable somatic if it affected the same codon as

either a somatic point mutation observed in the matched samples or a somatic mutation from

COSMIC (v66). Finally, all somatic/probable somatic variants were screened against the full

set of benign samples. Variants were removed from further consideration if they appeared in

any benign sample with at least three reads and 10% of the coverage.

Sanger sequencing

Genomic DNA was isolated from tissue, using the QIAamp DNA mini isolation kit (Qiagen,

Valencia, CA, USA), and the sequence of interest was amplified by PCR. Primers were

described by Wu et al.[37]. PCR products were subsequently sequenced by the dideoxy chain-

termination method, using the ABI PrismTM BigDye Terminator kit (Perkin Elmer, Foster

City, CA, USA), run on the ABI Prism Genetic Analyser 3100 automatic DNA autosequencer

(Perkin Elmer), and analysed with ABI sequence Alignment Editor software.

Annotation

We annotated the resulting somatic mutations using CCDS transcripts wherever possible. If

no CCDS transcript was available, we use the coding regions of RefSeq transcripts. HUGO

gene names were used.

Exome copy number analysis

Copy number aberrations were quantified and reported for each gene as the segmented nor-

malized log2-transformed exon coverage ratios between each tumor sample and its matched

normal as described in[48]. For unmatched samples, we used the average coverage derived

from the full set of benign samples as a ‘normal pool;’ for chromosomes X and Y only, we

formed separate normal pools from the XX and XY benign samples. We identified segments as

focal if they contained 10 or fewer CCDS gene annotations. To identify a gene as gained or lost

we first considered the segmented data, requiring a copy number gain or loss of 30% (ratio >

= 1.3 or < = 0.7) to call the gene as gained or lost. In addition, we considered the distribution

of copy number estimates for each gene’s individual exons. If the mean exonic copy number

showed a gain or loss of at least 30% and deviated from the null hypothesis by at least 2.5 s.d.,

we called the gene gained or lost.

Exome sequencing is available through dbGaP (phs001526.v1.p1).

Gene expression in RPKM inferred from RNA-seq data

All transcriptome libraries were sequenced with the Illumina HiSeq in paired end mode. The

reads that passed the chastity filter of Illumina BaseCall software were used for subsequent

analysis. We trimmed all reads to 85-mers and aligned them to the reference human genome

(NCBI build 36.1, hg18), plus a splice junction set including 84 bases on either side of the 2008

Illumina splice junction set, using Bowtie[47] in single read mode, keeping unique best hits

and allowing up to two mismatched bases. Matepairs from paired-end runs were pooled and

treated as single reads.

Next, all of the exons for a single gene were concatenated to form a single ‘transcript’ for

that gene. Reads that mapped to the exons in the gene, as well as reads that mapped to the

splice junctions, were remapped to the transcript. We then walked the transcript and summed

the coverage at each position, then divided the result by the transcript length × the number of

reads in the sample, and then multiplied the result by one million. This method is a modified

version of the one described in[49].
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RNA sequencing is available through dbGaP (phs001526.v1.p1).

DNA fingerprinting using common high-frequency variants

We considered 147 genomic positions that tended to have good coverage in both whole-

exome and RNA-seq data and for which at least two alleles were widespread. For each sample,

we constructed a ‘fingerprint’ for those positions with at least six fragments of coverage; an

allele was included in the fingerprint if it was seen in at least two fragments of coverage and at

least 15% of the total fragments. Two samples were deemed a match if at least 85% of the posi-

tions with sufficient coverage in both samples had identical fingerprints. In practice, samples

from the same patient matched at more than 90% of positions, whereas samples from different

patients matched at fewer than 75% of positions. For this study, all the included samples from

the same patient met the 85% match criteria, including all RNA-seq and exome samples. In

addition, no samples from different patients exceeded 74% similarity.

Statistical analyses

Bioinformatics and computational methods are described above. For comparison of gene

expression levels of the 429 genes associated with the targets of the drug screen, we generated

RNA-seq data and then compared tumor tissues to normal tissues to generate significance

scores using a t-test with the Benjamini–Hochberg multiple comparison correction.

GraphPad Prism (GraphPad Software Inc., San Diego, CA, USA) was used for all other sta-

tistical analyses. Correlation studies were performed using the Pearson product-moment cor-

relation coefficients for select IL-4 signaling axis genes and the oncogenes c-Met and EGFR.

Comparisons between groups were determined by Student’s t-test. Differences were consid-

ered statistically significant when p< 0.05.

Immunohistochemistry

We performed immunohistochemistry using the following primary antibodies, using the man-

ufacturer’s suggested concentrations: Interleukin 4 (IL-4) (Invitrogen, Fredrickson, MD),

Interleukin 4 Receptor Alpha (IL-4Rα) (RD Systems, Minneapolis, MS), Interleukin 13 (IL-13)

(Invitrogen), Interleukin 13 Receptor Alpha-1 (IL-13Rα1) (RD Systems), Interleukin 13 Recep-

tor Alpha-2 (IL-13Rα2) (R&D systems),METOncogene (Hepatocyte Growth Factor Receptor)

(Santa Cruz Biotech, Dallas, TX), Epithelial Growth Factor Receptor (EGFR) (Dako, Danvers,

MA). Each antibody was first tested with available known positive control normal tissues and

tumors, and titrated to obtain an optimal dilution for the best signal/noise ratio. Antigen

retrieval procedures were also tested for each antibody, starting with the manufacturer’s rec-

ommended reagents. The immunohistochemical staining results were interpreted by two

pathologists (SHG and VZ). We used a semi-quantitative scoring system for analysis: 0: No

labeling, 1: Less than 10% of tumor cells labeled, 2: 10–50% of tumor cells labeled, 3: More

than 50% of tumor cells labeled. The labeling of tumor cells, when present, was also visually

quantified as weak,medium, or strong. In interleukin receptor studies, cytoplasmic or mem-

brane labeling was taken into account as positive labeling, but nuclear labeling was disre-

garded, after our antigen adsorption assays revealed that the nuclear staining was not specific.

Each assay was conducted with several identically processed positive control tissues and nega-

tive controls were included in all assays. Each antibody was performed in all cases. In four

cases, due to depletion of the tissue block, we were able to test only some of the seven antibod-

ies. Where a specific antibody testing was not performed due to limited tissue availability, the

designation not present (NP) was used to indicate that the assay was not performed.
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Supporting information

S1 Fig. Landscape of commonly mutated genes in DIPG samples. Mutational landscape of

the most frequently mutated gene targets. Genes with at least 7 or more variations of any type

were considered frequently mutated (average + 2 standard deviations).

(TIF)

S2 Fig. Gene expression of genes frequently mutated in DIPG samples. Gene expression of

the most frequently mutated exome genes, defines as genes with at least 7 or more variations

of any type. Notable genes that are both frequently amplified and overexpressed in DIPG

tumor samples include NTRK1 (a neuronal pro-survival gene) andMYC (a gene commonly

overexpressed in cancers).

(TIF)

S3 Fig. Control staining images for different immunohistochemistry stains. Staining of

normal control tissues using different IHC stains used in IHC experiments. (A) IL-13Rα1
staining of peripheral nerve ganglion. (B) IL-13Rα2 staining of testicular germ cells. (C) IL-
4Rα staining of stomach mucosal glands. (D)MET staining of intestinal mucosal glands. (E)

EGFR staining of skin epidermis.

(TIF)

S4 Fig. Sample staining definitions for immunohistochemistry straining experiments. Var-

ious stains and different assigned scores (0/1/2/3 and weak/medium/strong) as example IHC

results for reference. (A) IL-13R staining assigned score 0. (B) IL-13Rα1 staining assigned

score 2/medium. (C) EGFR staining assigned score 2/strong. (D) IL-13Rα1 staining assigned

score 3/weak. (E) IL-4Rα staining assigned score 3/strong.

(TIF)

S1 Table. Mutation landscape of DIPG samples. Gene level mutation and variation status of

sequenced DIPG samples.

(XLSX)

S2 Table. RNA expression across all samples. Quantified RPKM gene expression from whole

transcriptome sequencing experiments on DIPG samples.

(XLSX)

S3 Table. Patient and sequencing information. De-identified patient information for ana-

lyzed DIPG samples.

(XLSX)

S4 Table. IHC selection information. Sample name and origin for DIPG samples selected for

IHC analysis.

(XLSX)
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