
RESEARCH ARTICLE

TeamWATCH: Visualizing development

activities using a 3-D city metaphor to improve

conflict detection and team awareness

En Ye1, Xin Ye2, Chang Liu1*

1 School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio, United States of

America, 2 California State University San Marcos, San Marcos, California, United States of America

* liuc@ohio.edu

Abstract

The awareness of others’ activities has been widely recognized as essential in facilitating

coordination in a team among Computer-Supported Cooperative Work communities. Sev-

eral field studies of software developers in large software companies such as Microsoft

have shown that coworker and artifact awareness are the most common information needs

for software developers; however, they are also two of the seven most frequently unsatisfied

information needs. To address this problem, we built a workspace awareness tool named

TeamWATCH to visualize developer activities using a 3-D city metaphor. In this paper, we

discuss the importance of awareness in software development, review existing workspace

awareness tools, present the design and implementation of TeamWATCH, and evaluate

how it could help detect and resolve conflicts earlier and better maintain group awareness

via a controlled experiment. The experimental results showed that the subjects using Team-

WATCH performed significantly better with respect to early conflict detection and resolution.

1. Introduction

As reported in [1], software engineers spend approximately 70% of their time on cooperative

activities; thus, collaboration is essential for software development. At the same time, collabo-

ration is also difficult since the intangible nature of software makes it challenging for software

developers to create a common view among team members. A shared view of a software sys-

tem can not only help developers better understand its complexity during collaboration but

also enable them to know more about how their work relates to that of others within the con-

text of the entire system. As the size and complexity of software systems produced in large-

scale software development increase, it tends to incur a high degree of parallel development

[2]. Therefore, coordination among different team members in a team or across teams work-

ing on different modules is necessary. With the progress of globalization and outsourcing, a

growing number of software development projects are being geographically and temporally

distributed, which increases the difficulty of collaboration since increasing the distance

between team members usually leads to less effective communication [3,4].

The awareness of others’ activities has been widely recognized as essential in facilitating co-

ordination in a team among Computer-Supported Cooperative Work (CSCW) communities.

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ye E, Ye X, Liu C (2018) TeamWATCH:

Visualizing development activities using a 3-D city

metaphor to improve conflict detection and team

awareness. PLoS ONE 13(3): e0193562. https://

doi.org/10.1371/journal.pone.0193562

Editor: Fabio Calefato, University of Bari, ITALY

Received: April 26, 2016

Accepted: February 5, 2018

Published: March 20, 2018

Copyright: © 2018 Ye et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The PreSurvey and

PostSurvey questions, PreSurvey and PostSurvey

responses, and experiment tasks and conflict

detection results are available in Supporting

Information files. The video recording of each

participant’s experiment process, their source code

changes for the experiment tasks, and their chat

logs are no longer available as these were

destroyed after one year per Ohio University IRB

approval. Even though some raw data are no

longer available, researchers are still be able to

replicate the study and analyses based on the

experiment instructions and available experiment

data in the manuscript and support files. For

https://doi.org/10.1371/journal.pone.0193562
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193562&domain=pdf&date_stamp=2018-03-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193562&domain=pdf&date_stamp=2018-03-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193562&domain=pdf&date_stamp=2018-03-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193562&domain=pdf&date_stamp=2018-03-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193562&domain=pdf&date_stamp=2018-03-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193562&domain=pdf&date_stamp=2018-03-20
https://doi.org/10.1371/journal.pone.0193562
https://doi.org/10.1371/journal.pone.0193562
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Awareness can be defined as “an understanding of the activities of others, which provides a

context for one’s own activities” [5]. Much attention has been given to the importance of

awareness in the coordination of software development due to the complexity and interdepen-

dency of software systems [6,7]. According to a two-month field study of “collocated” software

developer teams at Microsoft [8], Ko et al. found that the most common and second most fre-

quent information that these developers seek is coworker awareness, i.e., “what a developer’s

coworkers have been doing”; another awareness information need, i.e., “how have resources I

depend on changed”, was ranked as the third most common one. However, the above types of

information are also regarded as two of the most frequently unsatisfied information needs.

That is, collocated software developers have difficulty acquiring coworker and artifact aware-

ness information. The importance of awareness regarding coworkers and artifacts and the

inadequate tool support available to obtain it have been substantiated in two other similar

studies on software developers at Microsoft [9,10]. Maintaining group awareness becomes

even more difficult in distributed software development. A distributed team not only cannot

take advantage of the ad hoc communication commonly used in collocated situations but also

has to overcome the impact of working across different time zones, languages, and cultures

[3,4]. As a result, team members may duplicate work or create conflict without knowing the

status of others and the whole team, which may, in the end, impact the project schedule and

cause delays with respect to project delivery [11].

Such problems can be seen in developers’ traditional usage of version control systems

[12,13]. By using version control systems such as CVS [14] and SVN [15], developers can work

independently most of the time. They usually become aware of others’ activities only when

they perform operations (e.g., check-in, check-out, update) in the central repository. As a

result, developers usually can only detect conflicts at these times. For example, when developer

A wants to check-in a modified artifact, he finds that developer B has checked-in the same arti-

fact with a different modification, which causes a conflict. At this time, the conflict may be too

large; thus, resolving it (e.g., by merging changes, re-testing the artifact, etc.) can be a signifi-

cant and time-consuming process. It may also be too late to resolve the conflict even if devel-

oper A can use some tools, such as CVS-Watch [14], to receive a notification as soon as

developer B checks-in the modified artifact. To avoid these efforts in resolving conflicts, devel-

opers may rush to check-in their changes [16,17].

To solve these problems and thus enhance developers’ collaboration, tools need to be cre-

ated to help developers acquire coworker and artifact awareness information easily, quickly

and correctly. As suggested by Dourish and Bellotti, information of past activity and informa-

tion of current activity were two facets of a single view of awareness information [7]. To pro-

vide awareness information regarding a coworker’s current status, such tools usually monitor

developers’ workspace activities; thus, they are called workspace awareness tools. Gutwin et al.

defined workspace awareness as “the collection of up-to-the-minute knowledge a person uses

to capture another’s interaction with the workspace” [18]. Gutwin et al. also referred to group

awareness as “the understanding of who is working with you, what they are doing, and how

your own actions interact with theirs” [19]. In this sense, group awareness is similar to work-

space awareness, albeit with a closer focus on people instead of artifacts.

Workspace awareness tools aim to solve this problem of a lack of awareness among devel-

opers by providing developers with awareness information regarding which artifacts other

developers are working on, what kinds of changes they are making, and whether their changes

will affect local workspaces [20]. In the version control system example, conflicts could be

detected and thus resolved earlier [21] if workspace awareness tools indicate to developer A

that developer B is changing or has changed the same artifact he plans to change, no matter

whether developer B’s change has been committed (i.e., in the central repository) or not (i.e.,

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 2 / 27

instance, the screenshots taken from the video

recording of an experimental group were included

in the manuscript to discuss how to infer the

conflict detection from the video recording, and

excerpts of an experimental group’s chat logs were

also included in the manuscript to support the

analysis as well. Furthermore, to actually replicate

the study, the best way is to get our tools and

experiment setup, recruit new subjects, and re-run

the experiment from scratch. Other researchers

can do this if they are interested. Data are from the

study whose authors may be contacted at

ey171304@ohio.edu.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0193562
mailto:ey171304@ohio.edu


in the local workspace). Then, developer A can start a conversation with developer B to discuss

their changes to avoid the potential conflict. Developer A can also choose to work on other

artifacts first until developer B has committed his or her change.

To help software developers maintain group awareness and enhance their collaboration, we

propose a workspace awareness tool based on a 3-D city metaphor called TeamWATCH

(Team-based Workspace Awareness Toolkit and Collaboration Hub) [22,23]. TeamWATCH

monitors developers’ activities in their local workspaces, version control repository, and bug

tracking system. It then extracts and analyzes the corresponding awareness information and

finally visualizes it in real time as a common view shared by the whole team using a 3-D city

metaphor. With TeamWATCH, developers can obtain not only real-time awareness infor-

mation (such as who is online, which tasks (i.e., bug items or feature requests in the bug

tracking system) they are working on, and which artifacts they are manipulating) but also his-

torical information (such as when the latest revision of an artifact was committed, who has

changed an artifact most often, and how many revisions are contained in an artifact). It can

support both workspace awareness that focus on artifacts and group awareness that focus on

people.

2. Related work

To create such a workspace awareness tool, we first need to know what kinds of awareness

information software developers are interested in and where and how they can gain this aware-

ness information. According to [19], developers in open-source projects tend to maintain both

a general awareness of the whole team and more detailed knowledge regarding team members

that they plan to work with. First, developers acquire a broad awareness of the main team

members working on their project and their areas of expertise. They obtain these kinds of

information from three sources: mailing lists, text chat, and commit logs. Second, when devel-

opers plan to work in a particular area, they then try to gain more comprehensive knowledge

regarding the people who have experience with that part of the codebase. Developers maintain

this specific awareness by using a variety of information sources available during the project.

These sources include the “maintain” field in the source tree, version control repository logs,

issue trackers, help from senior developers, and the project document. They also ask related

questions using the mailing list. To summarize, open-source developers maintain group

awareness by manually “pulling” information from several information sources. This thesis

also applies to commercial software developers based on the studies in [7–10,24].

Many tools have been developed to maintain group awareness. Some of them (e.g., COOP/

Orm ([25], BSCW [26], Xia [27], and Augur [28]) provide awareness of activities based on

information currently available in the repository; thus, they can only show changes that have

already been committed and cannot offer real-time information regarding current activities in

developers’ local workspaces. Other tools (i.e., workspace awareness tools) improve awareness

by adding a visualization of up-to-date information regarding ongoing changes in developers’

local workspaces (e.g., Palantir [29–33], JAZZ [34], FASTDash [10], Workspace Activity

Viewer [35], War Room [36], Scamp [37], CollabVS [38], Celine [39], TUKAN [40], State

Treemap [41] and Crystal [42–44]).

From our analysis of the workspace awareness tools above, we have been able to make sev-

eral observations:

• All the tools only extract awareness information from the version control repository and

local workspaces. According to the observation in [19], i.e., that developers obtain awareness

information from several sources, awareness information gained from only a single source is

incomplete and thus may be incorrect or misleading. Meanwhile, if developers want to gain

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 3 / 27

https://doi.org/10.1371/journal.pone.0193562


awareness information from other sources, they have to “pull” information by themselves,

which incurs additional effort.

• All the tools, except the Workspace Activity Viewer, only present a developer’s real-time

information regarding ongoing changes to artifacts (and may also provide the latest check-in

info related to these artifacts). Although the Workspace Activity Viewer records the histori-

cal awareness information, it can only show developers the raw data, i.e., a snapshot of all

ongoing changes to artifacts at a particular time. Actually, developers are also interested in

historical information, especially the statistical results of this information. For example, in

the beginning of this section, we mentioned that developers are interested in gaining more

detailed knowledge about the people who have experience with a particular part of the code.

If the statistical information regarding who has changed each artifact most often can be pro-

vided, developers can ask for help from this person when they have questions regarding this

artifact since this person is more familiar with it.

• Among all the tools, some tools, such as Palantir and Jazz, display awareness information

in a filtered view customized for individual developers, i.e., they only show information

regarding activities related to artifacts that are either included in a developer’s local work-

space or artifacts in which he has specifically registered interest. Other tools, such as the

Workspace Activity Viewer, FASTDash and War Room, provide an overview of all the ongo-

ing activities in a project’s code repository. FASTDash and War Room even create a layout

representing the file structure of the project repository and use it to show information

regarding changes made. Both visualizations are equally important. The filtered view can

help developers solve the information overload problem, especially in a large-scale software

project, while the overview layout can show the global state of the entire system so that devel-

opers can understand how their work relates with that of others within the context of the

entire system.

• Among all the tools, Palantir, Workspace Activity Viewer, CollabVS, and Celine provide a

filter mechanism to handle developers’ cognitive load, using which they can see only the

changes that they are interested. In addition, probably due to privacy concerns, only Col-

labVS and Celine can enable developers to see others’ locally changing or changed code in

their workspaces. This function may help developers solve conflicts quickly by enabling

them to compare (or contrast) their own locally changed code with that of others when two

or more developers are changing the same artifact.

• Among all the tools, Jazz, CollabVS and State Treemap provide communication functi-

onality. FASTDash’s annotation function is actually asynchronous communication among

team members. Jazz supports contextual communication, where developers can chat spe-

cifically regarding a certain artifact, and chat logs can be linked to the related code. With-

out this functionality integrated into the awareness tool, developers usually use other

standalone communication tools to chat with others when they find conflicts or other

problems regarding artifacts. This not only incurs the cost of context switch between aware-

ness tools and communication tools but also makes the valuable chat logs easier to neglect or

lose.

• Among all the tools, Palantir, CollabVS, TUKAN and Crystal also support the detection of

indirect conflict through dependency analysis, while the others can only detect direct con-

flicts, i.e., the cases in which the same file is locally changed by more than one developer.

Comparisons of the workspace awareness tools mentioned above are shown in Table 1.

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 4 / 27

https://doi.org/10.1371/journal.pone.0193562


Table 1. Comparisons of workspace awareness tools.

Tool Type Awareness Info

Source

Awareness Info

Visualization

Awareness Info

Filter

Integrated Communication

Functionality

Conflict

Detection

Evaluation

Palantir Eclipse plug-in Version

control

repository and

local

workspaces

2-D views

customized for

individual

developers

integrated into

Eclipse

Allows developers

to select the

awareness info in

which they are

interested and only

notifies developers

regarding that info

N/A Both direct

and

indirect

conflict

Controlled experiment

on mock software

projects in a

programming course

Jazz Eclipse plug-in Version

control

repository,

local

workspaces

and presence

2-D views

customized for

individual

developers

integrated into

Eclipse

N/A Synchronous

communications such as IM

and Screen Sharing,

asynchronous

communications such as

discussion board, and

contextual communication

based on the related source

code

Direct

conflict

Turned into a software

product by IBM

FASTDash Standalone tool Version

control

repository,

local

workspaces

and presence

2-D common view

built on the file

structure of the

project repository

shared by the whole

team

N/A Asynchronous

communications such as

annotations to the visualized

file

Direct

conflict

Field study on a

software development

team at Microsoft

Workspace

Activity

Viewer

Standalone tool Version

control

repository and

local

workspaces

3-D common view

shared by the whole

team

Filters by developer

and by artifact

N/A Direct

conflict

Visualization of

simulated workspace

activities for five open-

source projects

War Room Standalone tool Version

control

repository and

local

workspaces

2-D common view

built on the file

structure of the

project repository

shared by the whole

team

N/A N/A Direct

conflict

Case study of a real

software development

company

Syde Eclipse plug-in Version

control

repository and

local

workspaces

2-D views

customized for

individual

developers

integrated into

Eclipse

N/A N/A Direct

conflict

Case study of two multi-

developer projects in a

programming course

CollabVS An extension to

Visual Studio

Version

control

repository,

local

workspaces

and presence

2-D views

customized for

individual

developers

integrated into

Visual Studio

Allow developers to

select the awareness

info they are

interested in and

only notifies

developers

regarding that info

Synchronous

communications such as IM,

audio/video, and screen

sharing

Both direct

and

indirect

conflict

User study on software

engineers at Microsoft

Celine Standalone tool Version

control

repository and

local

workspaces

2-D views

customized for

individual

developers

Applies different

strategies to provide

developers with

only relevant info

N/A Direct

conflict

Daily used by engineers

at STMicroelectronics

TUKAN A plug-in for the

Smalltalk system

Version

control

repository,

local

workspaces

and presence

2-D views

customized for

individual

developers

integrated into

Smalltalk

N/A Synchronous

communications such as IM

and screen sharing, and

asynchronous

communications such as

Email

Both direct

and

indirect

conflict

Case studies of the

authors’ research group

and a software company

for one week

(Continued)

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 5 / 27

https://doi.org/10.1371/journal.pone.0193562


3. Proposed solution

The goal of our work is to help software developers maintain group awareness to enhance

their collaboration, which in the end improves their efficiency. To achieve our research goal,

we propose creating a workspace awareness tool that can first extract and integrate awareness

information from several sources and then visualize relevant information for developers in an

appropriate 3-D form. We will briefly discuss the design and implementation of the tool (i.e.,

TeamWATCH) in the next two sections, with more details given previously in [22,23]. Then,

we will focus on the evaluation of the tool, especially the tool’s efficiency in detecting and

resolving conflicts earlier.

The tool will have the following features:

• It will extract awareness information from a variety of sources, which at least include the ver-

sion control repository, local workspaces, and issue tracking system. These are the only two

awareness sources that are based on actual manipulations of the project artifacts.

• It will provide developers both real-time awareness information and (statistical) historical

awareness information and the way to highlight the information in which the developers are

more interested.

• It will visualize awareness information in 3-D in two ways: a filtered view for individual

developers and an overview layout for the whole team.

To build such a tool, we mainly consider three aspects:

Information collection

What kinds of awareness information do we plan to extract from the version control system

and issue tracking system? We plan to extract the following awareness information:

1. Presence awareness information

a. The status of a developer (busy, away, etc.)

b. The task that a developer is currently working on

2. Real-time awareness information

a. The artifacts each developer is changing or has changed in his or her local workspace

compared with the latest version in the version control repository. The “changing” oper-

ation can represent any of the following actions: add, delete, rename, move, modify,

Table 1. (Continued)

Tool Type Awareness Info

Source

Awareness Info

Visualization

Awareness Info

Filter

Integrated Communication

Functionality

Conflict

Detection

Evaluation

State

Treemap

Integrated into a

platform named

“MOTU”, which

is an open-

source project

Version

control

repository,

local

workspaces

and presence

2-D views

customized for

individual

developers

N/A Synchronous

communications such as IM

and audio/video

Direct

conflict

Used by a virtual team

of architects

Crystal Standalone tool Version

control

repository and

local

workspaces

2-D views

customized for

individual

developers

N/A N/A Both direct

and

indirect

conflict

Case studies of nine

open-source projects

https://doi.org/10.1371/journal.pone.0193562.t001

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 6 / 27

https://doi.org/10.1371/journal.pone.0193562.t001
https://doi.org/10.1371/journal.pone.0193562


update (i.e., check-out), and commit (i.e., check-in). This is more towards workspace

awareness view focusing on artifacts.

b. The developers that are changing or have changed each artifact in their local workspaces

compared with the latest version in the version control repository. This is more towards

group awareness view focusing on developers.

3. History awareness information

a. Who has checked in each artifact most recently (or last)

b. Who has checked in each artifact most often

c. Who contributed most to the project, and who was most recently active

d. Which artifact has gone through the largest number of revisions

e. During which time period, which developers worked on the project most actively, and

what were the changes made during this period

The workspace awareness information will also definitely include the details of each artifact

changed by each developer, i.e., the version number if the artifact is checked-in, the time of the

change, the person in charge of the change, and the size of the change (e.g., the number of

changed lines).

Information extraction

How do we extract and integrate awareness information from the version control system and

issue tracking system? To extract awareness information, daemons will be created to monitor

operations in the version control repository and issue tracking system and to store the

extracted awareness information in the database. Since these two sources are mainly related to

each other through artifacts, we can combine information from them together based on the

artifacts. Integrating data regarding commits in the version control system and change

requests in the issue tracking system can provide developers a historical view regarding which

artifacts are related to the bug, who is responsible for it, which version of the artifact resolves

it, and when.

Information presentation

How do we present relevant awareness information to developers in an appropriate 3-D form?

Shneiderman suggested the following: “A useful starting point for designing advanced

graphical user interfaces is the Visual Information-Seeking Mantra: overview first, zoom and

filter, then details on demand” [45]. We try to apply this principle to the design of Team-

WATCH visualization. First, a common overview of awareness information is visualized based

on the file structure of the project repository. Second, animations are created to highlight

active artifacts (i.e., all the files that have local changes, which have not yet been committed to

the central repository, from the developers’ workspace). Third, filters are implemented to help

developers quickly locate the artifacts in which they are interested. Meanwhile, developers can

leverage the zoom function provided by the underlying 3-D platform. Finally, the detailed

awareness information can be shown when developers hover their cursors over the artifact

visualization. We will discuss the detailed visualization design in the following paragraphs.

TeamWATCH visualizes developers’ status through a buddy list and shows the task ID and

summary (Fig 1D in Fig 1, which is a screenshot of the Second Life client of TeamWATCH)

above the head of each developer’s avatar. This is a way to visualize presence information. It

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 7 / 27

https://doi.org/10.1371/journal.pone.0193562


uses a 3-D city metaphor similar to the metaphor used in the CodeCity project [46] to visualize

both real-time and historical artifact awareness information. As the visualization in CodeCity,

TeamWATCH uses city buildings to represent files and city districts to represent folders, with

the layout of the city representing the overall file structure of the software project. In Team-

WATCH, buildings, shown as differently colored stacked cylinders, stand on top of city dis-

tricts, shown as flat blue rectangular blocks (with color saturation representing the nested

packages). Different from CodeCity, which visualizes class metrics (such as the number of

methods in a class), TeamWATCH visualizes artifact awareness information. In addition, ani-

mations are used to highlight active artifact information since developers are more interested

in it compared with historical information [10]. Animations are created when a developer

makes local changes to an artifact. They will disappear after all its local changes have been

committed or rolled back. By monitoring the animation, developers can learn about what

Fig 1. a) Eclipse; b) Second Life; c) Smoke representing active artifact, with the color representing the corresponding developer making local changes; d) Texts

summarizing local changes made by the developers; e) Active task; f) Highlighted artifact.

https://doi.org/10.1371/journal.pone.0193562.g001

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 8 / 27

https://doi.org/10.1371/journal.pone.0193562.g001
https://doi.org/10.1371/journal.pone.0193562


other developers are doing, detect whether others are working on the same artifact, and take

actions if necessary to avoid potential future conflict resolutions.

TeamWATCH visualizes a file as a stack of differently colored cylinders, just as a building

has differently decorated floors. The height of the stacked cylinders indicates the number of

revisions of the corresponding file. A single cylinder represents a revision, with its color denot-

ing the author of that revision. If the same developer contributes successive revisions, the cor-

responding cylinders will be combined into one bigger cylinder, with its height equaling to the

sum of the heights of all revisions. The stacked cylinders are sorted by date such that the most

recent revision is always on top. In this way, developers can determine the number of revisions

to a file based on the heights of the cylinders, the author of the latest version based on the color

of the top cylinder, and who has committed the most revisions in total based on which color

dominates the cylinders.

TeamWATCH uses animations to highlight active (or real-time) artifact information.

When a file is changed locally, smoke, the color of which represents the developer making the

change, will be emitted from the corresponding building (Fig 1C) and rise into the sky.

Through this animation, developers can determine the popularity of a file and then decide

whether to make changes to it, as they may encounter merge conflicts later due to the changes

made by other developers to the same file. If more than one developer changes the same file,

an entire building will shake, warning the team about a potential conflict.

The visualization mapping between the 3-D building and the software artifact is shown in

Table 2.

With the current visualization, it may be difficult for developers to locate an artifact in

which they are interested if the code base is large. Filters are created to solve this problem.

TeamWATCH provides a revision number filter, revision time filter, author filter, and artifact

filter. When the developers type any keyword in a filter dynamically, only the artifacts match-

ing the search criteria are shown in the visualization, while other artifacts become invisible.

For example, if the developers enter the keyword “notepad” in the artifact filter, then only arti-

facts whose name contains “notepad” are shown in the visualization. Developers can quickly

revert to the normal state by removing the keywords in the filter. The filters are only applied to

a local developer’s view, i.e., the views of other developers are unaffected by the filter operation.

Therefore, the filters can be used to create a customized personal view for each developer with-

out affecting the views of other developers. To obtain detailed information of an artifact, devel-

opers can hover their cursors over the corresponding visualization. They can also click a

building to make it glow to highlight an artifact (Fig 1F).

Table 2. Mapping between a 3-D building and the project.

Attributes of the building Attributes of the software artifact

Coordinates on a horizontal surface

(X, Y)

Layout of a project (artifacts, including files and folders)

Height (Z) Number of revisions to a file, ordered based on the revision time, with the

latest one always on top

Floor Revision

Shape (cylinder vs rectangular

block)

Files vs folders

Color The author of the revision

Transparency Status (deleted or not)

Smoke emitted from the top of the

building

Active artifact that is being changed locally by the developer corresponding to

the smoke color

A building with lights on (glowing) Highlighted artifact

https://doi.org/10.1371/journal.pone.0193562.t002

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 9 / 27

https://doi.org/10.1371/journal.pone.0193562.t002
https://doi.org/10.1371/journal.pone.0193562


4. Implementation

4.1 TeamWATCH

TeamWATCH is implemented in a client-server architecture, as shown in Fig 2. Team-

WATCH mainly consists of three components: TeamWATCH server, TeamWATCH visuali-

zation client, and TeamWATCH plug-in. The server side is implemented as a Java Web

service. The Monitor (or Extractor) on the TeamWATCH server receives the project’s real-

time awareness information from the developers’ local workspaces and the project’s historical

awareness information from the version control repository and issue tracking system via the

TeamWATCH plug-in (currently only available in Eclipse). The TeamWATCH plug-in is

built on top of the Eclipse CVS plug-in, to obtain notifications regarding developers’ opera-

tions in the local workspace and central repositories, and the Eclipse Mylyn plug-in, to deter-

mine developers’ current tasks in the issue tracking system. Then, it sends the awareness

information to the extractor. The extractor also supports directly extracting a project’s histori-

cal log information from a repository by sending commands to the repository through SCM

(Software Configuration Management) clients such as Subversion. Either way, the awareness

information extracted from the client contains details such as the author, revision time, and

files that are being or have been changed for every revision of the project. The Analyzer accepts

the raw awareness data extracted by the Extractor as the input, then formats it and calculates

the statistical results, such as how many check-ins each developer has contributed to the proj-

ect, how many revisions each file has gone through, etc., before sending the information to the

Tree-mapping component. The Tree-mapping component maps the project’s structure infor-

mation onto 3-D coordinates using the Quantum Treemap algorithm [47], then creates visual-

ization data for each artifact based on the mapping strategy described in Chapter 3. The tree-

mapped output is then serialized into a string by the Serializer component, which is the final

output of the TeamWATCH server. The TeamWATCH client invokes the TeamWATCH

Web service to obtain the serialized string for visualization. To avoid repeated analysis, both

the original awareness information and the final generated serialized string information are

stored. When any new changes are made to the project, only new awareness information

needs to be calculated and mapped onto the existing 3-D layout. For example, if the serialized

3-D layout result of a project with 735 revisions is stored in the database, when someone

Fig 2. The TeamWATCH architecture diagram.

https://doi.org/10.1371/journal.pone.0193562.g002

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 10 / 27

https://doi.org/10.1371/journal.pone.0193562.g002
https://doi.org/10.1371/journal.pone.0193562


commits a new revision 736, only the information of revision 736 needs to be processed and

added to the existing information of revisions 1 to 735 stored in the database.

The TeamWATCH client was implemented as a standalone application using either Second

Life (SL) [48] or Unity3D. The client side of TeamWATCH is mainly the visualization of the

project’s real-time and historical changes. It obtains information via a web service request to

the server and presents the final visualization to the users as a common view.

The first TeamWATCH client was implemented based on a modified open-sourced SL cli-

ent viewer [22] (aka SecondWATCH). SecondWATCH takes advantage of SL’s avatar-based

virtual world to simulate the developer’s workspace, leveraging its 3-D object building feature

to create 3-D objects representing software artifacts; it then utilizes SL’s various communica-

tion functionalities (text chat, Instant Message (IM), group message, and voice chat) to provide

interaction between team members. Later, we found that the SL client is heavy-weighted, hav-

ing a dependency on the SL server, which was not stable and has performance and latency

issues, especially when visualizing large-scale software projects. This would affect the usability

of the TeamWATCH tool. Therefore, we implemented another client using Unity3D, and the

evaluation of the TeamWATCH tool discussed in this paper is based on the Unity3D client.

The Unity3D client can run on multiple platforms, including Windows PCs, Mac computers,

and iOS devices.

4.2 Application

An introduction video for TeamWATCH is available on YouTube (http://youtu.be/

xPDilTwfySU). The TeamWATCH visualization can be presented on a second personal dis-

play for individual developers or on a large display in a shared workspace for the whole team,

which is very common in the software industry. TeamWATCH was used as our workspace

awareness tool to visualize its own development process (see Fig 1) while we were developing

it. It has also been successfully applied to visualize the historical awareness information of real-

world open-source projects including Notepad++, jEdit, Firebird, Hugin, OpenNMS, Free-

Mind, and GUJ. Descriptions and screenshots of these visualizations, as well as those of the

TeamWATCH software and user guide, are available on the VITAL Lab website (http://vital.

cs.ohio.edu/?page_id=1340). A screenshot of the awareness information visualization of the

Notepad++ project using the TeamWATCH Unity3D client is shown in Fig 3.

4.3 Comparisons with existing workspace awareness tools

Compared with existing workspace awareness tools such as Palantir [29], JAZZ [34], and FAS-

TDash [10], TeamWATCH is different in the following ways. First, TeamWATCH not only

extracts awareness information from the version control repository and local workspaces but

also from the bug tracking system. Second, TeamWATCH visualizes both real-time awareness

information and historical awareness information together using a 3-D city metaphor, which

provides a common view that enables developers to refer to the information they need within

the context of the whole team’s work. Third, TeamWATCH highlights active artifacts that are

being changed locally and potential conflicts via eye-catching animations and combines the

common view of the whole team with the customized personal view of an individual developer

through the use of local filters. Thus, it can enable developers to quickly locate the artifacts in

which they are interested and obtain the corresponding awareness information they want.

5. Evaluation

To answer the questions of whether and how TeamWATCH helps to maintain group aware-

ness, improve development efficiency, and thus enhance team collaboration, controlled

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 11 / 27

http://youtu.be/xPDilTwfySU
http://youtu.be/xPDilTwfySU
http://vital.cs.ohio.edu/?page_id=1340
http://vital.cs.ohio.edu/?page_id=1340
https://doi.org/10.1371/journal.pone.0193562


experiments have been conducted. The experiments conducted to evaluate the ability of Team-

WATCH to help increase the correctness of and reduce the time needed to search for software

historical information from a version control repository were discussed in our previous work

[23]. In this paper, we discuss an experiment designed to evaluate the efficiency of Team-

WATCH in detecting and resolving potential conflicts based on the real-time awareness infor-

mation, and compare two groups of subjects: those who use TeamWATCH and those who do

not use it. In the experiment, subjects from both groups were randomly divided into teams of

two, each of them working together to finish a few tasks from a text editing project hosted in a

CVS repository. Subjects’ opinions about the tool and their objective performance data were

captured and evaluated. Since the study involved human subjects, it was approved by the Insti-

tutional Review Board (IRB) at Ohio University, with the approval number 14X104, before the

experiments were conducted. The participants provided their written informed consent to par-

ticipate in this study, which was also approved by the IRB.

Fig 3. Visualization of the Notepad++ project generated by the TeamWATCH Unity3D client.

https://doi.org/10.1371/journal.pone.0193562.g003

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 12 / 27

https://doi.org/10.1371/journal.pone.0193562.g003
https://doi.org/10.1371/journal.pone.0193562


5.1 Experimental design

5.1.1 Research questions and hypotheses. The experiment was intended to address the

following research question:

Q1: Do the developers who use TeamWATCH detect and resolve potential conflicts ear-

lier, thus encountering fewer merge conflicts, compared with the developers who do not

use TeamWATCH?

The null hypotheses and alternative hypotheses corresponding to the research question is

listed in the Table 3.

The research question is answered through quantitative analyses below.

5.1.2 Independent and dependent variables. In the controlled experiment, the tool used

by the subjects to finish the tasks is the only independent variable because the intention is to

test the null hypotheses and to answer the research questions by comparing the effectiveness

and performance of TeamWATCH with respect to a baseline in software project development.

Therefore, TeamWATCH and a baseline are the two choices for the independent variables.

To evaluate the general assumption that workspace awareness obtained with the support of

a tool can improve developer efficiency, this study compares the performances of subjects

using workspace awareness tools such as TeamWATCH with the performances of subjects

who do not use any form of awareness tool to perform the same tasks. Therefore, the baseline

chosen for the experiment should be none of any form of awareness tool. To represent users

developing software under their normal working environments but without a workspace

awareness tool, Eclipse IDE was chosen as the baseline of the experiment.

The dependent variables of the experiment are as follows: (1) the number of potential con-

flicts detected and resolved to avoid merge conflicts, and (2) subjects’ feedback regarding

whether and how the tools helped them to maintain group awareness.

General feedback from the subjects regarding their feelings during the experiment was also

recorded after all the experimental tasks were completed. Such feedback serves as important

complementary material for the qualitative analysis of whether and why subjects were satisfied

or unsatisfied using TeamWATCH.

5.1.3 Contextual project. In the selection of the project, we started with an open-source

Java project and came up with a few coding tasks based on it. However, during the trial of the

experiment, we found that the subjects mostly only focused on finishing their own coding

tasks without taking the time to check their team member’s status. This might be because the

recruited subjects were undergraduate or graduate students who did not have much Java pro-

gramming skills. Although the coding tasks are straightforward, it still took them some time to

figure them out. Additionally, the subjects’ programming skills varied, which may have

affected the validity of the experimental results. Therefore, we decided to switch to a text edit-

ing project, in which the subjects functioned as editors working on a few text editing tasks.

Compared with the coding tasks, the students’ text editing skills were sufficient for the experi-

ment and did not vary enough to create a bias.

Another reason we used a text editing project in the experiment was to evaluate early con-

flict detection and resolution, as editing text and editing code are very similar activities that

trigger similar conflicts. In our previous work [23], when evaluating the historical awareness

Table 3. Null hypotheses and alternative hypotheses.

Null hypotheses Alternative hypotheses

H1o: Using TeamWATCH does not help developers detect

and resolve potential conflicts earlier

H1a: Using TeamWATCH helps developers detect and

resolve potential conflicts earlier

https://doi.org/10.1371/journal.pone.0193562.t003

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 13 / 27

https://doi.org/10.1371/journal.pone.0193562.t003
https://doi.org/10.1371/journal.pone.0193562


information visualization, we chose a real software project and designed experimental tasks

based on the awareness information in which developers are most interested.

The text editing project is based on a book titled "EFF’s Guide to the Internet" (formerly

“The Big Dummy’s Guide to the Internet”), which was written by the staff of the Electronic

Frontier Foundation in 1994. It was chosen as the project for this experiment because of the

following reasons: (1) The topic of the book, i.e., the Internet, is well known to the subjects,

who are computer science students, and thus should not create any bias toward subjects who

are more familiar with the content. (2) It went through a couple of editions, thus providing

opportunities for the experiment designer to not only create a number of revisions in the

repository based on the actual number of book revisions but also come up with related text edi-

tor tasks.

5.1.4 Subjects. In the controlled experiment, computer science undergraduate and gradu-

ate students with ages ranging from 19 to 35 were recruited to serve as the subjects. Twenty-

four subjects were recruited from a class dual-listed for both undergraduate and graduate CS

students. Originally, we had planned to divide the 24 participants equally into two groups.

However, two of the machines prepared for the treatment group had the issue of running

TeamWATCH before the experiment began; thus, we had to move two students to the control

group. Among the participants, ten were randomly selected and assigned to the treatment

group, which used TeamWATCH. Their average time of experience with version control sys-

tems such as CVS, SVN, and GIT was approximately six months (based on the survey results

from 8 subjects). Fourteen were placed in the control group. The control subjects also had an

average of 6 months of experience using version control systems (based on the survey results

from 12 subjects), similar to the treatment group. In the treatment group, 6 out of 8 partici-

pants who finished the pre-experiment survey had less than one year of experience with 3-D

games. Background info of the control subjects regarding 3-D gaming was not collected

because it was irrelevant; the control subjects did not use any 3-D tools.

5.1.5 Tasks. The design of the experimental tasks aimed at evaluating the effectiveness of

TeamWATCH compared to that of traditional IDEs in enabling developers to remain aware of

software awareness information and to detect potential conflicts. The experimental tasks were

designed to simulate the awareness information required by developers and potential conflicts

they may encounter during their team activities.

To test our hypotheses, answer the research questions, and evaluate the TeamWATCH tool,

five tasks were designed for the subjects to work on. Each task consisted of one subtask that

involved answering questions regarding the historical information of the project and one or

two subtasks that required making changes to the files in the repositories. Four of these five

tasks required two subjects in a team to work on the same file, thus creating the possibility of

direct conflicts. The details of each task are attached in the S1 Table.

5.1.6 Procedures. The experiment was conducted simultaneously for both groups; how-

ever, since one room could not fit all the subjects from both groups, we reserved two rooms

and assigned the control group to one room while the experimental one to the other. Before

the experiment, subjects were given a CVS and Eclipse assignment, and a tutorial of Team-

WATCH to get familiar with them. The subjects were randomly assigned to either the treat-

ment group or the control group. Then, the subjects from both groups were randomly

assigned to a team of two. Every subject in both groups was aware of being part of a team of

two, and who is their team member. To make the experiment simulate a real distributed soft-

ware development environment and to make it fair for both groups, the subjects were required

to use the IM tool (i.e. Google Chat) to communicate with each other about the project status

and to collaborate to finish the tasks instead of just talking and coordinating verbally. All these

instructions are explained in the same experiment sheet given to both groups. All participants

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 14 / 27

https://doi.org/10.1371/journal.pone.0193562


were asked to answer some survey questions related to their familiarity with the source control

system, 3-D games, team development, etc. They also needed to set up the experiment by

checking-out the text editing project from the CVS repository in Eclipse and by installing and

running a video capture software to record their experimental process. The treatment group

also needed to set up TeamWATCH to visualize the repository of the text editing project. Dur-

ing this period, participants were allowed to ask questions about problems they encountered.

During the experiment, participants were required to work on the same set of five tasks

(with the two subjects in each team being assigned five different tasks). The treatment group

was asked to use Eclipse plus TeamWATCH (i.e., the Unity3D client in this experiment) to fin-

ish the task, while the control group was asked to use Eclipse to do the same. Subjects in both

groups were provided with answer sheets, on which they were asked to write down their

answers for each subtask regarding the historical information of the project, and they were

also asked to check-in the changes for the text editing subtasks. Subjects were asked to check-

in at least once per task.

After finishing the five tasks, all participants were then asked to fill out a survey about the

overall experiment experience. Then, subjects from the treatment group were asked to fill out

another survey to provide their feelings regarding the use of TeamWATCH in this experiment

with respect to whether they felt TeamWATCH is more helpful in maintaining group aware-

ness, etc. Subjects from the control group were not asked to answer these questions because

they were not exposed to TeamWATCH. Subjects from both groups were encouraged to pro-

vide additional feedback regarding their experiences in this experiment, which is included in

the discussion presented later in this section.

5.2 Experimental results

Overall, we collected the following experimental data

1. The video recording of each subject’s experimental process via the video recording software

running on the experimental computer. For the experimental group, we successfully

recorded nine (out of ten) subjects’ experimental processes, approximately 366 minutes in

total; for the control group, we collected thirteen (out of fourteen) subjects’ video record-

ings, approximately 311 minutes in total, although the recordings of some subjects in the

control group were very short (less than ten minutes), indicating that the whole process was

not captured. One subject from each group ran into an issue related to video recording;

thus, we could not capture their experimental processes.

2. Each subject’s checked-in changes for the five tasks in the CVS repository

3. The chat logs between subjects in the same team during the experiment

4. Each subject’s answers to the survey questions before and after the experiment

In the following three subsections, we first present a detailed example of how the subjects in

the experimental group performed during the experiment. Then the experimental results

regarding the efficiency in tasks related to potential merge conflicts and feedback regarding

the maintenance of group awareness in general are compared and discussed.

5.2.1 A detailed example of the experimental process. We take developer 6 of team 3 as

an example to show how he performed while completing the first two tasks. Figs 4–11 below

are screenshots taken from the video recording of developer 6’s experimental process.

Developer 6 started the experiment by answering the first CVS question in the first task,

i.e., who last revised Chapter 1; he obtained the answer by checking the top cylinder of the

visualization of Chapter 1 revisions in TeamWATCH, as shown in Fig 4.

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 15 / 27

https://doi.org/10.1371/journal.pone.0193562


Developer 6 then began working on the text editing subtask in task 1, i.e. in the Chapter 1,

search the first occurrence of the texts “8-1-N” and “7-1-E”, add the texts “(which stands for "8
bits, 1 stop bit, no parity"—yikes!)” right after “8-1-N”, and add the texts “(7 bits, 1 stop bit, even
parity)” right after “7-1-E”, He then might notice the appearance of a new cylinder on top of

the visualization of Chapter 1, i.e., newly committed changes from developer 5 for task 1.

Developer 6 synced with the repository to get the latest changes to Chapter 1 from devel-

oper 5. He then finished task 1 and checked-in his changes.

Developer 6 began working on task 2 (i.e., Chapter 7) and might notice that developer 5

was also working on task 2 based on the visualization.

Developer 6 sent an IM message to developer 5 to discuss the status of task 2.

Developer 6 received confirmation from developer 5 that he had checked-in his changes to

Chapter 7, i.e., task 2.

Fig 4. Developer 6 uses TeamWATCH (shown on the right side) to determine the answer to the CVS question (shown on the left side) in task 1.

https://doi.org/10.1371/journal.pone.0193562.g004

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 16 / 27

https://doi.org/10.1371/journal.pone.0193562.g004
https://doi.org/10.1371/journal.pone.0193562


Then, developer 6 synced with the repository to get the latest changes to Chapter 7 from

developer 5.

Developer 6 finally committed his changes to Chapter 7, i.e., task 2.

5.2.2 Analysis of conflict early detection and resolution. The primary objective of this

experiment was to evaluate whether TeamWATCH can help developers detect and resolve

potential conflicts early enough to avoid merge conflicts. Therefore, in the experimental

results, we currently only checked whether there were merge conflicts and did not differentiate

whether the merge conflicts were resolved before checking-in the changes. Among the

Fig 5. Developer 6 notices the committed changes from developer 5 via TeamWATCH.

https://doi.org/10.1371/journal.pone.0193562.g005

Fig 6. Developer 6 checks-in his local changes for task 1.

https://doi.org/10.1371/journal.pone.0193562.g006

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 17 / 27

https://doi.org/10.1371/journal.pone.0193562.g005
https://doi.org/10.1371/journal.pone.0193562.g006
https://doi.org/10.1371/journal.pone.0193562


Fig 7. Developer 6 notices that developer 5 is also working on task 2.

https://doi.org/10.1371/journal.pone.0193562.g007

Fig 8. Developer 6 sends an IM message to developer 5.

https://doi.org/10.1371/journal.pone.0193562.g008

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 18 / 27

https://doi.org/10.1371/journal.pone.0193562.g007
https://doi.org/10.1371/journal.pone.0193562.g008
https://doi.org/10.1371/journal.pone.0193562


experimental data that we collected, this analysis was mainly based on the video recordings of

the experiment and the check-ins in the repository.

There were four conflicts in total in the ten tasks (five per team member) for each team.

The number of conflicts detected and resolved early (i.e., those that did not turn into merge

conflicts) by both the experimental group and the control group is shown in Fig 12. A non-

Fig 9. Developer 6 receives confirmation from developer 5 regarding the status of task 2.

https://doi.org/10.1371/journal.pone.0193562.g009

Fig 10. Developer 6 syncs with the repository to get the latest changes.

https://doi.org/10.1371/journal.pone.0193562.g010

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 19 / 27

https://doi.org/10.1371/journal.pone.0193562.g009
https://doi.org/10.1371/journal.pone.0193562.g010
https://doi.org/10.1371/journal.pone.0193562


parametric statistical test, The Mann-Whitney U test, was applied in this comparison to assess

significance levels of both groups since the probability distributions of results from both

groups were unknown, as is common in this type of study. U is the Mann-Whitney U test sta-

tistic, which is then used to determine P, which in turn indicates whether a result is statistically

significant. A result is significant at p< = 0.05 using the Mann-Whitney U test (the U-value is

4.5; the critical value of U at p�0.05 is 5). Therefore, we could reject H1o in favor of H1a, i.e.,

using TeamWATCH does help developers detect and resolve potential conflicts earlier.

In the experimental group, we observed that two teams did not pay attention to the smoke

emitted from the files in the TeamWATCH visualization when they were working on the first

task; thus, the team member who checked in the changes late encountered a conflict during

the check-in time. Then, the teams realized the importance of the hints provided by Team-

WATCH and leveraged it to coordinate together to avoid merge conflicts in the subsequent

four tasks. Another team did not realize it until the second task. Overall, the five teams in the

experimental group could use IM to coordinate their work to avoid the merge conflicts.

The main strategy adopted by most of the teams in the experimental group is as follows: first,

one team member checks-in the local changes for a file; then, the other member syncs to the

repository to get the changes for that file and then starts working on the task related to that file.

Sometimes, they even switched the order of the tasks that they were working on to avoid conflicts.

In addition, an excerpt of the chat logs from one team in the experimental group is given below.

Developer 1: just modified chapter 1, sync now
Developer 2: changed chapter 1 I think it worked check commit!!!!!!!!!!!!!!!!!!!!!!
In the control group, we observed that most teams only detected conflicts during the check-

in time and had to resolve the merge conflicts. The only exception was one team who coordi-

nated at the beginning of the experiment regarding how to avoid conflicts by exchanging the

tasks assigned to them with each other and by suggesting that one team member start from the

Fig 11. Developer 6 finally commits his changes to Chapter 7, i.e., task 2.

https://doi.org/10.1371/journal.pone.0193562.g011

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 20 / 27

https://doi.org/10.1371/journal.pone.0193562.g011
https://doi.org/10.1371/journal.pone.0193562


last task and work backwards while the other member worked forward. The abovementioned

team figured out at the beginning that there would be potential conflicts, which, in a sense,

proved that the TeamWATCH tool would be very helpful to them since it could help them

detect and avoid potential conflicts as soon as they occurred. Two teams were able to figure

out how to avoid the conflicts in the last one or two tasks and coordinate via IM to achieve it.

5.2.3 Analysis of maintaining group awareness in general. The ability to detect and

resolve conflicts earlier is one way to verify that the TeamWATCH tool can help users to better

maintain group awareness. In this section, we look for other proof mainly from the post-exper-

iment survey data. The survey data were collected via the online survey website surveymonkey.

com, and some participants did not fill out (or submit) their surveys before leaving the experi-

ment. In total, nine subjects from the treatment group and eleven subjects from the control

group submitted their post-experiment surveys.

For the survey question “Were you aware of the status of your teammate (e.g., what was he/

she working on at any particular moment)?”, eight out of nine (i.e., 88.9%) responders from

the experimental group thought that they were aware of their team member’s status, while

only six out of the eleven (54.5%) responders from the control group were aware of their team

member’s status.

For the survey question “Did TeamWATCH help you to better maintain group awareness

(i.e., to know the status of the project artifacts and the status of your team members)? If yes,

please give an example.”, all seven responders from the experimental group gave positive

answers, and most of them also gave an example, some of which are shown below

Fig 12. The number of conflicts detected and resolved early by each group.

https://doi.org/10.1371/journal.pone.0193562.g012

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 21 / 27

https://doi.org/10.1371/journal.pone.0193562.g012
https://doi.org/10.1371/journal.pone.0193562


• yes! helped me to find out what my team member was working on

• It helped when someone was actually committing

• yes checking if a teammate had edited a file I was editing

• yes, I could see when I was making revisions as well as my partner

The post-experiment survey designed specifically for the experimental group (since the

questions are all related to TeamWATCH) also asked the subjects how often they used Team-

WATCH during the experiment; most of them said they used it quite often.

• I used it as often as possible to see who changed the file and when they did so.

• pretty often, checked the visualization of what was happening

• the entire time

When asked which features of TeamWATCH were the most useful to them, the answers

from the subjects fell into the following two categories

• The visualization of who is editing/modifying which file

• The filter or search functionality.

5.3 Internal validity

5.3.1 Subjects. The number of subjects in the experiment was low. The results of the com-

parison between the two groups would be more accurate if we could recruit more subjects.

Subjects were CS graduate and undergraduate students, and they had little experience with

version control systems such as CVS and integrated development environments such as

Eclipse compared to experienced professional software engineers. However, subjects were

given CVS and Eclipse assignments before the experiment and instructions in the experiment

sheet to help them get familiar with the tools.

Subjects were randomly assigned to either the experimental group or the control group.

The pre-survey results showed that both groups shared the same (i.e., approximately 6 months)

amount of experience with version control systems.

5.3.2 Contextual project. A text editing project, instead of a software project, was chosen

to mitigate the risk of the experience of the subjects influencing the experimental results, as

explained in the previous section. Since the subjects were all computer science students, a

book on a computer science topic (i.e., the Internet) was chosen to achieve the same level of

topic familiarity for all subjects.

5.3.3 Tasks. To mitigate the threat that the experimental task design may be biased to the

advantage of TeamWATCH, the most common conflicts that developers can encounter in

daily work (i.e. direct conflicts such that one developers add the new functionalities while the

other refactor the existing functionalities in the same artifact [16]) were selected, and all the

tasks could be completed using only the Eclipse CVS plug-in (i.e., with or without Team-

WATCH). Furthermore, we did not record nor compare the time required to answer these

questions between the two groups.

5.4 External validity

5.4.1 Subjects. The subjects in both groups were computer science students. Their experi-

ence in software development was different from that of real-world professional software

developers, who are the ultimate target audience of this prototype tool.

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 22 / 27

https://doi.org/10.1371/journal.pone.0193562


5.4.2 Contextual project. The experimental project chosen in this study was a small-scale

text editing project with 19 files and approximately 200 revisions developed by four editors

(including the existing two editors who made all the revisions to establish the basis for this

experiment and the two subjects who finished the editing tasks). This does not really simulate

a real software development project; however, as explained in the previous section, it was

introduced to let the subjects focus on the evaluation of the tool instead of spending most of

their time determining how to finish the coding tasks. Although large software systems were

not simulated in the experiment, even for the large software system, the developers will be

mostly interested in the component they are working on or depending on, and its visualization

can be customized via TeamWATCH. While further evaluation of TeamWATCH’s effective-

ness for larger-sized software projects developed by a larger team is desirable, the current

results of this experiment are informative and worth sharing with the software engineering

community.

5.4.3 Tasks. The five tasks (including the coding subtasks and the CVS historical informa-

tion questions) used in the experiments did not cover all types of tasks/questions developers

may encounter in collaborative work. Nevertheless, these code tasks were designed to cover

different types of coding changes that might introduce potential conflict, and the questions

were designed based on the “who, what, when, where, how” criteria and represented the most

frequently asked software source code historical questions [23].

5.4.4 TeamWATCH. The experiment designers were aware that TeamWATCH did not

represent all the awareness tools. Therefore, even though the experiment could be a fair evalua-

tion of the TeamWATCH tool, generalization of this specific outcome regarding Team-

WATCH for software awareness in general could be a threat to the validity of the general

result. However, better tool designs will likely only produce even better results than what has

been shown with this version of TeamWATCH.

6. Conclusions and future work

Although coworker and artifact awareness information is essential for collaboration among

software developers in a team, there is inadequate tool support to help them acquire it. Team-

WATCH, a workspace awareness tool based on a 3-D city metaphor, was built to support visu-

alizing both historical and real-time awareness info in a shared common view. In a controlled

user experiment, we specifically evaluated TeamWATCH to test its effectiveness in enabling

users to detect potential conflicts and to collaborate to resolve conflicts earlier to avoid merge

conflicts during check-in. The statistically significant results showed that TeamWATCH

helped users detect and resolve a larger number of conflicts earlier when compared to users

without any workspace awareness support. This clearly demonstrated the effectiveness of

TeamWATCH in reducing the effects of conflicts and thus improving developers’ efficiency in

software development. It also provided qualitative evidence of the effectiveness of Team-

WATCH in maintaining group awareness.

In the future, we plan to add the support of indirect conflict detection, integrate with more

version control repositories such as Git, improve the UI interaction of TeamWATCH by

leveraging Nature User Interface tools such as Kinect and by developing a mobile version of

TeamWATCH with the emerging of mobile awareness visualization tools [49,50], and evaluate

it with a real software development team.

Supporting information

S1 Table. Experiment tasks.

(DOCX)

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 23 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193562.s001
https://doi.org/10.1371/journal.pone.0193562


S1 File. Conflict detection results.

(XLSX)

S2 File. PreSurvey—Control group responses.

(XLSX)

S3 File. PreSurvey–experimental group responses.

(XLSX)

S4 File. PostSurvey–control group responses.

(XLSX)

S5 File. PostSurvey–experimental group responses.

(XLSX)

Acknowledgments

The authors would like to thank the Ohio University undergraduate and graduate students

who participated in this study.

Author Contributions

Conceptualization: En Ye, Chang Liu.

Funding acquisition: Chang Liu.

Investigation: Xin Ye, Chang Liu.

Methodology: Chang Liu.

Project administration: Chang Liu.

Resources: Chang Liu.

Software: En Ye, Chang Liu.

Supervision: Chang Liu.

Validation: Xin Ye, Chang Liu.

Writing – original draft: En Ye.

Writing – review & editing: En Ye, Chang Liu.

References
1. Vessey I, Sravanapudi AP. CASE tools as collaborative support technologies. Commun ACM. 1995; 38

(1):83–95.

2. Perry DE, Siy HP, Votta LG. Parallel changes in large-scale software development: an observational

case study. ACM Trans Softw Eng Methodol. 2001; 10(3):308–37.

3. Herbsleb JD, Grinter RE. Architectures, Coordination, and Distance: Conway’s Law and Beyond. IEEE

Softw. 1999; 16(5):63–70.

4. Herbsleb JD, Mockus A, Finholt TA, Grinter RE. Distance, dependencies, and delay in a global collabo-

ration. In: CSCW ‘00: Proceedings of the 2000 ACM conference on Computer supported cooperative

work. New York, NY, USA: ACM Press; 2000. p. 319–28.

5. Dourish P, Bellotti V. Awareness and coordination in shared workspaces. In: Proceedings of the 1992

ACM conference on Computer-supported cooperative work [Internet]. New York, NY, USA: ACM; 1992.

p. 107–14. (CSCW ‘92; vol. Toronto, O). Available from: http://doi.acm.org/10.1145/143457.143468

6. Kraut RE, Streeter LA. Coordination in software development. ACM Commun. 1995; 38(3):69–81.

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 24 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193562.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193562.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193562.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193562.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193562.s006
http://doi.acm.org/10.1145/143457.143468
https://doi.org/10.1371/journal.pone.0193562


7. Bogart C, Kastner C, Herbsleb J. When It Breaks, It Breaks: How Ecosystem Developers Reason about

the Stability of Dependencies. In: 2015 30th IEEE/ACM International Conference on Automated Soft-

ware Engineering Workshop (ASEW) [Internet]. IEEE; 2015 [cited 2016 Oct 15]. p. 86–9. Available

from: http://ieeexplore.ieee.org/document/7426643/

8. Ko AJ, DeLine R, Venolia G. Information Needs in Collocated Software Development Teams. In: ICSE

‘07: Proceedings of the 29th International Conference on Software Engineering. Washington, DC, USA:

IEEE Computer Society; 2007. p. 344–53.

9. LaToza TD, Venolia G, DeLine R. Maintaining mental models: a study of developer work habits. In: Pro-

ceedings of the 28th international conference on Software engineering [Internet]. New York, NY, USA:

ACM; 2006. p. 492–501. (ICSE ‘06; vol. Shanghai,). Available from: http://doi.acm.org/10.1145/

1134285.1134355

10. Biehl JT, Czerwinski M, Smith G, Robertson GG. FASTDash: a visual dashboard for fostering aware-

ness in software teams. In: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems [Internet]. New York, NY, USA: ACM; 2007. p. 1313–22. (CHI ‘07; vol. San Jose,). Available

from: http://doi.acm.org/10.1145/1240624.1240823

11. Estler HC, Nordio M, Furia CA, Meyer B. Awareness and Merge Conflicts in Distributed Software Devel-

opment. In: 2014 IEEE 9th International Conference on Global Software Engineering [Internet]. IEEE;

2014 [cited 2016 Sep 25]. p. 26–35. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6915251

12. Redmiles D, van der Hoek A, Al-Ani B, Hildenbrand T, Quirk S, Sarma A, et al. Continuous Coordina-

tion: A New Paradigm to Support Globally Distributed Software Development Projects. Wirtschaftsinfor-

matik, Spec Issue Ind Softw Dev. 2007; 49(Special:S28—S38.

13. van der Hoek A, Redmiles D, Dourish P, Sarma A, Filho RS, de Souza C. Continuous Coordination: A

New Paradigm for Collaborative Software Engineering Tools. In: Workshop on Directions in Software

Engineering Environments. 2004. p. 29–36.

14. Berliner B. {CVS} {II}: Parallelizing Software Development. In: Proceedings of the {USENIX} Winter

1990 Technical Conference. Berkeley, CA: USENIX Association; 1990. p. 341–52.

15. Pilato CM, Collins-Sussman B, Fitzpatrick BW. Version Control with Subversion. O’Reilly Media; 2004.

16. de Souza CRB, Redmiles D, Mark G, Penix J, Sierhuis M. Management of Interdependencies in Collab-

orative Software Development. In: ISESE ‘03: Proceedings of the 2003 International Symposium on

Empirical Software Engineering. Washington, DC, USA: IEEE Computer Society; 2003. p. 294.

17. Grinter RE. Supporting articulation work using software configuration management systems. Comput

Support Coop Work. 1996; 5(4):447–65.

18. Gutwin C, Greenberg S. Workspace awareness for groupware. In: Conference companion on Human

factors in computing systems: common ground. ACM; 1996. p. 208–9.

19. Gutwin C, Penner R, Schneider K. Group awareness in distributed software development. In: Proceed-

ings of the 2004 ACM conference on Computer supported cooperative work [Internet]. New York, NY,

USA: ACM; 2004. p. 72–81. (CSCW ‘04; vol. Chicago, I). Available from: http://doi.acm.org/10.1145/

1031607.1031621

20. Storey M-AD, Davor \vCubrani’c, German DM. On the use of visualization to support awareness of

human activities in software development: a survey and a framework. In: Proceedings of the 2005 ACM

symposium on Software visualization [Internet]. New York, NY, USA: ACM; 2005. p. 193–202. (SoftVis

‘05; vol. St. Louis,). Available from: http://doi.acm.org/10.1145/1056018.1056045

21. Sarma A, van der Hoek A. A Conflict Detected Earlier is a Conflict Resolved Easier. In: Fourth Work-

shop on Open Source Software Engineering. 2004. p. 82–6.

22. Ye E, Neiman LA, Dinh HQ, Liu C. SecondWATCH: A workspace awareness tool based on a 3-D virtual

world. In: 2009 31st International Conference on Software Engineering Companion Volume [Internet].

Ieee; 2009. p. 291–4. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

5071004

23. Liu Chang, Ye Xin, Ye En. Source Code Revision History Visualization Tools: Do They Work and What

Would it Take to Put Them to Work? IEEE Access [Internet]. 2014; 2:404–26. Available from: http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6810769

24. de Souza CRB, Redmiles D, Dourish P. “Breaking the code”, moving between private and public work

in collaborative software development. In: GROUP ‘03: Proceedings of the 2003 international ACM

SIGGROUP conference on Supporting group work. New York, NY, USA: ACM; 2003. p. 105–14.

25. Magnusson B, Asklund U. Fine Grained Version Control of Configurations in COOP/Orm. In: Proceed-

ings of the SCM-6 Workshop on System Configuration Management [Internet]. London, UK, UK:

Springer-Verlag; 1996. p. 31–48. (ICSE ‘96). Available from: http://dl.acm.org/citation.cfm?id=647175.

716412

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 25 / 27

http://ieeexplore.ieee.org/document/7426643/
http://doi.acm.org/10.1145/1134285.1134355
http://doi.acm.org/10.1145/1134285.1134355
http://doi.acm.org/10.1145/1240624.1240823
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6915251
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6915251
http://doi.acm.org/10.1145/1031607.1031621
http://doi.acm.org/10.1145/1031607.1031621
http://doi.acm.org/10.1145/1056018.1056045
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5071004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5071004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6810769
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6810769
http://dl.acm.org/citation.cfm?id=647175.716412
http://dl.acm.org/citation.cfm?id=647175.716412
https://doi.org/10.1371/journal.pone.0193562


26. Appelt W. WWW Based Collaboration with the BSCW System. In: Proceedings of the 26th Conference

on Current Trends in Theory and Practice of Informatics on Theory and Practice of Informatics [Inter-

net]. London, UK, UK: Springer-Verlag; 1999. p. 66–78. (SOFSEM ‘99). Available from: http://dl.acm.

org/citation.cfm?id=647009.712532

27. Wu X, Murray A, Storey M-A, Lintern R. A Reverse Engineering Approach to Support Software Mainte-

nance: Version Control Knowledge Extraction. In: Proceedings of the 11th Working Conference on

Reverse Engineering [Internet]. Washington, DC, USA: IEEE Computer Society; 2004. p. 90–9.

(WCRE ‘04). Available from: http://dl.acm.org/citation.cfm?id=1038267.1039041

28. Froehlich J, Dourish P. Unifying Artifacts and Activities in a Visual Tool for Distributed Software Devel-

opment Teams. In: Proceedings of the 26th International Conference on Software Engineering [Inter-

net]. Washington, DC, USA: IEEE Computer Society; 2004. p. 387–96. (ICSE ‘04). Available from:

http://dl.acm.org/citation.cfm?id=998675.999443

29. Sarma A, Noroozi Z, van der Hoek A. Palantir: raising awareness among configuration management

workspaces. In: Software Engineering, 2003 Proceedings 25th International Conference on. 2003.

p. 444–54.

30. Sarma A, Bortis G, van der Hoek A. Towards Supporting Awareness of Indirect Conflicts across Soft-

ware Configuration Management Workspaces. In: ASE’07, Proceedings of the 22nd IEEE/ACM Interna-

tional Conference on Automated Software Engineering. 2007.

31. Ripley RM, Yasui RY, Sarma A, van der Hoek A. Workspace awareness in application development. In:

eclipse ‘04: Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange. New York,

NY, USA: ACM; 2004. p. 17–21.

32. Sarma A, van der Hoek A. Visualizing parallel workspace activities. In: SEA ‘03: Proceedings of IASTED

International Conference on Software Engineering and Applications. 2003. p. 435–40.

33. Sarma A, Redmiles D, van der Hoek A. A Comprehensive Evaluation of Workspace Awareness in Soft-

ware Configuration Management Systems. In: Short paper in IEEE Symposium on Visual Languages

and Human-Centric Computing. 2007. p. 23–6.

34. Hupfer S, Cheng L-T, Ross S, Patterson J. Introducing collaboration into an application development

environment. In: Proceedings of the 2004 ACM conference on Computer supported cooperative work

[Internet]. New York, NY, USA: ACM; 2004. p. 21–4. (CSCW ‘04; vol. Chicago, I). Available from: http://

doi.acm.org/10.1145/1031607.1031611

35. Ripley RM, Sarma A, van der Hoek A. A Visualization for Software Project Awareness and Evolution. In:

Visualizing Software for Understanding and Analysis, 2007 VISSOFT 2007 4th IEEE International

Workshop on. 2007. p. 137–44.

36. O’Reilly C, Bustard D, Morrow P. The war room command console: shared visualizations for inclusive

team coordination. In: Proceedings of the 2005 ACM symposium on Software visualization [Internet].

New York, NY, USA: ACM; 2005. p. 57–65. (SoftVis ‘05; vol. St. Louis,). Available from: http://doi.acm.

org/10.1145/1056018.1056026

37. Lanza M, Hattori L, Guzzi A. Supporting Collaboration Awareness with Real-Time Visualization of Devel-

opment Activity. In: Proceedings of the 2010 14th European Conference on Software Maintenance and

Reengineering. Washington, DC, USA: IEEE Computer Society; 2010. p. 202–11. (CSMR ‘10).

38. Hegde R, Dewan P. Connecting Programming Environments to Support Ad-Hoc Collaboration. In: Pro-

ceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering

[Internet]. Washington, DC, USA: IEEE Computer Society; 2008. p. 178–87. (ASE ‘08). Available from:

http://dx.doi.org/10.1109/ASE.2008.28

39. Estublier J, Garcia S. Process model and awareness in SCM. In: Proceedings of the 12th international

workshop on Software configuration management [Internet]. New York, NY, USA: ACM; 2005. p. 59–

74. (SCM ‘05; vol. Lisbon, Po). Available from: http://doi.acm.org/10.1145/1109128.1109133

40. Schümmer T, Haake J. Supporting distributed software development by modes of collaboration. In: Pro-

ceedings of the seventh conference on . . . [Internet]. Norwell, MA, USA: Kluwer Academic Publishers;

2001 [cited 2013 May 8]. p. 79–98. Available from: http://dl.acm.org/citation.cfm?id=1241872

41. Molli P, Skaf-Molli H, Bouthier C. State Treemap: An Awareness Widget for Multi-Synchronous Group-

ware. In: Proceedings of the Seventh International Workshop on Groupware [Internet]. Washington,

DC, USA: IEEE Computer Society; 2001. p. 106–14. (CRIWG ‘01). Available from: http://dl.acm.org/

citation.cfm?id=646132.680141

42. Brun Y, Holmes R, Ernst MD, Notkin D. Early Detection of Collaboration Conflicts and Risks. IEEE

Trans Softw Eng [Internet]. 2013 Oct; 39(10):1358–75. Available from: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=6520859

43. Brun Y, Holmes R, Ernst MD, Notkin D. Proactive detection of collaboration conflicts. Proc 19th ACM

SIGSOFT Symp 13th Eur Conf Found Softw Eng—SIGSOFT/FSE ‘11 [Internet]. 2011;168. Available

from: http://dl.acm.org/citation.cfm?doid=2025113.2025139

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 26 / 27

http://dl.acm.org/citation.cfm?id=647009.712532
http://dl.acm.org/citation.cfm?id=647009.712532
http://dl.acm.org/citation.cfm?id=1038267.1039041
http://dl.acm.org/citation.cfm?id=998675.999443
http://doi.acm.org/10.1145/1031607.1031611
http://doi.acm.org/10.1145/1031607.1031611
http://doi.acm.org/10.1145/1056018.1056026
http://doi.acm.org/10.1145/1056018.1056026
http://dx.doi.org/10.1109/ASE.2008.28
http://doi.acm.org/10.1145/1109128.1109133
http://dl.acm.org/citation.cfm?id=1241872
http://dl.acm.org/citation.cfm?id=646132.680141
http://dl.acm.org/citation.cfm?id=646132.680141
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6520859
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6520859
http://dl.acm.org/citation.cfm?doid=2025113.2025139
https://doi.org/10.1371/journal.pone.0193562


44. Brun Y, Holmes R, Ernst M, Notkin D. Crystal: Precise and unobtrusive conflict warnings. Proc 19th

ACM . . . [Internet]. 2011 [cited 2014 Feb 24]; Available from: http://dl.acm.org/citation.cfm?id=2025187

45. Shneiderman B. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In:

Proceedings of the 1996 IEEE Symposium on Visual Languages [Internet]. Washington, DC, USA:

IEEE Computer Society; 1996. p. 336. (VL ‘96). Available from: http://dl.acm.org/citation.cfm?id=

832277.834354

46. Wettel R, Lanza M. Program Comprehension through Software Habitability. In: Proceedings of the 15th

IEEE International Conference on Program Comprehension [Internet]. Washington, DC, USA: IEEE

Computer Society; 2007. p. 231–40. (ICPC ‘07). Available from: http://dx.doi.org/10.1109/ICPC.2007.

30

47. Bederson BB, Shneiderman B, Wattenberg M. Ordered and quantum treemaps: Making effective use

of 2D space to display hierarchies. ACM Trans Graph. 2002; 21(4):833–54.

48. Rymaszewski M, Au WJ, Wallace M, Winters C, Ondrejka C, Batstone-Cunningham B, et al. {Second

Life} the office guide. Wiley Press; 2007.

49. Chen M-Y, Chen C, Liu S-Q, Zhang K. Visualized Awareness Support for Collaborative Software Devel-

opment on Mobile Devices. Int J Softw Eng Knowl Eng [Internet]. 2015 Mar [cited 2016 Oct 15]; 25

(2):253–75. Available from: http://www.worldscientific.com/doi/10.1142/S0218194015400094

50. Chen M-Y, Chen C, Liu S-Q, Zhang K. Mobile Visualization Supporting Awareness in Collaborative

Software Development. In: Proceedings of the 7th International Symposium on Visual Information Com-

munication and Interaction—VINCI ‘14 [Internet]. New York, New York, USA: ACM Press; 2014 [cited

2016 Oct 15]. p. 113–20. Available from: http://dl.acm.org/citation.cfm?doid=2636240.2636857

TeamWATCH: A 3-D workspace awareness tool based on city metaphor to visualize development activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0193562 March 20, 2018 27 / 27

http://dl.acm.org/citation.cfm?id=2025187
http://dl.acm.org/citation.cfm?id=832277.834354
http://dl.acm.org/citation.cfm?id=832277.834354
http://dx.doi.org/10.1109/ICPC.2007.30
http://dx.doi.org/10.1109/ICPC.2007.30
http://www.worldscientific.com/doi/10.1142/S0218194015400094
http://dl.acm.org/citation.cfm?doid=2636240.2636857
https://doi.org/10.1371/journal.pone.0193562

