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Abstract

Paclitaxel belongs to the taxanes family and it is used, alone or in multidrug regimens, for

the therapy of several solid tumours, such as breast-, lung-, head and neck-, and ovarian

cancer. Standard dosing of chemotherapy does not take into account the many inter-patient

differences that make drug exposure highly variable, thus leading to the insurgence of

severe toxicity. This is particularly true for paclitaxel considering that a relationship between

haematological toxicity and plasma exposure was found. Therefore, in order to treat patients

with the correct dose of paclitaxel, improving the overall benefit–risk ratio, Therapeutic Drug

Monitoring is necessary. In order to quantify paclitaxel and its main metabolite, 6α-hydroxy-

paclitaxel, in patients’ plasma, we developed a new, sensitive and specific HPLC–MS/MS

method applicable to all paclitaxel dosages used in clinical routine. The developed method

used a small volume of plasma sample and is based on quick protein precipitation. The

chromatographic separation of the analytes was achieved with a SunFire™ C18 column

(3.5 μM, 92 Å, 2,1 x 150 mm); the mobile phases were 0.1% formic acid/bidistilled water and

0.1% formic acid/acetonitrile. The electrospray ionization source worked in positive ion

mode and the mass spectrometer operated in selected reaction monitoring mode. Our bioa-

nalytical method was successfully validated according to the FDA-EMA guidelines on bioa-

nalytical method validation. The calibration curves resulted linear (R2�0.9948) over the

concentration ranges (1–10000 ng/mL for paclitaxel and 1–1000 ng/mL for 6α-hydroxy-pac-

litaxel) and were characterized by a good accuracy and precision. The intra- and inter-day

precision and accuracy were determined on three quality control concentrations for pacli-

taxel and 6α-hydroxy-paclitaxel and resulted respectively <9.9% and within 91.1–114.8%.

In addition, to further verify the assay reproducibility, we tested this method by re-analysing

the incurred samples. This bioanalytical method was employed with success to a genotype-
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guided phase Ib study of weekly paclitaxel in ovarian cancer patients treated with a wide

range of drug’s dosages.

Introduction

Paclitaxel (PTX) (Fig 1) is a natural product isolated in the early 1970s from the bark of the

Pacific Yew (Taxus brevifolia) and approved by the US Food and Drug Administration (FDA)

in 1992. PTX has a wide clinical spectrum of activity being used for the treatment of breast-,

lung-, head and neck-, and ovarian cancer [1–4]. Less common cancers, such as endometrial,

unknown primary, testes, esophageal and Kaposi’s sarcoma, also have meaningful response

rates to PTX either alone or in combination with other agents [5–7]. High inter- and intra-

patient variability in PTX pharmacokinetics and the relationship between haematological tox-

icity and plasma exposure make Therapeutic Drug Monitoring (TDM) necessary in order to

treat patients with the correct dose [8]. In fact, the longer the period that PTX plasma

Fig 1. Chemical structures of PTX, 6α-OH-PTX, and DTX (docetaxel) used as IS.

https://doi.org/10.1371/journal.pone.0193500.g001
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concentration is over 0.05 μM (about 43 ng/mL), the higher the risk for severe neutropenia

[8]. Moreover, PTX is used in a wide range of doses (80–225 mg/m2) and it showed a dispro-

portionate increase in plasma Cmax (maximum concentration) and AUC (area under the

plasma concentration-vs time curve) as the dose increased, suggesting saturation of elimina-

tion at higher concentrations of the drug [9,10]. For these reasons TDM, offering the possibil-

ity to individually adjust the dose of drugs, could improve the care of patient treated with PTX

leading to a personalized therapy.

The aim of this work was to develop and validate a method to perform TDM of PTX, in

patients’ plasma, quantifying even its main metabolite, 6α-hydroxy-paclitaxel (6α-OH-PTX).

In fact, 6α-OH-PTX retained bone marrow toxicity when tested on human bone marrow cells

[11] and Kang et al. demonstrated that PTX cytotoxicity in HL60 and K562 human leukemia

cells had been increased in the presence of noncytotoxic concentrations of 6α-OH-PTX [12].

As reported in Table 1, several methods have been published for the determination of PTX

in human plasma [13–27]. Anyway, to our knowledge, just seven offer the possibility to quan-

tify even the main metabolite, 6α-OH-PTX.

Among the seven methods quantifying even 6α-OH-PTX [15,18,21,22,25,26,27], five

require a high volume of plasma being the sample size range between 200 and 500 μL

[15,18,21,22,27].

Moreover, the extraction method used in these seven published methods, was LLE (liquid-

liquid extraction) [15,18,22,25,27] or SPE (solid-phase extraction) [21,26], which are both

time-consuming procedures and therefore not suitable for TDM assays.

Table 1. List of publications related to LC-MS/MS methods for the quantification of PTX in human plasma samples.

Ref. Analyte(s) Plasma volume (μL) Sample prep. LLOQ (ng/mL) ULOQ (ng/mL)

[13] PTX 500 PP/ (a)SPE 5 500

[14] PTX 100 (sa)LLE 1 1000

[15] PTX, 6α-OH-PTX,

p-3’-OH-PTX

400 LLE 0.1, 0.1, 0.1 100

[16] PTX 500 LLE 10 1000

[17] PTX 200 LLE 0.25 1000

[18] DTX, PTX,

6α-OH-PTX,

p-3’-OH-PTX

250 LLE 2 1000

[19] PTX 200 LLE 1 1000

[20] PTX 100 LLE 2 2500

[21] PTX, 6α-OH-PTX,

p-3’-OH-PTX

500 SPE 0.5 7500, 750, 400

[22] PTX, 6α-OH-PTX,

p-3’-OH-PTX

200 LLE 0.25 1000, 100, 100

[23] PTX 200 LLE 102.1 20420

[24] PTX 100 PP/SPE 10 2500

[25] PTX, 6α-OH-PTX,

p-3’-OH-PTX

100 LLE 0.5 500

[26] PTX, 6α-OH-PTX,

p-3’-OH-PTX

90 (o)SPE 5, 0.87, 0.87 5000, 870, 435

[27] PTX, 6α-OH-PTX,

p-3’-OH-PTX

200 LLE 0.125, 0.5, 0.125 100

PTX: paclitaxel; 6α-OH-PTX: 6α-hydroxy-paclitaxel; p-3’-OH-PTX: p-3’-hydroxy-paclitaxel; DTX: docetaxel; PP: protein precipitation; SPE: solid-phase extraction;

LLE: liquid-liquid extraction. (o): on-line; (a): automatic; (sa): semi-automatic.

https://doi.org/10.1371/journal.pone.0193500.t001
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The last point to note concerns the linearity range of these methods. The lower limit of

quantification (LLOQ) of most of the methods appears fitting with the clinical dose ranges.

However, the upper limit of quantification (ULOQ) is not appropriate to quantify PTX and

6α-OH-PTX in samples collected in a dose-escalation study. Moreover, in the literature, the

reported range of median (25th-75th percentile) Cmax is 2,65–8,20 μg/mL following a dose

range of 135–240 mg/m2 [28]. In fact, five methods are characterized by a PTX ULOQ equal

or less than 2500 ng/mL [15,18,22,25,27]. The two methods with the highest ULOQs (5000 ng/

mL [26] and 7500 ng/mL [21]) are instead marked by other limitations, such as an unsatisfac-

tory LLOQ (5 ng/mL) for PTX [26] or a very large (500 μL) plasma volume requirement [21].

Therefore, in order to quantify PTX and 6α-OH-PTX in human plasma samples we devel-

oped and validated a high-performance liquid chromatography-tandem mass spectrometry

(HPLC-MS/MS) method. This method resulted sensitive, specific, and rapid requiring a small

volume of plasma sample (100 μL) and only a simple protein precipitation as extraction

process.

Experimental

Standards and chemicals

Analytical reference standards of PTX (2α,4α,5β,7β,10β,13α-4,10-Bis(acetyloxy)-13-

{[(2R,3S)-3-(benzoylamino)-2-hydroxy-3-phenylpropanoyl]oxy}-1,7-dihydroxy-9-oxo-

5,20-epoxytax-11-en-2-yl benzoate, batch 061M1664V, purity �97%), and docetaxel

(DTX, 1,7β,10β-trihydroxy-9-oxo-5β,20-epoxytax-11-ene-2α,4,13α-triyl 4-acetate 2-benzo-

ate 13-{(2R,3S)-3-[(tert-butoxycarbonyl)amino]-2-hydroxy-3-phenylpropanoate}, batch

1425738V, purity�97%), used as Internal Standard (IS), were purchased from Sigma-

Aldrich Co. (Milan, Italy). 6α-OH-PTX (batch 1JAB113-2, purity�98%) was purchased

from Toronto Research Chemicals, Inc. (North York, Ontario, Canada). LC-MS grade aceto-

nitrile and formic acid were purchased from Sigma-Aldrich Co. Filtered; LC-MS grade

methanol was purchased from VWR (Radnor, Pennsylvania, USA); deionized water was

obtained from a Milli-Q Plus system (Millipore, Billerica, MA, USA). Control human

plasma/K2-EDTA, used to prepare daily standard calibration curves and quality control

(QC) samples was provided by the transfusion unit of the National Cancer Institute (Aviano,

Italy) from healthy volunteers.

Standards and quality control solutions

To prepare standards and quality controls solutions, two different stock solutions for PTX and

6α-OH-PTX were prepared in methanol at the concentration of 2000.0 μg/mL for PTX and

100.0 μg/mL for 6α-OH-PTX. For the IS, the stock solution was prepared in methanol at the

concentration of 100 μg/mL. All these solutions have been frozen and stored at -80˚C. In order

to obtain the working solutions to be used to prepare the plasma standard points of the calibra-

tion curve (from G to A) and the plasma QC samples (L-low, M-medium, and H-high), the

stock solutions of PTX and 6α-OH-PTX were mixed and diluted with methanol. The final con-

centrations obtained were: 0.02, 0.20, 1.00, 5.00, 20.00, 100.00, 200.00 μg/mL (from G to A)

and 0.06, 12.50, 150.00 μg/mL (QCL, M, and H) for PTX, and 0.02, 0.10, 0.50, 1.00, 2.00, 10.00,

20.00 μg/mL (from G to A) and 0.06, 1.50, 15.00 μg/mL (QCL, M, and H) for 6α-OH-PTX.

The working solution of IS was prepared at the concentration of 4 μg/mL by diluting, with

methanol, the stock solution. Several aliquots of these solutions were kept in polypropylene

tubes at -80˚C.
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Preparation of standards and quality control samples

The calibration curves were prepared freshly every day during the validation study and were

made up of seven standard points. To prepare the plasma standard points and QCs samples,

5 μL of the respective working solution (see section above) were added to 95 μL of pooled

blank human plasma to obtain the final concentration. The achieved concentrations are

shown below: 1.00, 10.00, 50.00, 250.00, 1000.00, 5000.00, 10000.00 (G to A) and 3.00, 625.00,

7500.00 (QCL, M, H) ng/mL for PTX, and 1.00, 5.00, 25.00, 50.00, 100.00, 500.00, 1000.00 (G

to A) and 3.00, 75.00, 750.00 (QCL, M, H) ng/mL for 6α-OH-PTX. Each calibration curve was

prepared including a blank and a zero blank, which are plasma samples processed without and

with IS, respectively. Three QC samples for each concentration level (L, M, and H) were used

for every analyses. Immediately after the preparation of 6 mL-solution of each QC, (adding

300 μL of each working QC solution to 5.7 mL of control human plasma) several aliquots

(100 μL) of the three QCs were stored at −80˚C. These aliquots have been used to check PTX

and 6α-OH-PTX stabilities and as controls for future assays. The calibration curve and QCs

samples were processed as described in the following paragraph.

Processing samples

The plasma samples were thawed at room temperature, vortexed for 10 s and centrifuged, for

10 min, at 3000 g and at nominally 4˚C. Then, 100 μL of standard, QC and actual plasma sam-

ples were inserted into a suitable polypropylene tube and added by 5 μL of the IS working solu-

tion (4 μg/mL). The mixture, thus obtained, was then vortexed for 10 s. Afterwards, 400 μL of

CH3OH with 0.1% of HCOOH were added to obtain the protein precipitation. Each sample

was vortexed for 10 s and centrifuged, for 15 min, at 16000 g and at nominally 4˚C. After that,

150 μL of the obtained supernatant were directly inserted into an autosampler glass vial for the

LC-MS/MS analysis. In order to minimize the possible carry-over effect, three mobile phases

and one blank plasma sample were run after the ULOQ to guarantee that no peak higher than

10% of LLOQ was detected. With this aim, during the quantification of patients’ samples, they

were analysed on the basis of pharmacokinetic evaluations (from the lowest to the highest con-

centration), and three mobile phases were run between successive test samples.

Chromatographic conditions

The HPLC system consisted of a SIL-20AC XR auto-sampler and LC-20AD UFLC XR pumps

(Shimadzu, Tokyo, Japan). The chromatographic separation of the samples were conducted

on a SunFire™ C18 column (3.5 μM, 92 Å, 2,1 x 150 mm) coupled with a Security Guard Car-

tridge (SunFire™ C18 2.1 x 10 mm), both provided by Waters (Milford, MA, USA) and ther-

mostatically controlled at 30˚C. The mobile phases (MP) were 0.1% HCOOH/bidistilled water

(MPA) and 0.1% HCOOH/CH3CN (MPB). In the presented method, the following linear gra-

dient was used, with a flow rate of 0.2 mL/min: (step 1) from the initial condition of 60% MPA

to 0% over 12 min; (step 2) kept constant for 2 min; (step 3) from 0% MPA to the initial condi-

tion over 1 min; (step 4) reconditioning for 6 min. The total run time was 21 min.

Mass spectrometry

The HPLC system was coupled with an API 4000 triple quadrupole mass spectrometer AB

SCIEX (Massachusetts, USA). The optimization of the MS parameters was conducted using

standard solutions of each analyte prepared in 0.1% HCOOH acetonitrile/water (1:1) at the

concentration of 50 ng/mL and infused at a flow rate of 10 μL/min. The mass spectrometer

worked in positive ion mode and was equipped with a TurboIonSpray source operating at
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250˚C and with the ion spray voltage set to 5500 V. Zero air was employed as nebulizer gas (50

psi) and as heater gas (50 psi) while nitrogen as curtain gas (20 psi) and collision gas (CAD),

(at medium intensity). Data were processed with Analyst 1.5.2 and the quantification of the

peaks was done with MultiQuant 2.1 (software package AB SCIEX).

Validation Study

The validation study of the proposed method was conducted as already reported in our previ-

ously published work related to a LC-MS/MS method for the simultaneous quantification of

irinotecan and its main metabolites in human plasma [29], i.e. as required by the European

Medicines Agency (EMA) and the FDA guidance on bio-analytical method validation [30–32].

Thus, the method was validated and the evaluated parameters are the following: recovery, lin-

earity, intra- and inter-day precision and accuracy, limit of detection (LOD), lower limit of

quantification (LLOQ), selectivity, matrix effect, stability and reproducibility.

Recovery. The percentage of PTX and 6α-OH-PTX extraction recovery was determined

at the three QC plasma concentrations (L, M, and H) and at 200 ng/mL for IS. The extrac-

tion recovery was evaluated in quintuplicate for each compound. The peak areas of PTX

and 6α-OH-PTX, extracted from plasma QC samples, were compared to those from exter-

nal standards prepared in methanol. The same comparison was performed to determine

the recovery of IS. Moreover, for each analyte and IS, the percentage recovery was even

determined, in five replicates, by comparing the peak area of the analytes extracted from

plasma with the peak area of the extracted matrix added with the same amount of the ana-

lytes or IS.

Linearity. To validate the linearity, calibration curves were prepared as described in the

section “Preparation of standard and quality control samples” over five different working days.

The LC-MS/MS peak-area ratios of each analyte/IS compared to the nominal concentrations

of each standard point were plotted using a least-squares linear regression. Moreover, to gener-

ate the calibration curves a weighted quadratic regression function (1/x2) was applied. The

linearity of the standard curves was checked by calculating the Pearson’s determination coeffi-

cient R2 and by comparison of the true and back-calculated concentrations of the calibration

standards. The accuracy of back-calculated concentration values of each point had to be within

85–115% of the theoretical concentration and within 80–120% at the LLOQ. Moreover, a min-

imum of six out of seven standards had to meet these criteria, including the LLOQ and the

highest calibrator, ULOQ.

Intra- and inter-day precision and accuracy. The precision and accuracy of the pre-

sented method were evaluated by analysing three replicates of QC samples (the nominal con-

centrations of QCL, -M, and—H are reported in the section “Preparation of standards and

quality control samples”) within a single-run analysis for intra-day assessment and over five

different working days for inter-day assessment. In this latter case, standard calibration curves

were freshly prepared and plotted on each of the five days of the validation study. The method

precision, at each concentration, was reported as the coefficient of variation (CV%). CV% was

defined expressing the standard deviation as a percentage of the mean calculated concentra-

tion. The accuracy of the method was determined by expressing the mean calculated concen-

tration as a percentage of the nominal concentration. The measured concentration for at least

six out of nine QC samples had to be within 15% of the nominal value, in each run. Moreover,

only one QC sample, at each concentration level, could be excluded.

Limit of detection, limit of quantification, selectivity and matrix effect. The LOD is the

concentration at which the signal-to-noise ratio (S/N) is at least 3. The LLOQ, the concentra-

tion of the lowest standard (G), was defined as the lowest concentration that could be
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measured with a precision within 20% and accuracy between 80% and 120%. Moreover, at the

LLOQ the S/N ratio should be at least 5. The LLOQ of the present method was assessed as

reported in the section “Preparation of standards and quality control samples”: by adding G

working solution to six samples of blank human plasma to obtain the final concentrations.

Selectivity was proved using six independent sources of blank human plasma spiked with the

analytes at the LLOQ and individually analysed and evaluated for interferences. As already

described for LLOQ, also selectivity had to have acceptable accuracy (�20%) and precision

(between 80% and 120%).

During the validation study, matrix effects on the quantification of the two analytes, PTX

and 6α-OH-PTX, were also tested. These phenomena arise due to effects of plasma matrix

endogenous components on the ionization of the analytes to quantify and IS. Matrix effects

were investigated on six independent sources of blank human plasma. They were evaluated by

calculating the ratio of the peak area in presence of matrix to the peak area in absence of matrix

at the three QC concentrations (L, M, and H) of PTX and 6α-OH-PTX. The CV should be

within 15%. Moreover, during the development of the chromatographic method, these phe-

nomena related to plasma matrix endogenous components were investigated by means of the

post-column infusion: a constant flow of standard solutions of PTX, 6α-OH-PTX and IS, each

prepared in 0.1% HCOOH acetonitrile/water 1:1 (50 ng/mL), were infused by a syringe pump

during the chromatographic run of an extracted pooled blank human plasma sample. The

extracted plasma sample eluted from the LC column and the flow from the infusion pump

were combined by means of a zero-dead-volume ‘T’ union and inserted into the mass spec-

trometer source. A variation in the signal response of the infused analyte, caused by the coe-

luted interfering compounds, indicates ionization enhancement or suppression.

Stability. The stability of PTX and 6α-OH-PTX was assessed by analysing QC samples (at

the three concentrations L, M, and H) during sample storage and handling procedures. Bench-

top stability of the analytes in plasma matrix was determined after 4 h at room temperature.

The stability of the processed QC samples was assessed in the autosampler by repeatedly ana-

lysing the extracts 24, 48 and 72 h after the first injection. Moreover, a freshly prepared aliquot

of each QC sample concentration was processed and analysed, and then again after one and

two freeze/thaw cycles in order to check freeze/thaw stability. Long-term stability was assessed

in plasma as well as in working solutions (methanol matrix) stored at approximately −80˚C.

PTX and 6α-OH-PTX were considered stable when the differences between the freshly pre-

pared samples and the testing samples did not exceed 15% from the nominal concentrations at

each QC concentration (L, M, and H).

Reproducibility. The evaluation of bioanalytical methods by re-analysis of incurred sam-

ples should be performed as an additional measure of assay reproducibility [33], as indicated

in the revised version of the FDA Guidance for Industry on Bioanalytical Method Validation

[31]. Incurred Sample Reanalysis (ISR) is a very important component of the bioanalytical

method validation. In fact, ISR is intended to verify the reliability of the reported analyte con-

centrations and it is conducted by repeating the analysis, of a subset of subject samples in sepa-

rate runs, on different days, with the same bioanalytical method procedures. Therefore, the

reproducibility of the present method was assessed by re-analysing the incurred samples of

one patient, enrolled in a clinical study, in a further analytical session. The study samples for

this reanalysis were chosen in order to guarantee an adequate coverage of the pharmacokinetic

profile. To do that, in the re-analysis, samples at high concentration (around the Cmax) and at

low concentration (samples representative of the elimination phase) were included. The two

analyses can be considered equivalent if the 67% of the results percentage difference [(repeat-

original)�100/mean] is within 20% [31].
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Application of the method to clinical samples

The proposed method was applied to a phase Ib clinical trial of weekly PTX in ovarian cancer

patients in order to obtain the pharmacokinetics of PTX and its principal metabolite. In this

dose-escalation study, PTX was administered weekly as 60 min intravenous infusion on a

four-week treatment cycle. For the pharmacokinetic analysis, serial blood samples were col-

lected into tubes containing K2-EDTA (as the anticoagulant) at the following time-points dur-

ing the first chemotherapy cycle: before drug administration, and at 1.0, 1.25, 1.50, 2.0, 4.0, 8.0,

25.0, 49.0 h following the start of the PTX infusion. By centrifugation of the blood samples at

3000 g for 10 min at 4˚C, plasma was obtained immediately after the collection. Afterwards,

the plasma was separated, split into 2 suitable tubes and stored, at -80˚C, as two independent

aliquots. The principal pharmacokinetic parameters were calculated using WinNonlin soft-

ware with non-compartmental analysis.

Ethics statement regarding human samples. The phase Ib study entitled “A genotype-

guided phase I study for weekly paclitaxel in ovarian cancer patients” was approved by the eth-

ics committee of the National Cancer Institute of Aviano (CRO, Italy) and by Istituto Super-

iore di Sanità (ISS, Rome, Italy), EudraCT number: 2010-021619-18. The study was conducted

according to the principles expressed in the Declaration of Helsinki. All blood samples were

collected only after the signature of the informed consent from all the patients enrolled in the

clinical study.

Results and discussion

HPLC-MS/MS method

An infusion of PTX, 6α-OH-PTX and IS was used to optimize the conditions of mass spec-

trometer. Working in positive ion mode, PTX and 6α-OH-PTX formed mainly a protonated

molecule [M+H]+. In Table 2, the mass spectrometer parameters and ion transitions of PTX

and 6α-OH-PTX are reported. Fig 2 represents the fragmentation patterns of each compound

and the daughter ion with the highest signal was chosen as quantifier: 854.5>569.3 m/z for

PTX, 870.5>286.3 m/z for 6α-OH-PTX, and 808.5>226.3 m/z for IS. Typical SRM chromato-

grams are reported in Fig 3: an extracted blank plasma sample (A); an extracted blank plasma

sample added with IS (B); an extracted plasma sample at the LLOQ added with IS (C), and an

extracted plasma sample of a patient (D). This last sample was drawn at the end of the intrave-

nous infusion (1-h, 80 mg/m2 of PTX) and the peaks correspond to concentrations of 1997.39

ng/mL of PTX and 93.67 ng/mL of 6α-OH-PTX. The elution resulted rapid and selective,

Table 2. Source- and compound-dependent parameters and ion transitions of each analyte and IS used for the mass spectrometer method.

Precursor Ion Daughter ion

Analyte Q1 (amu) DP (volts) EP (volts) Q3 (amu) CE (volts) CXP (volts)

PTX 854.5 63 9 569.3 15 18

286.3 23 7

105.1 95 19

6α-OH-PTX 870.5 63 8 286.3 23 7

105.1 94 18

525.3 22 16

DTX 808.5 50 7 226.3 23 22

527.3 14 16

The dwell time of each transition was set up at 50 msec. DP: declustering potential; EP: entrance potential; CE: collision energy; CXP: collision cell exit potential.

https://doi.org/10.1371/journal.pone.0193500.t002
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being the peaks separated within 10 min: PTX, 6α-OH-PTX and IS were eluted at approxi-

mately 8.40, 7.15 and 8.04 min, respectively, and, at these retention times, no interfering peaks

were observed. Moreover, the analysis of six independent sources of blank human plasma con-

firmed the specificity of the method.

Validation of the method

Recovery. The proposed method is based on a simple protein precipitation of the plasma

samples with four volumes of 0.1% HCOOH/CH3OH. The recovery resulted in the range

92.4–95.7% (CV�6.9%) for PTX and 93.4–97.7% (CV�5.5%) for 6α-OH-PTX, as shown in

Table 3, while the recovery of IS was 101.2% (CV 4.4%).

Fig 2. MS/MS mass spectra of PTX and 6α-OH-PTX with chemical structures and identification of the main

fragment ions.

https://doi.org/10.1371/journal.pone.0193500.g002
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Linearity. The accuracy and precision for each calibration points of PTX and 6α-

OH-PTX, freshly prepared every day during the validation study, are reported in Table 4. The

standard curves were prepared on five different days and showed good linearity, being the

Pearson’s coefficient of determination R2�0.9948 for each run. Acceptable results were

obtained within the validated range of 1.00–10000.00 ng/mL for PTX and of 1.00–1000.00 ng/

mL for 6α-OH-PTX: the mean accuracy resulted in the range 89.8–107.6% for PTX and 87.0–

106.8% for 6α-OH-PTX and the precision, expressed as CV%, ranged from 0.6% for the LLOQ

to 7.9% for PTX and from 0.8 to 7.1% for 6α-OH-PTX.

Fig 3. Representative SRM chromatograms. (A): SRM chromatograms of a human blank plasma sample; (B): SRM

chromatograms of a human blank plasma sample with IS added; (C): S/N of PTX and 6α-OH-PTX at the LLOQ (1.00

ng/mL for both analytes); (D): SRM chromatograms of an extracted plasma sample of a treated patient showing IS,

PTX (1997.39 ng/mL) and 6α-OH-PTX (93.67 ng/mL).

https://doi.org/10.1371/journal.pone.0193500.g003

Table 3. Recovery of the analytes and the IS from human plasma.

Analyte Nominal concentration (ng/mL) Recovery (%) ± SD CV %

PTX 3 95.7 ± 6.4 6.6

625 92.4 ± 6.4 6.9

7500 93.8 ± 1.3 1.4

6α-OH-PTX 3 94.2 ± 1.9 2.0

75 97.7 ± 5.4 5.5

750 93.4 ± 2.6 2.8

DTX (IS) 200 101.2 ± 4.5 4.4

https://doi.org/10.1371/journal.pone.0193500.t003
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Intra- and inter-day precision and accuracy. The intra- and inter-day accuracy and pre-

cision (CV%) obtained are reported in Table 5. The precision of the proposed method was

confirmed by the intra- and inter-day CV�9.2% and�7.0% for PTX and�7.9% and�9.9%

for 6α-OH-PTX. Moreover, the intra- and inter-day accuracy were within the range 91.1–

98.4% and 94.0–104.8% for PTX and 92.8–103.3% and 99.5–104.0% for 6α-OH-PTX.

Limit of detection, limit of quantification, selectivity and matrix effect. The LOD

resulted 0.13 ng/mL for PTX and 0.19 ng/mL for 6α-OH-PTX. As shown in panel C of Fig 3,

reporting the S/N values obtained (22.5 for PTX and 15.5 for 6α-OH-PTX), the LLOQ was

fixed at 1 ng/mL for both PTX and 6α-OH-PTX. The accuracy and CV% were, respectively,

109.8% and 5.0% for PTX and 106.5% and 8.1% for 6α-OH-PTX.

The method resulted not affected by endogenous components in the matrix or other com-

ponents in the sample: by spiking six different sources of human plasma with the analytes at

the LLOQ concentration, the accuracy and CV% were, respectively, 107.5 and 12.5% for PTX

and 104.0% and 6.5% for 6α-OH-PTX. No matrix effect of ion suppression or enhancement

was observed because no significant variations (<15%) in the peak area of each analyte in the

six lots of matrices were detected.

Stability. Both PTX and 6α-OH-PTX resulted stable in human plasma for 4 h at room

temperature and, after extraction, for 72 h in the autosampler (4˚C) (S1 Table). Moreover, the

two compounds resulted stable in human plasma over two freeze/thaw cycles: CV% and accu-

racy were�3.1% and within 102.4–113.1% for PTX, and�12.8% and within 94.0–112.2% for

6α-OH-PTX (S2 Table). The long-term stability in human plasma was assessed after 7 months

of storage at approximately -80˚C: CV% and accuracy obtained were, respectively,�4.5% and

within 94.6–103.2% for PTX, and�4.9% and within 89.6–102.8% for 6α-OH-PTX (S2 Table).

The stability of the standard working solutions of PTX and 6α-OH-PTX was assessed after 27

months of storage at −80˚C: CV% and accuracy were�3.6% and within 106.6–113.3% for

PTX, and�8.8% and within 105.6–113.6% for 6α-OH-PTX (S3 Table).

Reproducibility. The re-analysis of plasma samples from one patient (treated at the

dose of 100 mg/m2) demonstrated a good reproducibility and accuracy of the method. The

Table 4. Linearity, accuracy and precision data for calibration curves of PTX and its metabolite 6α-OH-PTX.

PTX

Nominal conc. (ng/mL) Mean ± SD Precision % Accuracy %

1 0.99 ± 0.01 0.6 99.4

10 10.59 ± 0.68 6.4 105.9

50 50.91 ± 1.74 3.4 101.8

250 269.00 ± 9.05 3.4 107.6

1000 1020.79 ± 52.28 5.1 102.1

5000 4488.84 ± 161.87 3.6 89.8

10000 9292.7 ± 736.14 7.9 92.9

6α-OH-PTX

Nominal conc. (ng/mL) Mean ± SD Precision % Accuracy %

1 1.01 ± 0.01 0.8 100.8

5 4.82 ± 0.27 5.7 96.5

25 21.74 ± 0.48 2.2 87.0

50 53.40 ± 3.63 6.8 106.8

100 102.43 ± 4.12 4.0 102.4

500 512.77 ± 17.90 3.5 102.6

1000 1011.36 ± 71.36 7.1 101.1

https://doi.org/10.1371/journal.pone.0193500.t004
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concentrations of PTX and 6α-OH-PTX, determined during the two different analytical

runs, were indeed very similar in all samples: the percentage difference resulted within 20%

in�94.1 and�91.7% for all the re-analysed samples for PTX and 6α-OH-PTX, respectively

(Fig 4).

Table 5. Intra and inter-day precision and accuracy of the method for the analysis of PTX and its metabolite 6α-OH-PTX in human plasma samples.

Intra-day (N = 5)

Analytes Nominal concentration (ng/mL) Mean ± SD Precision % Accuracy %

PTX 3 3.18 ± 0.29 9.2 94.4

625 685.97 ± 40.72 5.9 91.1

7500 7619.62 ± 370.09 4.9 98.4

6α-OH-PTX 3 2.91 ± 0.23 7.9 103.3

75 80.85 ± 4.24 5.2 92.8

750 808.02 ± 50.47 6.2 92.8

Inter-day (N = 15)

Analytes Nominal concentration (ng/mL) Mean ± SD Precision % Accuracy %

PTX 3 3.14 ± 0.19 5.9 104.8

625 644.20 ± 45.22 7.0 103.1

7500 7047.92 ± 477.06 6.8 94.0

6α-OH-PTX 3 2.99 ± 0.29 9.9 99.5

75 77.99 ± 5.73 7.3 104.0

750 766.42 ± 58.58 7.6 102.2

https://doi.org/10.1371/journal.pone.0193500.t005

Fig 4. Re-analysis of incurred plasma samples of one patient treated at the dose of 100 mg/m2 of PTX during the

first chemotherapy cycle.

https://doi.org/10.1371/journal.pone.0193500.g004
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Pharmacokinetic study

The present method was successfully applied to the pharmacokinetic study of PTX and 6α-

OH-PTX in ovarian cancer patients enrolled in an ongoing genotype-guided phase I study and

treated with weekly PTX. In order To quantify patients’ samples, a standard curve was freshly

prepared every working day and the concentrations of samples were back-calculated from the

standard curve. The highest concentrations found in all the patients’ samples analysed till now

were within the dynamic range of the assay. For this reason, it was not necessary any further

dilution steps, even if the analysis independence from the dilution was previously assessed at

two dilution factors: 1:10 and 1:100. Here we reported the pharmacokinetic data related to

three patients (Pt 1, 2, 3) receiving 110 mg/m2 of PTX to confirm the method applicability to

samples collected from patients. The pharmacokinetic profiles were plotted. Fig 5 shows the

plasma concentration versus time curves of PTX and 6α-OH-PTX determined in these

patients, during the first cycle of therapy, using the method described before. The profiles were

well described within 49 h. The maximum concentrations of PTX and 6α-OH-PTX in patient

1 were observed as 4471.82 and 220.98 ng/mL respectively at 1 h and 1.25 h after the beginning

of the infusion. The experimental AUC (AUCexp, area under the curve of PTX and 6α-OH-

PTX plasma concentration vs. time from 0 to 49 h) were 6345.63 and 336.09 ng/mL�h for PTX

and 6α-OH-PTX, respectively. The terminal elimination half-life (t1/2) of PTX and 6α-OH-

PTX were 11.87 and 7.02 h, respectively. Regarding the patient 2, Cmax and AUCexp were

3530.57 ng/mL and 6559.601 ng/mL�h for PTX and 282.02 ng/mL and 471.75 ng/mL�h for

6α-OH-PTX, while t1/2 of PTX and 6α-OH-PTX were 14.93 and 5.22 h, respectively. Lastly,

Fig 5. Plasma concentration-vs-time profiles of PTX and its main metabolite 6α-OH-PTX in three patients with

advanced ovarian cancer. Patient 1, 2, and 3 received 110 mg/m2 of PTX as 1-h intravenous infusion during the first

chemotherapy cycle.

https://doi.org/10.1371/journal.pone.0193500.g005
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patient 3 exhibited PTX Cmax comparable (4169.55 ng/mL) to the other two patients but a

quite higher AUCexp, being 7974.78 ng/mL�h. The same behaviour was noticed for 6α-

OH-PTX. In fact, Cmax and AUCexp were 190.75 ng/mL and 359.03 ng/mL�h. Patient 3 showed

an elimination t1/2 of 11.09 and 14.35 h for PTX and 6α-OH-PTX, respectively.

Discussion

Paclitaxel has been studied at doses of 15–825 mg/m2, infused over 0.5 to 96 h and adminis-

tered both weekly and every 3-weeks dosing cycles. In the literature, the reported range of

median (25th-75th percentile) Cmax is 2,65–8,20 μg/mL following a dose range of 135–240 mg/

m2 [28]. With the aim of developing a method suitable for both a routine clinical application

and a dose-escalation study, we needed a method employing a small volume of plasma, with a

very simple extraction method, and characterized by a wide concentration range. In fact, the

concentration range should be proper to accurately determine both the Cmax, in samples of

patients enrolled in high-dose PTX clinical studies, and the elimination phase of the analytes.

With this purpose, we developed a new HPLC–MS/MS method proper to quantify not only

PTX but even its main metabolite. The method resulted characterized by high selectivity and

sensitivity further guaranteed by working in the Selected Reaction Monitoring (SRM) acquisi-

tion mode [34]. Furthermore, with the aim to quantify both PTX and 6α-OH-PTX on plasma

collected by pluri-treated patients, three transitions for each analytes (one transition chosen as

quantifier and the other two as qualifiers) were followed to detect possible interferences. We

investigated a range of concentrations (1–10000 ng/mL for PTX and 1–1000 ng/mL for 6α-

OH-PTX) that we expected to cover those found in the patients’ plasma. This method requires

just 100 μL of plasma sample and a simple treatment with 0.1% formic acid in methanol as

extraction procedure from the biological matrix. Moreover, to assure the robustness and reli-

ability of our method, we validated it according to the FDA-EMA guidances on bioanalytical

method validation [30–32]. The developed and validated method was swimmingly applied to a

pharmacokinetic study of weekly PTX administered in ovarian cancer patients included in a

genotype-guided phase I study, that is a dose-increment study. The main aim of this phase I

trial was the definition of the maximally-tolerated dose of weekly PTX, as first-line therapy, on

the basis of the ABCB1 genotype.

During the validation process we assessed the independence of analysis from the dilution

(dilution factors of 1:10 and 1:100). However, the highest concentrations found in patients

samples were within the calibration range of the method, thus making this assay suitable to

quantify all PTX doses nowadays employed in clinical practice. In addition, as suggested by

the FDA guidelines [31], we evaluated the reproducibility of the developed method even by re-

analysis of incurred samples.

Conclusions

PTX is used in a wide range of doses (80–225 mg/m2) alone or in multidrug regimens for the

therapy of several solid tumours. PTX pharmacokinetics is marked by a high inter- and intra-

patient variability having repercussion on both response and toxicity to the treatment. More-

over, a relationship between haematological toxicity and plasma exposure was found. For

these reasons, to individually adjust the dose by means of TDM is necessary in order to treat

patients with the correct dosage and therefore to optimize clinical outcomes.

The developed and validated bioanalytical method, requiring a simple deproteinization and

HPLC–MS/MS determination, could be used for TDM assays of PTX. This method requires

just 100 μL of plasma, is rapid, selective, highly sensitive, precise, accurate and able to quantify

even PTX main metabolite, 6α-OH-PTX. It was successfully validated according to the
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FDA-EMA guidances on bioanalytical method validation. The method has been used to mea-

sure plasma concentrations of PTX and 6α-OH-PTX and to determine the pharmacokinetics

of these analytes in plasma samples of cancer patients recruited in an ongoing phase I study.
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