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Abstract

Inspired by the Developmental Systems perspective, we studied the development of reach-

ing during mid-childhood (5–10 years of age) not just at the performance level (i.e., endpoint

movements), as commonly done in earlier studies, but also at the joint angle level. Because

the endpoint position (i.e., the tip of the index finger) at the reaching target can be achieved

with multiple joint angle combinations, we partitioned variability in joint angles over trials into

variability that does not (goal-equivalent variability, GEV) and that does (non-goal-equiva-

lent variability, NGEV) influence the endpoint position, using the Uncontrolled Manifold

method. Quantifying this structure in joint angle variability allowed us to examine whether

and how spatial variability of the endpoint at the reaching target is related to variability in

joint angles and how this changes over development. 6-, 8- and 10-year-old children and

young adults performed reaching movements to a target with the index finger. Polynomial

trend analysis revealed a linear and a quadratic decreasing trend for the variable error. Lin-

ear decreasing and cubic trends were found for joint angle standard deviations at movement

end. GEV and NGEV decreased gradually with age, but interestingly, the decrease of GEV

was steeper than the decrease of NGEV, showing that the different parts of the joint angle

variability changed differently over age. We interpreted these changes in the structure of

variability as indicating changes over age in exploration for synergies (a family of task solu-

tions), a concept that links the performance level with the joint angle level. Our results sug-

gest changes in the search for synergies during mid-childhood development.

Introduction

The development of goal-directed reaching is important as reaching is involved in many

manual everyday life actions. Refinement of reaching skills occurs during mid-childhood

development (5- to 10-years of age), a relevant developmental period which has often been

overlooked. Until now, the few studies that did examine mid-childhood development have

solely focused on the performance level of reaching; showing for example that reaching
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movements become more accurate and less variable with increasing age [1–4] and that reaching

movements can be better adjusted to sudden changes in target location [5–9]. Doing so, these

studies did not emphasize the contribution and development of other levels of analysis involved

in reaching, such as for instance the joint level (see for an exception Schneiberg et al. [10]). This

might be attributed to the theoretical approach underlying these studies, such as the informa-

tion processing approach or the computational neuroscience perspective (i.e., internal models

and representations). Following these approaches, studies tacitly assumed that there is a single

process (i.e., feedback/feedforward mechanisms) or component (i.e., representation) in the sys-

tem that controls motor behavior [2,11–13]. This idea implicitly entails that developmental

changes in reaching follow directly from developmental changes in the single process or compo-

nent. That is why examining changes in performance over age was considered sufficient to

understand developmental changes. Even though these studies and approaches have gathered

important knowledge about mid-childhood development, we propose that if one wants to

understand the full range and complexity of developmental changes, one should depart from

studying just one level and should distinguish the development of individual levels contributing

to reaching (see for detail criticism of earlier studies Golenia et al. [14]).

A perspective that views changes in motor behavior not as a reflection of changes in a single

process or component, but as resulting from the interaction of multiple changing components

acting on different levels of the system is the Developmental Systems (DS) perspective [15–18].

Importantly, the system is not confined to the body, but includes the full action-perception

cycle. Automatically, this means that the environment and the task are equally important parts

of the system. The DST´s starting point is that over development each component of the sys-

tem changes on its own time-scale. This means that the current behavioral state of the system

results from the interaction among all components. Hence, if one or multiple components

change, the behavior might change. From this perspective a great deal of understanding about

the acquisition of reaching skills during early-infancy has been achieved [19–23]. Here, we

noted the lack of using ideas from the DS perspective on the study of reaching development

during mid-childhood [14]. Following the DS perspective, understanding developmental

trends requires examining not only variables at the performance level, but also variables at

other levels and their relation. We took a first step in filling in this gap by focusing on develop-

ment at the level of the joint angles in the arm and how it relates to the development at the per-

formance level (i.e., kinematics of movements of the end-point, which is in the current study

the tip of the index finger).

Joint angles are defined as the relative orientations of the different segments of the arm and

hand (finger, wrist, elbow and shoulder joints). The wrist has for example two joint angles: the

wrist can flex or extend and abduct or adduct. An important characteristic of the joint angles is

that they are abundant [24]. This means that there are more joint angle combinations available

than necessary to accomplish the task of reaching (i.e., reaching the 3D target position in space

with the tip of the index finger) [24–26]. For example, imagine sitting in front of a table and

keeping your index finger tip at one position on the table. It is possible to move your arm while

keeping the index finger tip on the same position on the table, meaning that you use different

joint angle configurations that all accomplish this task. Thus, abundance allows for variability in

joint angles over repetitions of reaching trials. The main goal of this study is to examine how

this variability in joint angles changes during mid-childhood when performing a reaching task

and how it affects the performance of the endpoint at the reaching target, i.e. endpoint position

variability. Studying such variability, and in particular the structure within it, is generally con-

sidered an important way to reveal underlying developmental processes [27–31].

How can structure in joint angle variability be assessed? An often used approach in the liter-

ature is to parse joint angle variability over repetitions of trials into two parts [24,26,32]: (1)

Development of reaching during mid-childhood
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One part is the joint angle variabilty that does not affect task success, meaning that joint angles

co-vary to stabilize the endpoint around its mean position (goal-equivalent variability). This

part of the joint angle variability is the variability demonstrated in the earlier example of mov-

ing the arm while keeping the index finger tip at one position on the table. (2) The other part is

the joint angle variability that causes the endpoint to deviate from its mean position, shifting

the end-point away from the mean position (non-goal-equivalent variability). This variablity

over repetitions of trials therewith results in error around the mean position, usually seen in

endpoint position variability around the target. Examining the structure in joint angle variabil-

ity allows to examine the relation between joint angles and the index finger position in spatial

measures at the reaching target. We used the Uncontrolled Manifold (UCM) method to quan-

tify the structure in joint angle variabilty [24,26,32–34]. The UCM method partitions variabil-

ity in joint angles over repetitions of trials into goal-equivalent variability (GEV) and non-

goal-equivalent variability (NGEV). Higher levels of GEV than NGEV correspond to a rela-

tively invariant, stable value of the performance (i.e., index finger position).

An additional goal of this study was to evaluate whether and how the availability of visual

information about the arm influenced the structure in joint angle variability. The DS perspec-

tive states that the behavior of the system results from the interaction of not only the compo-

nents of the person, but also from the environment and task [35]. An important environmental

component involved in reaching movements is visual information about the hand and arm.

Previous developmental studies that focused on the performance of the reach found that vision

influenced end-point error (i.e., more errors in no vision conditions) and even influenced the

developmental trend [1,2,13]. It could also impact joint angle variability because of the required

reliance on proprioceptive information when no visual information is available. We therefore

asked whether vision availability is an equally large constraint in reaching at each age during

development.

In line with the DS perspective, we focused on changes in the relation of the performance

level and the joint angle level in goal-directed reaching movements during mid-childhood

development. We do so because even though index-finger movements are brought about by

joint angles, this does not mean that there is a direct relation between the two; only the struc-

ture in the variability can characterize such relation. We therefore examined the developmen-

tal trend of the structure in joint angle variability across 6-, 8-, and 10-year-old children and

adults. By that we aimed, in line with the DS perspective, to increase the understanding of

reaching by using a level-overarching explanation. Doing so, we focused on developmental

trends of spatial variables of endpoint position variability (i.e. constant and variable error),

joint angle variability (i.e. standard deviation) and structure in joint angle variability (GEV

and NGEV) at the end-point of the movement. From earlier studies, we know that both the

constant and variable error decrease with age [13,36]. NGEV should relate to the error vari-

ables of the index finger because this is the joint angle variability that influences the index fin-

ger position. We therefore expected a decrease in NGEV over age. GEV, on the other hand,

does not influence the index finger position, meaning that the developmental trend of this var-

iable does not have to be related to the trend of the performance of the index finger. We pro-

posed two competing hypotheses for GEV: Either GEV decreases with age or GEV stays

similar across age groups.

Method

Participants

40 typically developing children, recruited from local sport clubs and schools around the uni-

versity, and 15 young adults participated (age range in years/months = 19/2–28/5). Children
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were distributed in three groups based on their age resulting in a group of twelve 6-year-olds

(age range in years/months = 5/9–6/5), a group of fifteen 8-year-olds (age range in years/

months = 7/6–8/6) and a group of thirteen 10-year-olds (age range in years/months = 9/7–10/

5). All children and adults were right-handed.

Ethics statement

The local ethics committee of the Center for Human Movement Sciences (University Medical

Center Groningen) approved the study that was conducted according to the principles

expressed in the Declaration of Helsinki. Adult participants and children’s parents or legal

guardians provided written informed consent prior to the experiment.

Movement-ABC-2 test

The Movement Assessment Battery for children-2nd Edition (MABC-2) was performed by all

children prior to the experiment to test their motor development [37]. The MABC-2 test pro-

vides an indication of motor functioning across fine and gross motor tasks for children aged 3

to 16 years. The test consists of three age-related item-sets, measuring manual dexterity (three

items), aiming and catching (two items), and balance (three items). Children get a score on

each item, which are then transformed into standard scores, ranging from 1–19. A percentile

equivalent for the total test score is used as outcome measure which ranges from 0.1 to 99.9. A

typical development is indicated by a score above the 16th percentile. Adults received no motor

assessment, because the MABC-2 has no norm for adults. Instead adults were asked whether

they had any neurological diseases, recent injuries or musculoskeletal problems in the neck,

shoulder, arm or hand regions, which was not the case.

Apparatus

3D position data of all segments of the right arm were collected with two Optotrak 3020 system

sensors (Northern Digital, Waterloo, Canada). To obtain joint angles of the shoulder, elbow,

wrist, and index finger, six rigid bodies (each with three LED markers) were placed on the par-

ticipants’ right arm and the trunk [38]. Five triangular shaped rigid bodies were attached to the

sternum, to the flat part of the acromion, to the upper arm just below the insertion of the del-

toid, to the lower arm proximal to the ulnar and radial styloid, and to the dorsal surface of the

hand (Fig 1). The sixth rigid body was placed on the index finger so that it splinted the finger

to prevent motion of the inter-phalangeal joints (i.e., the finger was considered as one segment

in the analysis). Two different sizes were used; matching the length of the index finger of adults

and children, respectively. Nineteen bony landmarks were digitized using a standard pointer

device [38] and were linked to the position of the LED markers on the rigid bodies.

Fig 1 shows the experimental setup. The task was performed at a black table (height = 72

cm), in which a large television screen (Panasonic, 62�111 cm) was horizontally mounted pre-

senting the task display that was developed using Presentation (Neurobehavioral systems, Ber-

kely, CA). Lighting of the room could be controlled to manipulate visual feedback of the arm

and hand. Participants sat in a chair adjusted to their height and the length of their arm, so

that the elbow had a 90-degree angle and was at the same height as the table, keeping the rela-

tion between table and participant similar across participants. For children, we used a chair

(Tripp Trapp, Stokke, Sweden) of which also the plate for the feet could be adjusted so that

children could sit with their legs resting on this plate. The back of the chair was extended in

height with a board so that participants’ trunk could gently be strapped against it to prevent

movements of the torso, but allowing free movements of the shoulder and elbow joints. To

keep the start posture of the upper extremity as similar as possible over trials, the olecranon of
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the right arm had to be placed on a marked location on an elbow rest that was positioned at a

comfortable height on the right side of the participant (Fig 1).

Procedure and design

After anthropometrics were measured, markers were attached and participants were seated at

the table. Prior to testing, participants completed three practice trials to be sure that partici-

pants understood the instructions. In the case of a child, an experimenter sat next to the child

to ensure that the hand and the arm were in the required position at the beginning of each

trial, and that the child was attentive to the task (Fig 1).

At the beginning of each trial the start location was illuminated (red dot, 1cm diameter)

and participants were instructed to touch the start location with the tip of their right index finger

while the elbow was positioned on the elbow rest (elbow left the rest to reach the target). A target

location (green dot, 2cm diameter) appeared and participants pointed as quickly and accurately as

possible to the target location, according to instructions. The trial ended with holding the tip

steady on the target location for a short period of time. The start location (located 10 cm away

from the body) and target location were displayed at the midline of the screen in the depth direc-

tion (which was aligned to the body midline). Reaching distance was 30% of the average arm-

length of norm values of the concerned age group (18.5cm in 6-year-olds, 20.5cm in 8-year-olds,

22.5cm in 10-year-olds, and 28.0cm in adults, according to Gerver & De Bruin [39].

Reaching movements in two conditions were performed: (1) Reaching to the target with

normal room lighting so that visual information about the position of the arm was available

(vision condition) and (2) reaching to the target in the dark so that the position of the arm and

hand could not be seen (no-vision condition). Note, the illuminated target was visible in both

conditions.

Fig 1. Experimental setup. Bird’s-eye view on a participant sitting at the experimental table. The participant was

gently strapped to the chair (grey straps). The posture represents the start position of each trial. The elbow of the

participant was placed on the elbow rest and the tip of the index finger was positioned on the start position. If the

participant was a child, an experimenter was sitting next to the child. Triangles and the rectangle on the finger

represent rigid bodies (the rigid body on the sternum cannot be seen).

https://doi.org/10.1371/journal.pone.0193463.g001
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In total, the experimental session consisted of 60 trials (30 in each condition). We needed

this high number of trials to get a proper approximation of the uncontrolled manifold (see

next section) under the assumption that children’s behavior was rather variable. Participants

completed two blocks of 15 trails in each condition that were separated by short breaks

(around 3 minutes). Blocks were presented in a random order.

Data analysis

For all analysis, customized data analysis programs were developed in Matlab (MathWorks;

Natick, Massachusetts). To determine the initiation and the termination of the reaching move-

ment, a backward (movement initiation) and forward (movement termination) search was

performed from the maximum in the velocity profile of the forward direction (x-direction) of

the index finger until a threshold of 5 cm/s, respectively. The first points below threshold were

taken as the initiation and termination of the reaching movement, respectively. Note that all

dependent variables were analyzed at the instant of movement termination because reaching

the target was the only constraint in the current study.

All variables were analyzed with repeated measures ANOVAs using SPSS version 20.0

(IBM, Armonk, New York). All repeated measures ANOVAs had age-group (6, 8, 10-year-old

children, and adults) as between-subject factor. For the factor age-group we were interested in

the developmental trend, therefore we tested linear, quadratic, and cubic contrasts. Note, the

age intervals between age-groups were not similar, i.e., the interval between 10-year-old chil-

dren and the adults was much larger than the age interval between the other age groups. There-

fore, a linear statistical trend does not mean that the developmental trend over ages is also

linear. We took this into account when interpreting the results. We also report the omnibus

test of the factor age-group for completeness. If the assumption of sphericity was violated, the

Greenhouse–Geisser correction was applied. The level of significance was set at α< 0.05. Gen-

eralized eta-squared, η2
G, [40] was used to calculate effect sizes, and interpreted according to

Cohen’s recommendation of 0.02 for a small effect, 0.13 for a medium effect, and 0.26 for a

large effect [41]. Only results with an effect size larger than 0.02 were reported. For the three

children groups, a one-way ANOVA was conducted to test effects of age on the M-ABC per-

centile scores.

Performance level. For each trial, the constant error (CE; mean difference between target

position and tip position of the index finger at movement termination) and the variable error

(VE; within-subject standard deviation of CE) was calculated. Even though we focused pri-

marily on spatial variables, we also calculated movement time (MT; time from movement initi-

ation to movement termination). These variables were analyzed with a repeated measures

ANOVA with visual condition (vision, no-vision) as within-subject factor and the polynomial

contrasts of age-group. Moreover, to ensure that the results regarding spatial variability (main

outcome measures) were not confound by differences over age in speed-accuracy tradeoff,

we calculated linear regressions between MT and accuracy for each individual participant.

The intercept and the slope of the regression lines were analyzed with a repeated measures

ANOVA with visual condition (vision, no-vision) as within-subject factor and age-group as

between subject factor.

Joint angle level. We examined the following joint angles of the right arm: shoulder plane

of elevation (SPE), shoulder elevation (SE), shoulder inward–outward rotation (SIOR), elbow

flexion–extension (EFE), elbow pronation–supination (EPS), wrist flexion–extension (WFE),

wrist abduction–adduction (WAA), index finger flexion–extension (FFE), and index finger

abduction–adduction (FAA). Joint angles were calculated as proposed in the ISB standardiza-

tion proposal for the upper extremity by Wu et al. [42]. Standard deviation (SD) of the joint
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angles at movement termination over 30 repeated reaching trials was calculated. For each joint

angle, a repeated measures ANOVA on joint angle SD was performed with visual condition

(vision, no-vision) within-subject factor and the polynomial contrasts of age-group.

Structure in joint angle variability. The UCM analysis was performed as described previ-

ously [24,26,33,43]. The UCM analysis was computed for the moment of movement termina-

tion from 30 reaching trials (N). Elemental variables were defined as the joint angles of the

shoulder, elbow, wrist, and finger resulting in a 9-degree of freedom (DoF) system. The posi-

tion of the endpoint was selected as performance variable (3-DoF). The relation between

changes in elemental variables and changes in the performance variable were computed based

on a 3D forward kinematics model and united in a Jacobian (J) matrix [33,43]. Its null-space

was used as a linear approximation of the UCM. The variance components GEV and NGEV

were computed by projecting the total variance in joint space onto the null-space of J and the

orthogonal complement, respectively. Eqs 1 and 2 show the computation of GEV and NGEV,

where tr denotes the trace of a matrix, J denotes the Jacobian matrix, C denotes the covariance

matrix of all joint angles, n denotes the dimension of the joint space (n = 9) and d denotes the

dimension of the task space (d = 3). GEV and NGEV were normalized by its number of DoFs.

GEV ¼
trðnullðJÞt � C � nullðJÞÞ

n � d
Eq ð1Þ

NGEV ¼
trðððJtÞ

?
Þ

t
� C � ðJtÞ

?
Þ

d
Eq ð2Þ

To correct for non-normal data distribution, GEV and NGEV were log transformed prior

to the statistical analysis [44] and are displayed before log transformation in the figures in the

results section. A repeated measures ANOVA was performed with visual condition (vision,

no-vision) and variability (GEV, NGEV) as within-subject factors and age-group as between

subject-factor. To check that the findings at movement termination did not originate from dif-

ferences at movement initiation, we compared GEV and NGEV at movement initiation and

termination. We conducted two separate repeated measures ANOVA´s for GEV and NGEV

with vision (vision, no-vision) and time (initiation, termination) as within-subject factor and

age-group as between subject factor.

Results

365 out of 2700 trials were removed from the dataset because markers were not recorded due

to occlusion, so that at least one variable could not be determined. This left 2335 trials that

were used for analysis. Group averages of anthropometrics as well as the M-ABC scores of the

children groups are presented in Table 1. All children scored above the 16th percentile of the

M-ABC (M = 64.5%, range = 25.0–99.5%) indicating that all children were typically develop-

ing. M-ABC percentile scores were similar among age groups (p = 0.429).

Table 1. Anthropometric data of all age groups and M-ABC scores of children groups.

6-year-olds 8-year-olds 10-year-olds Adults

Mean age in yrs (range) 5.9 (5.7–6.5) 8.1 (7.6–8.6) 10.2 (9.7–10.5) 22.8 (19.2–28.5)

Gender (n male/ n female 6/6 9/6 7/6 7/8

Mean height (SD) in mm 120.7 (5.6) 133.1 (6.6) 145.0 (6.9) 183.3 (10.0)

Mean weight (SD) in kg 21.4 (2.3) 26.6 (3.2) 34,5 (5.9) 72.2 (11.8)

Mean arm length (SD) in cm 49.3 (3.2) 54.2 (2.8) 61.4 (3.4) 78.2 (6.1)

Mean M-ABC percentile (range) 57.5 (25–99) 69.5 (25–98) 65.2 (25–84) -

https://doi.org/10.1371/journal.pone.0193463.t001
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Performance level

The age-group effect of CE was not significant, however as Fig 2A indicates CE decreased

from 8.5mm in 6-year-old-children to 6.4mm in adults. The linear contrast for CE was nega-

tive and marginal significant (contrast estimate = -1.69, p = .054). VE decreased with age,

which was revealed by a significant age-group effect, F(3,51) = 10.06, p< .001, η2
G = 0.21. Con-

trast analysis revealed a significant negative linear effect (contrast estimate = -4.51, p< .001),

and a quadratic effect (contrast estimate = 2.57, p = .008). As can be seen in Fig 2B, both effects

seem to emerge from the sharp decrease in VE from 6-year-olds to 8-year-olds. MT decreased

over age (Fig 2C), indicated by a significant age-group effect, F(3,51) = 16.72, p< .001, η2
G =

0.48. A significant negative linear contrast was found for MT (contrast estimate = -0.069, p<
.001). CE, VE and MT showed no vision effect.

Concerning the speed-accuracy tradeoff, the intercepts of the regression line between MT

and accuracy revealed a significant age-group effect, F(3,51) = 8.78, p< .001, η2
G = 0.27, dem-

onstrating that the intercept decreased over age (6-year-olds: M = 0.24, SEM = 0.02; 8-year-

olds: M = 0.20, SEM = 0.01; 10-year-olds: M = 0.18, SEM = 0.02; adults: M = 0.14, SEM = 0.01).

The slope of the regression line revealed no age-group effect (p = .27), showing no differences

between groups in the tradeoff between speed and accuracy.

Joint angle level

Fig 3 shows the joint angle SD at movement termination for all joint angles and age-groups.

SD of all joint angles revealed a significant main effect of age-group (Table 2). All three shoul-

der joint angles (SPE, SE, SIOR) showed a significant negative linear effect (p´s =< .001–

0.004) and a cubic effect (p´s =< .017–0.049) for age-group. As seen in Fig 3A, 3B and 3C,

joint angle SD of the shoulder joint angles decreased from 6-year-olds to 8-year-olds, but

increased in 10-year-olds (but SD values did not reach the those of the 6-year-olds), followed

by a decrease to adult level. Polynomial contrasts of all elbow, wrist and finger joint angles (Fig

3D–3I) revealed negative linear effects (all p´s =< .001). As seen in Fig 3D–3I, the joint angle

SD decreased from 6-year-olds to adults. No effects for vision were found for SD of any of the

joint angles.

Fig 2. Error values at movement termination for each age group. A. Constant error (CE). B. Variable error (VE). C. Movement time (MT). The mean of the vision and

no-vision condition is presented. Error bars represent SEM.

https://doi.org/10.1371/journal.pone.0193463.g002
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Structure in joint angle variability

Fig 4 shows GEV and NGEV values of the moment of movement termination for each age-

group. The repeated measures ANOVA revealed a significant main effect for variability, F
(1,51) = 164.47, p< .001, η2

G = 0.29, indicating lower values of NGEV than GEV. The main

effect of age was also significant, F(3,51) = 53.13, p< .001, η2
G = 0.64, indicating changes over

Fig 3. Joint angle standard deviation for the moment of movement termination per joint angle for each age group. A. SPE, B. SE, C. SIOR, D. EFE, E. EPS, F. WFE,

G. WAA, H. FFE, I. FAA. The mean of the vision and no-vision condition is presented. Error bars represent SEM.

https://doi.org/10.1371/journal.pone.0193463.g003
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age. Different developmental trends for GEV and NGEV were shown by a significant interac-

tion effect of age-group with variability, F(3,51) = 6.04, p = .001, η2
G = 0.04. To better describe

this interaction, we computed separate linear regression lines with age-group as independent

variable and GEV and NGEV as dependent variables. A significant regression equation was

found for both GEV (F(1,53) = 82.64, p< .001) and NGEV (F(1,53) = 36.04, p< .001), with an

R2 of 0.61 and 0.41, respectively. Importantly, the slope for the regression line of GEV was

-0.78, whereas the slope of NGEV was -0.64. We interpreted this as showing that the decrease

over age of GEV was steeper than the decrease for NGEV. No effects for vision were found.

To check that the findings at movement termination did not originate from differences at

movement initiation, we compared GEV and NGEV at movement initiation and termination.

The repeated measures ANOVA for GEV revealed a significant group (F(3,51) = 43.93, p<
.001, η2

G = 0.61) and time (F(1,51) = 39.83, p< .001, η2
G = 0.22) effect. The repeated measures

Table 2. Main effect of age for joint angle standard deviation per joint angle.

Joint angle F df p-value η2G
SPE 5.04 3,51 .004 0.20

SE 9.31 3,51 < .001 0.27

SIOR 7.28 3,51 < .001 0.26

EFE 18.17 3,51 < .001 0.46

EPS 15.36 3,51 < .001 0.39

WFE 6.35 3,51 < .001 0.21

WAA 15.30 3,51 < .001 0.43

FFE 24.62 3,51 < .001 0.55

FAA 13.35 3,51 < .001 0.39

https://doi.org/10.1371/journal.pone.0193463.t002

Fig 4. GEV (grey bars) and NGEV (dashed grey bars) at movement termination for all age groups. The mean of the

vision and no-vision condition is presented. Error bars represent SEM.

https://doi.org/10.1371/journal.pone.0193463.g004
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ANOVA for NGEV also revealed a significant group (F(3,51) = 38.19, p< .001, η2
G = 0.55)

and time (F(1,51) = 26.50, p< .001, η2
G = 0.12) effect. Importantly, for both GEV (F(3,51) =

4.49, p = .007, η2
G = 0.08) and NGEV (F(3,51) = 5.45, p = .002, η2

G = 0.08) a significant interac-

tion effect between time and group was found, indicating that the effects at movement termi-

nation did not simply follow from effects at movement initiation, and that this differed over

age groups. Mean (M) and standard error (SEM) of variability per DoF (rad2) for each age

group for GEV at movement initiation were: 6-year-olds M = 0.0059, SEM = 0.0009; 8-year-

olds M = 0.0058, SEM = 0.0008; 10-year-olds M = 0.0060, SEM = 0.0008; Adults M = 0.0016,

SEM = 0.0007. Mean (M) and standard error (SEM) for each age group for NGEV at move-

ment initiation were: 6-year-olds M = 0.0033, SEM = 0.0003; 8-year-olds M = 0.0032, SEM =

0.0002; 10-year-olds M = 0.0027, SEM = 0.0002; Adults M = 0.0012, SEM = 0.0003.

Discussion

The current study focused on the development of reaching during mid-childhood. Inspired by

the DS approach, we studied developmental trends not just at the performance level, as com-

monly done in earlier studies, but also at joint angle level. Our results showed different statisti-

cal contrasts significant at different levels (performance vs joint angle), which implies different

developmental trends at each level, indicating the importance of focusing on different levels

for achieving understanding of reaching development. For the performance of the index finger

we found a linear and quadratic contrast for VE. CE showed a linear contrast. For the joint

angle level, we found linear contrasts for all joint angles, and also cubic contrasts for shoulder

joint angles. No vision effect was found at the performance level nor the joint angle level. By

examining the structure in joint angle variability with the UCM method, we were able to relate

the performance level and variability at the joint angel level. Both variability measures, GEV

and NGEV, decreased with age. Importantly, the decrease of GEV was steeper than the

decrease of NGEV, revealing that the structure in joint angle variability changed as a function

of age. Finding different developmental trends at different levels, as we did, not only provides

new findings with regard to reaching development, but also presents us with the challenge of

integrating these findings. This is done in the following where a first step is made to present a

level-overarching explanation of reaching development in mid-childhood.

Before doing so, we first focus on the manipulation of vision availability, which was done to

examine how this environmental constraint affected reaching and whether this differed over

age. Results of the current study showed no effects of the vision manipulation at either level we

studied. This is in contrast with some previous studies focusing on the performance level,

which revealed more reaching errors in the no vision condition and different developmental

trends across vision conditions [2,13,36,45]. The most prominent effect found was a perfor-

mance decrease in 8-year-old children in the no vision condition, but not in the vision condi-

tion [2,13,46,47]. Studies finding this effect of vision on the developmental trend explained it

in terms of changes in feedback and feedforward processes: 6-year-olds supposedly use feed-

forward processes, whereas 8-year-olds use feedback processes, while these processes would be

integrated in 10-year-olds [2]. That we did not find effects of vision might be due to differences

in experimental settings. For example, these earlier studies covered the movement trajectory

with a horizontal screen, or used special glasses to perturb visual feedback. We, on the other

hand, dimmed the light. This is where the DST can contribute in understanding these differ-

ences. By considering that task constraints might influence the result of the interaction

between the involved components, the DST can explain why different experimental setups

result in different developmental trends. The results suggest that vision was not a limiting con-

straint in the current study, that is, it did not affect the result of the interaction of the involved
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components. Future studies should focus on the performance decrease around 8 years in rela-

tion with vision and other task constraints.

Inspired by the DS perspective, we focused on different levels involved in reaching, because its

starting point is that over development each component of the system changes on its own time-

scale. Hence, if one or multiple components change, the behavior might change [16–18,48,49].

Our results revealed differences in the trends at the performance level and the joint angle level. At

the performance level, we found a linear and quadratic contrast for VE, indicating a large decrease

from 6- to 8-year-old children and similar values from 8-year-olds to adults, which is in line with

other studies [1,11,50]. CE showed a linear contrast (marginally significant), indicating that small

fine-tuning changes occur for CE. Movement time also revealed a linear contrast, suggesting a lin-

ear decrease with age. Some studies have found a linear decrease [3,51,52], but most others have

found a non-monotonic trend for MT, especially in the no-vision condition [2,13,45]. Not finding

a non-monotonic trend in the current study could be related to our visual conditions as discussed

above. We found similar slopes of the speed-accuracy tradeoff across age-groups. This shows that

speed and accuracy were not traded differently over age, showing that spatial variability measures

were not confounded by differences in speed-accuracy trade-off. At the joint angle level, we found

linear contrasts for the joint angle SD of all joint angles, and, importantly, also cubic contrasts for

the joint angles of the shoulder. Thus, our results indicate different developmental trends at differ-

ent levels, which is line with Schneiberg et al. [10], showing that different components contribut-

ing to reaching, such as the endpoint performance, joint excursions, trunk involvement, and

multi-joint coordination, develop differently. The indication of finding different developmental

trends at different levels underlines the relevance of understanding the developmental processes

that occur at the joint angle level.

Increasing understanding about of multi-joint coordination in mid-childhood can be

achieved by elaborating on what the changes in the structure of variability over age could mean.

First of all, both, GEV and NGEV decreased with age. We suggest that the decrease could be

related to changes in the general stability of children´s system. During mid-childhood, all com-

ponents of the body are continuously changing. For example, body proportions such as mass

and length fluctuate [53], postural control accompanying reaching movements develops [54],

attention and executive functions change [55,56] and neurological changes occur [57]. These

individual components all develop non-linearly and their interaction changes also continuously,

which might result in a less stable system. An unstable system is probably reflected in higher

NGEV. But an increased GEV could also indicate an unstable system, as exploiting a large range

of appropriate joint angle solutions that do not affect the endpoint, might be necessary for suc-

cessful reaching. This is in line with a study on adult reaching in which young adults increased

GEV when performing reaching movements under uncertain task conditions, i.e., external insta-

bility [58]. Thus, if we assume that the stability of the system increases during mid-childhood

development, NGEV and GEV probably decrease which could explain our findings. Future stud-

ies could test this hypothesis by letting children reach under uncertain task conditions, like it has

been done in the study of de Freitas et al. [58]. If the difference between GEV values in a certain

and an uncertain condition increases in magnitude with increasing age, it would suggest that

compared to older children and adults, younger children do not need to further increase the

range of solutions because their baseline range of solutions used is already high.

Interestingly, our results indicated that the decrease of GEV and NGEV differed. To under-

stand the developmental trends of GEV and NGEV it might be useful to introduce the concept of

synergies. A synergy can be defined as the organization of joint angles into a task-specific unit

[59], representing a family of solutions for a task [60,61]. The concept of synergies is useful because

it joins the performance level and the joint angle level, that is, synergies are organized according to

the task at the performance level while emphasizing how the performance is brought about by the
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joint angles. Different than other studies, we interpret GEV as the variability that belongs to the

synergy (i.e., solutions for the task), and NGEV as the variability that lays outside the synergy as it

does not represent a solution of the task. In line with this interpretation, our findings with regard

to GEV and NGEV showed that variability inside the synergy decreased more than variability out-

side the synergy which we propose could be related to exploratory behavior.

Exploration could be necessary to discover the family of solutions belonging to the synergy.

This is needed to develop the ability to remain flexible and skilled in the face of inevitable and

often unpredictable perturbing forces arising internally from the body or externally from the

environment. This idea is related to an interpretation of Thelen et al. [22] who studied infants

longitudinally over the period when they transition from not reaching to reaching. Results

revealed a period of apparent loss of trajectory control after infants already had achieved con-

trolled reaching. Thelen et al. [22] interpreted this period as a period of heightened exploration

of reaching speeds, allowing infants to discover a more globally stable metric for reaching

speeds. Our results could be interpreted in a similar light. Here, exploration is the search for

the families of solutions belonging to a synergy. We suggest that during mid-childhood the

synergy is refined based on those exploration processes, which on the one hand is reflected in

a gradual decrease of error around the target and on the other hand is reflected in the specific

decreases of GEV and NGEV. Most of the exploration in younger children occurs inside the

synergy and this exploration rapidly decreases over age. However, searching for the family of

solutions belonging to the synergy requires exploring at the boundary of the synergy. It could

be possible that older children search closer to the boundaries of the synergy, implying more

occasions of searching outside the synergy, which could explain why NGEV changes at a

slower pace over development than GEV.

The current study has some limitations. With the current data, it is not possible to establish

the trial to trial search that characterizes exploration, because the UCM is estimated for a block

of trials. Future studies could conduct a learning experiment with multiple blocks [62] to assess

how GEV and NGEV change over these blocks. To better understand the search from trial to

trial, different analysis techniques could be used such as described in [63–65]. Also, reaching is

a rather simple task. It is questionable how much exploration can actually occur in this task.

However, taking the developmental changes at the performance level into account, it seems

that the task is still difficult enough, otherwise no developmental changes should have been

seen. Another limitation of the current study is that the UCM method was only used to analyze

variability at the beginning and end of the movement and not throughout the movement.

To conclude, our results showed that developmental trends at the performance level (statis-

tical linear and quadratic trends) and the joint angle level (statistical linear and cubic trends)

differed, indicating that it is important to describe the developmental trends of different levels

relevant in reaching, like it is suggested by the DS perspective. Relating these two levels

brought us to the concept of synergies. We suggest that over mid-childhood development, syn-

ergies are refined through exploration. These exploration processes are reflected in a gradual

decrease of errors around the target, but more importantly, they are also reflected in changes

of variability outside and inside the synergy. By that we indicated that is it important to under-

stand the processes occurring on other levels than the performance level to give a level-over-

arching explanation of reaching in mid-childhood.
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32. Schöner G. Recent Developments and Problems in Human Movement Science and Their Conceptual

Implications. Ecol Psychol. 1995; 7: 291–314. https://doi.org/10.1207/s15326969eco0704_5
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