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Abstract

Blast exposure is an increasingly significant health hazard and can have a range of debilitat-
ing effects, including auditory dysfunction and traumatic brain injury. To assist in the devel-
opment of effective treatments, a greater understanding of the mechanisms of blast-
induced auditory damage and dysfunction, especially in the central nervous system, is criti-
cal. To elucidate this area, we subjected rats to a unilateral blast exposure at 22 psi, mea-
sured their auditory brainstem responses (ABRs), and histologically processed their brains
at 1 day, 1 month, and 3-month survival time points. The left and right auditory cortices was
assessed for astrocytic reactivity and axonal degenerative changes using glial fibrillary
acidic protein immunoreactivity and a silver impregnation technique, respectively. Although
only unilateral hearing loss was induced, astrocytosis was bilaterally elevated at 1 month
post-blast exposure compared to shams, and showed a positive trend of elevation at 3
months post-blast. Axonal degeneration, on the other hand, appeared to be more robust at

1 day and 3 months post-blast. Interestingly, while ABR threshold shifts recovered by the 1
and 3-month time-points, a positive correlation was observed between rats’ astrocyte counts
at 1 month post-blast and their threshold shifts at 1 day post-blast. Taken together, our find-
ings suggest that central auditory damage may have occurred due to biomechanical forces
from the blast shockwave, and that different indicators/types of damage may manifest over
different timelines.

Introduction

Blast exposure, which can be characterized by high wave pressure change and high energy
impulse noise, as well as the related traumatic brain injury (TBI), has become a common threat
in modern war theaters. Studies have found that up to 15.8% of combat-injured participants
had TBI [1], and that blast exposure was the predominant cause for their TBI [2]. Individuals
with blast-related TBI can experience a range of disability, including motor deficits, cognitive
decline, and notably, auditory dysfunction. Blast-related TBI and auditory dysfunction is
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especially important considering that up to 67% of blast-exposed individuals with mild TBI
have significant hearing threshold shifts and 59% develop tinnitus [3]. Presently, there are no
universally-effective treatments for individuals suffering from these problems.

A major step in improving treatment for blast-related TBI and auditory dysfunction is to
gain a better understanding of their underlying mechanisms. Using animal models, blast expo-
sure has been shown to induce neurodegeneration in the auditory cortex (AC) [4], and upre-
gulate glial fibrillary acidic protein (GFAP), c-fos and axonal injury markers within the central
auditory structures [5]. Previous work in our lab suggested that blast induced both damage
and compensatory changes in the inferior colliculus and the medial geniculate body of rats [6],
as well as increased activity across the auditory pathway and limbic system [7]. We also showed
that rats with blast-induced tinnitus experience increased spontaneous activity of the dorsal
cochlear nucleus and inferior colliculus between 1 day and 1 month following blast exposure
[8, 9], and increased activity in the AC at 3 months post-exposure [10]. Indeed, blast exposure
can induce a wide range of effects with various time courses in the brain, including potentially
lasting effects such as elevated GFAP expression [11], and axonal injury [12]. Further investi-
gation of lasting neurotrauma is vital since it may directly subserve chronic, blast-induced
dysfunction.

Despite the knowledge gleaned in the aforementioned work, many individuals continue to
suffer from blast-related auditory dysfunction, such as tinnitus, hearing problems, and more.
Thus, there is a need to further delineate the underlying mechanisms, which will help facilitate
the development of more effective, customized treatment strategies for patients. Specifically,
there is a need to investigate the time course of blast-induced auditory damage and related
TBI. We intended to answer a question of whether blast-induced damage in the auditory cor-
tex is predominantly caused by the direct mechanical compression and shearing of brain tis-
sues from the blast shockwave, rather than by degeneration resulting from blast-induced
damage via the auditory pathways. To address these issues, we set out to blast-expose rats with
one ear occluded and assessed both the left and right ACs for reactive astrocytosis and axonal
degeneration. We also measured hearing threshold changes by collecting auditory brainstem
responses (ABRs) and assessed whether these threshold changes correlated with astrocytosis.

Materials and methods
Animal subjects

Twenty-seven adult male Sprague Dawley rats (381+15.8 grams) purchased from Envigo (for-
merly Harlan Laboratories, Indianapolis, IN) were used for these experiments. These same
rats, combined with additional rats, were used as part of our previously published neurophysi-
ological studies [8-10]. The rats were either blast-exposed and retained for survival periods of
1 day (n =5), 1 month (n = 7) or 3 months (n = 8), or underwent a sham procedure (n = 6).
All procedures were approved by the Institutional Animal Care and Use Committee (IACUC)
and followed the Federal Animal Welfare Act.

Blast overpressure induction

Experimental rats were exposed to a single 22 psi blast (152 kPa, 197.5 dB SPL) generated by a
shock-tube (ORA Inc. Fredericksburg, VA). In preparation for blast exposure, a rat was anes-
thetized by a mixture of isoflurane (3%) and 0.6 L/min of oxygen for a total duration of 6 min-
utes. While anesthetized, a rat was placed in supportive netting attached to a pole with a
locking device. The rat was positioned in a rostral cephalic orientation towards the imminent
shockwave. The rat’s right ear was plugged with silicone putty (Mack’s®), McKeon Products,
Warren, MI) and mineral oil to enable unilateral, auditory blast exposure. Peak static
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overpressure was produced with compressed helium and calibrated Mylar sheets (GE Richards
Graphics Supplies Inc., Landsville, PA). Sham rats underwent the same procedures minus the
blast exposure.

Auditory brainstem responses (ABRs)

Click and tone-burst ABRs were collected in both ears prior to and after blast exposure. Rats
were anesthetized with air (1 liter/min) and isoflurane (1-2.5% v/v). Subdermal recording nee-
dle electrodes were inserted, with the active electrode placed on the vertex, the reference elec-
trode placed below the pinna, and the ground electrode placed in the contralateral temporal
muscle. Click and tone-burst stimuli were delivered through an electrostatic speaker inserted
in the external auditory canal. The stimuli were produced by an RX6 multifunction processor
using SigGenRP software (TDT system 3; Tucker-Davis Technologies, Alachua, FL).

Immunohistochemistry and silver impregnation

At the end of its survival period, each rat was euthanized by a lethal dose of isoflurane (5% v/v)
and perfused transcardially with 4% paraformaldehyde in 0.1M PB (pH 7.4). The brain was
removed, post-fixed, and subsequently cryoprotected by immersion in 30% sucrose in 0.1M
PB (pH 7.4). After that, 50 um thick frozen (—22°C) serial coronal sections encompassing the
AC were cut and collected in 1x PBS filled multi-well plates. Sections from the AC were col-
lected between -4.08mm and -6.84mm from the bregma.

GFAP immunostaining. To assess reactive astrocytosis in the AC, 5 representative sec-
tions per animal were subjected to antigen retrieval by incubation in a citrate buffer (pH6.0)
at 90°C for 1 hour. This was followed by immersion in 0.3% hydrogen peroxide to quench
endogenous peroxidase activity. The sections were then incubated overnight in a mouse
anti GFAP antibody (NE1015, EMD chemicals, Gibbstown, NJ) diluted in 2% normal goat
serum (Vector Laboratories, Burlingame, CA), and in 1% bovine serum albumin (BSA).
The sections were then incubated in biotinylated anti-mouse IgG (Vector Laboratories,
Burlingame, CA) followed by exposure to Vectastain Elite ABC reagent and chromogen
development by diaminobenzidine. In control incubations, normal goat serum was substi-
tuted for primary antibody. All sections were observed under a light microscope (Leica
DMLB, Leica Microsystems Ltd, Heerburg, Switzerland) to visualize astrocytes. The astro-
cytes were quantified by collecting 10 representative x200 digital images for each section
encompassing bilateral regions of the AC. The total number of identifiable astrocytes in
each digital image were counted using the cell counter function in Image] (http://rsb.info.
nih.gov/ij/) by a blinded investigator.

Silver staining for degenerating axons. For qualitative analysis of blast-induced axonal
injury in sections encompassing the AC, a separate set of 5 representative sections from each
brain underwent a silver impregnation procedure. The sections were immersed for 3 min in
pretreatment solution (equal volumes of 9% sodium hydroxide and 15% hydroxylamine) fol-
lowed by a wash in 0.5% acetic acid (3x3 min) or until the sections turned opaque. The sections
were then incubated in an impregnation solution (5 mg/ml ferric nitrate and 100 mg/ml silver
nitrate) for 30 min. Following this, they were washed in 1% citric acid (4x2 min) followed by a
wash in 0.5% acetic acid for 5 min. They were then placed in a developer solution until they
turned pale gray. After sufficient development, they were removed and washed thoroughly in
0.5% acetic acid (3x10 min), rinsed in distilled water, mounted on a slide and cover-slipped,
and examined under a light microscope (Leica DMLB, Leica Microsystems Ltd, Heerburg,
Switzerland) for the presence of degenerating axons.
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Data analysis

ABR thresholds were defined as the lowest sound level in which part of the biological wave-
form was visible. The average number of GFAP reactive astrocytes in the left and right auditory
cortices was determined for each animal. Astrocytosis was then compared between blast-
exposed and sham animals. Qualitative analysis of axonal degeneration via silver staining was
accomplished by visually examining slides for damage, such as swelling, vacuoles, and retrac-
tion balls. Representative blast-exposed and sham brain slices were compared to measure blast
induced damage. Statistical comparisons between the blast-exposed and control groups were
conducted using independent-samples t-tests for GFAP data, and with repeated measures
ANOVA for ABR data. Greenhouse Geisser corrections were used when Mauchly’s test of
sphericity was violated, and Bonferroni adjustments were made for multiple comparisons.
Correlation between ABR thresholds and quantitative astrocytosis was determined using Pear-
son’s r. All p values were set to < 0.05 for statistical significance.

Results
ABR threshold changes following blast impact

For the 1-day post-blast group, ABR thresholds were elevated in the exposed ears (left ears)
compared to sham groups’ ears (F(3 53, = 36.097, p < 0.05; Fig 1). For animals in the 1- and
3-month post-blast groups, however, thresholds were similar to the sham group. Since the
1-month and 3-month animals had threshold elevations at 1 day following their respective
blasts (data not shown), their thresholds had thus recovered by the 1- and 3-month time points.
Thresholds in the protected ears (right ears) were not significantly different compared to shams.

GFAP reactive astrocytosis in the AC

We compared reactive astrocytosis in the left and right ACs between sham animals and blast-
exposed animals at 1 day, 1 month, and 3 months post-blast. Fig 2A shows representative
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Fig 1. Auditory brainstem response thresholds in blast- and sham-exposed rats show temporary, blast-induced
threshold elevations. For the 1 day post-blast group (1 D PB), significant threshold shifts were observed across clicks
and all tone-burst frequencies in the blast-exposed ear (left ear). For the 1- and 3-month post-blast groups (1 Mo PB
and 3 Mo PB), however, thresholds were similar to those of sham-exposed rats. There were no significant threshold
shifts in the protected ear (right ear) following blast exposure at any time point. Error bars represent standard error of
the mean.

https://doi.org/10.1371/journal.pone.0193389.g001
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Fig 2. GFAP reactive astrocytosis and silver staining show central auditory damage following blast. (A) Sections encompassing the AC display GFAP reactive
astrocytosis for the sham group and the post-blast day 1 (1D PB), post-blast 1 month (1 Mo PB), and post-blast 3 months (3 Mo PB) groups. (B) Silver staining revealed
axons with uniform caliber in the sham group, and swollen axons (arrows) and axons with vacuoles and retraction balls (arrow heads) in the blast-exposed group. (C)
Quantitative analysis of GFAP reactive astrocytosis was also conducted by comparing blast-exposed groups to the sham group. While there was little change in astrocyte
counts for the 1 day post-blast group, there was a significant, bilateral increase for the 1 month post-blast group, and an insignificant increase for the 3-month post-blast
group. Error bars represent standard error of the mean. * Indicates significance (p < 0.05) compared to sham group.

https://doi.org/10.1371/journal.pone.0193389.g002

sections of astrocytes from sham and blasted animals at the different time points. For quantita-
tive analysis (Fig 2C), while the number of astrocytes were only modestly elevated in 1-day
post-blast animals compared to shams, we found a significantly greater number of astrocytes in
1 month post-blast animals compared to shams in both the left AC (¢ [11] = 2.77; p = 0.018)
and right AC (¢ [10] = 2.35; p = 0.04). Astrocytosis also showed a trend of elevation in 3 months
post-blast animals, though it was not statistically significant for both the left AC (¢ [12] = 1.61;

p = 0.134) or the right AC (¢ [12] = 1.80; p = 0.098).

Axonal injury in the AC

Silver stained representative sections encompassing the AC of blast-exposed and sham animals
were investigated for the presence of axonal damage (Fig 2B). Sham AC sections revealed long
tracts of axons with uniform caliber. For blast-exposed brain sections encompassing the AC,
degenerative changes in the form of axonal swelling, retraction balls, and vacuoles were
observed. This degeneration was predominantly found in sections at 1 day and 3 months after
blast.

Correlation between ABR threshold and astrocytosis

ABR threshold shifts (left ears) were also tested for correlations with astrocyte counts (Fig 3).
While shifts were not correlated with astrocytosis at matching time points (i.e. 1 month hear-
ing thresholds vs. 1 month astrocyte counts), we found a significant and positive correlation
between the post-blast day 1 threshold shifts of the 1-month group and the 1 month group’s
averaged bilateral astrocyte counts (r = 0.63; p = 0.04).

Discussion

To shed light on putative injury changes in the central auditory system following blast expo-
sure, we evaluated ABR thresholds, astrocytosis and axonal integrity in the ACs. Over a period
of three months following unilateral blast exposure, we observed temporary threshold shifts
and axonal degeneration, followed by astrocytosis and recurring axonal degeneration. In
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Fig 3. Correlation between post-blast day 1 ABR thresholds and averaged bilateral astrocyte counts of the
1-month group. A significant positive correlation was observed between ABR thresholds and astrocyte counts
(p = 0.04), suggesting a putative relationship between initial hearing loss and later-manifesting central auditory
damage.

https://doi.org/10.1371/journal.pone.0193389.g003

addition, we saw a potential correlation between certain threshold shifts and astrocytosis.
These findings confirm that blast exposure impacts the peripheral and central auditory system,
and may suggest that brain compression and shearing forces from the blast itself play a pre-
dominant role in related auditory impairment.

ABR revealed significant hearing threshold elevations following blast in the exposed ears
(left ears) of the 1-day group, but not in the unexposed ears (right ears). This demonstrates
that a unilateral induction of hearing loss occurred. However, thresholds recovered to and
remained at baseline levels by the 1-month and 3-month recordings. The threshold elevation
and recovery timeline may be influenced by the parameters of our blast exposure (single blast
at 22 psi/152 kPa) and the tone-burst frequencies (4 to 28 kHz) we used to generate ABR
thresholds. Other studies have also shown that a single blast in the range of 94-150 kilopascals
induced temporary ABR threshold shifts below 30 kHz [6, 9, 13]. Hearing thresholds may stay
elevated for 2 weeks following blast exposure higher than 94 kPa [13], but they can remain per-
manently elevated for frequencies higher than 30 kHz [13]. Furthermore, while blast-induced
tympanic membrane perforation has been observed in rodents and is reversible, perforations
alone appear insufficient to account for the degree of blast-induced hearing threshold shifts
[13]. However, it has been demonstrated that temporary threshold shift is associated with
swelling of cochlear nerve terminals at their hair cell synapses [14, 15], buckling of pillar bodies
[16] as well as synaptopathy [17, 18].

When assessing for GFAP reactive astrocytosis, we found significant numbers of astrocytes
in both the left and right ACs of the 1 month post-blast rats, as well as a trend of elevation in
the 3 month post-blast rats, compared to shams. However, there was relatively little elevation
in the 1 day post-blast group. Thus, astrocytosis in the ACs following blast exposure may occur
in a time-dependent manner. Others have also implicated a non-uniform time course, in
which GFAP was upregulated at 0-6 hours after blast, showed no upregulation at 48 hours
post-blast, and then showed upregulation again at 72 hours post-blast [19]. Long-term GFAP
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upregulation has also been shown at 1 to 3 months post-blast, depending on the brain struc-
ture analyzed [20]. This may be due to continuing neuronal loss, which may in part be contrib-
uted by pathologic tau protein aggregation in the ACs after blast exposure [21].

Mixed findings in GFAP expression after blast exposure have been reported by others [5,
19, 21-23]. One study, for example, found that GFAP-positive cell densities were not signifi-
cantly elevated in the AC at 21 days following three blast exposures at 14 psi [5]. It is possible
that a single blast of a higher intensity may be more damaging in some ways than multiple
blasts of lower intensity. For example, one study found that intracranial pressure trended
higher in rats exposed to a single 110 kPa blast versus rats exposed to three 72 kPa blasts [24].
Since GFAP appears to play an important role in responding to increased intracranial pressure
[25], this could explain why we saw significant GFAP accumulation whereas the study employ-
ing multiple lower PSI blasts did not. Interestingly, it should be noted that some other studies
employing more intense blasts (35-52 PSI) than the current study also did not observe signifi-
cant GFAP expression in the cortex [11, 22], though they did not focus on the auditory cortex.
One explanation for these results is that certain forms of blast-induced damage, such as those
that induce GFAP expression, might peak at a certain intensity of blast and actually reduce at
higher intensities. This can be seen in one study, where GFAP expression in the cortex was
only significantly higher in response to 17 PSI at 0, 6, and 72 hours post-blast, and not at other
time points and not in response to 14 PSI or 22 PSI blasts 19]. This may result from different
biomechanical responses of the skull to different shockwave parameters and blast exposure set-
ups; a specific range of loading may induce higher vulnerability to certain types of blast-
induced injury, especially given the nonlinear, viscoelastic nature of the skull and brain’s
response to the shock wave. It’s also possible that only certain cortical regions manifest blast-
induced astrocytosis, and only at certain post-injury time points. Indeed, some studies have
found increased GFAP expression in the prefrontal cortex from anywhere between 7 days to 3
months following blast [20,23].

Qualitative analysis of the axons encompassing the AC showed degradation primarily at 1
day and 3 months post-blast. Axonal disconnection can occur within hours following blast
exposure [26], which correlates with the axonal degeneration that we observed at 1 day post-
blast. An interesting result within our study, however, was that axonal degeneration was negli-
gible by 1 month post-blast, but then turned prominent again at 3 months post-blast. Like
reactive astrocytosis, there may be a time-dependent variable in blast-induced axonal degener-
ation. Noise exposure studies, while not the same as blast, have shown that while axonal degen-
eration initially occurs within 1-16 weeks, it may later become self-sustaining, with fresh
degeneration occurring up at 8 months post-injury [27]. In a previous DTI study conducted in
our lab, we saw diffusion changes that actually suggested increased axonal integrity at 2 and 4
weeks post-blast [6], which has also been found in the auditory midbrain of humans with hear-
ing loss [28]. It seems possible, therefore, that initial damage can be sustained, followed by
recovery or compensatory processes, which may then be followed by a slower-occurring axo-
nal degradation. The latter may have been seen in one diffusion tensor imaging study, where
age-related decline in white matter integrity appeared exacerbated in blast-exposed individuals
[29].

Although axonal degeneration did not parallel GFAP accumulation in our study, others
have also shown that axonal degeneration and GFAP accumulation are not always correlated
[5, 22]. Understanding the underlying mechanisms is complicated by the fact that astrocytes
can produce both growth-promoting and inhibitory effects [30]. On one hand, it is known that
after a 72 hour period following axonal degeneration, the glial response (including astrocytes
and macrophages) may help clear axonal debris and facilitate regeneration [31]. Potentially,
this played a role in restoring axonal integrity, as we observed by the 1 month post-blast time
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point. On the other hand, once major central nervous system damage has occurred, reactive
astrocytes can promote dense gliotic scarring that can inhibit axonal regeneration. It is thus
possible that in response to continuous, long-term neuronal loss and central nervous system
damage following blast and blast-related TBI, sufficient gliotic scarring occurred such that
sometime after 1 month post-blast, axonal integrity could no longer be maintained. Further
work is needed to delineate the mechanisms and time course of this sophisticated process, and
might help to inform and improve therapeutic intervention.

An important finding of the current study is that while we limited blast-induced hearing
loss to one ear, we found increased astrocytosis in both the left and right ACs. This raises the
possibility that the blast shockwave, including shearing and compression forces on the brain,
plays a major role in central auditory damage and related dysfunction. This builds upon our
recent findings, where we used manganese-enhanced MRI to show that unilateral blast expo-
sure can raise activity in both the left and right auditory pathways, and even in the limbic sys-
tem [7]. Other studies have shown that blast exposure can damage the corpus callosum [5, 32]
and white matter areas in brainstem and cerebellum [22, 33], demonstrating a diffuse effect
that may not be specific to the auditory system alone. Furthermore, studies of non-blast TBI
have also reported evidence of auditory dysfunction [34], astrocytosis in the cortex [35] and
corticospinal axonal degeneration [36]. This role for blast-related TBI in the central auditory
system is an important distinction from other inducers of central auditory damage, such as
noise trauma. Understanding the similarities and differences of blast-related auditory TBI may
be pivotal to determining the underlying mechanisms of and best treatment for related dys-
function, such as hearing loss and tinnitus.

While traumatic noise alone can induce astrocytosis in the cochlear nucleus [37], as well as
axonal degeneration in the cochlear nucleus, superior olivary complex, and inferior colliculus [27,
37, 38], it’s less clear if this also occurs at the level of the auditory cortex. One study found sparser
concentration of degenerating terminal axons in the superior olivary complex and inferior collicu-
lus than in the cochlear nuclei following noise exposure, suggesting that regions higher along the
auditory pathway are more resistant to such damage [27]. Furthermore, if the intense noise of the
blast was the primary driver of the observed astrocytosis in the current study, one would expect a
greater impact on the right auditory cortex compared to the left cortex. While this renders calls
into question the correlation between the 1 month group’s astrocyte counts and their day 1 ABR
threshold shifts, others have shown a significant association between tympanic membrane perfo-
ration and concussive brain injury [39]. It is therefore feasible that other peripheral mechanisms
of hearing loss, such as swelling of nerve terminals, may correlate with later-manifesting central
nervous system pathology. One wonders whether the use of standardized tools like ABR may help
forecast prognosis, later-onset injury patterns, and guide the timeline of treatment intervention.

Ultimately, further work is still needed to firmly distinguish which aspects of blast-induced
injury are due to the intense noise of the blast, and which are TBI due to biomechanical forces
from the blast shockwave. Additional investigation would be beneficial, such as plugging both
ears during blast and further examination of the specific effects on ipsilateral versus contralat-
eral auditory pathways following noise and blast. Potentially, damage that occurs through dif-
ferent mechanisms may also have different characteristics, and their identification may yield
better treatment of auditory dysfunction through targeted therapeutic strategies.

Supporting information

S1 Fig. Data behind Fig 1. Auditory brainstem response thresholds in blast- and sham-
exposed rats show temporary, blast-induced threshold elevations.
(XLSX)
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S2 Fig. Data behind Fig 2. GFAP reactive astrocytosis and silver staining show central audi-
tory damage following blast.
(XLSX)

S3 Fig. Data behind Fig 3. Correlation between post-blast day 1 ABR thresholds and averaged
bilateral astrocyte counts of the 1-month group.
(XLSX)
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