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Abstract

Our laboratory has developed bioinformatic strategies for identifying distant phylogenetic

relationships and characterizing families and superfamilies of transport proteins. Results

using these tools suggest that the Anoctamin Superfamily of cation and anion channels, as

well as lipid scramblases, includes three functionally characterized families: the Anoctamin

(ANO), Transmembrane Channel (TMC) and Ca2+-permeable Stress-gated Cation Channel

(CSC) families; as well as four families of functionally uncharacterized proteins, which we

refer to as the Anoctamin-like (ANO-L), Transmembrane Channel-like (TMC-L), and CSC-

like (CSC-L1 and CSC-L2) families. We have constructed protein clusters and trees show-

ing the relative relationships among the seven families. Topological analyses suggest that

the members of these families have essentially the same topologies. Comparative examina-

tion of these homologous families provides insight into possible mechanisms of action, indi-

cates the currently recognized organismal distributions of these proteins, and suggests drug

design potential for the disease-related channel proteins.

List of Abbreviations

Families

ANO, Anoctamin (TC: 1.A.17.1);

ANO-L, Anoctamin-like (TC: 1.A.17.2);

CSC, Calcium-permeable Stress-gated Cation Channel (TC: 1.A.17.5);

CSC-L1, Calcium-permeable Stress-gated Cation Channel-like 1 (TC: 1.A.17.3);

CSC-L2, Calcium-permeable Stress-gated Cation Channel-like 2 (TC: 1.A.17.7);

TMC, Transmembrane Channel (TC: 1.A.17.4);

TMC-L, Transmembrane Channel-like (TC: 1.A.17.6)
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Programs

AveHAS, program for determining Average Hydropathy, Amphipathicity and Simi-

larity for

a set of multiply aligned homologous sequences;

GSAT, Global Sequence Alignment Search Tool;

ITOL, Interactive Tree of Life, a web-based environment for the display of phylo-

genetic

trees;

MAFFT, a program for creating multiple sequence alignments;

mkPro-

teinClusters.

pl,

program for clustering protein sequences based on bit scores derived from

BLASTP, SSEARCH36, FASTA36 or UBLAST;

MrBayes, a program for building phylogenetic trees;

Phylip, a suite of programs for phylogenetic analysis;

Superfamily-

Tree,

program for constructing protein trees using BLAST bit scores rather than

multiple alignments;

WHAT, Web-based program for determining Hydropathy, Amphipathicity and

Topology for single proteins

Other

aas, amino acyl residues;

CDD, Conserved Domain Database;

DUF, Domain of Unknown Function;

SD, Standard Deviation;

TCDB, Transporter Classification Database;

TMS, Transmembrane Segment

Introduction

In January of 1993, our laboratory reported bioinformatic studies that provided the first evi-

dence suggesting an evolutionary relationship among drug resistance exporters, glucose facili-

tators, metabolite uptake proteins, sugar phosphate antiporters, and the well-studied lactose

permease of Escherichia coli [1]. We named this superfamily the Major Facilitator Superfamily

(MFS). In subsequent publications, we identified many more members of this superfamily [2–

5]. In 2016, there were nearly 100 families in the MFS, and our most recent unpublished efforts

have identified additional MFS family members. Moreover, it appears that transmembrane

peptidases and glycosyltransferases may also be members of this superfamily (S. Wang, I.

Javadi-Razat and M.H. Saier, unpublished results). The MFS is now the largest superfamily of

transmembrane transporters currently recognized. Proposals for the pathways of its evolution

have been presented [6–8], and comparison of high resolution x-ray structures support these

proposals [9–12].
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Since the identification of the MFS, our laboratory has identified over 60 superfamilies of

transport proteins (see the Superfamily Hyperlink in the Transporter Classification Database

—TCDB: tcdb.org). The largest superfamily of ion channels is the Voltage-gated Ion Channel

(VIC) Superfamily (TC: 1.A.1) [13–15], and the largest superfamily of primary active trans-

porters is the ATP-binding Cassette (ABC) Superfamily (TC: 3.A.1) [16], which actually

includes at least three, and possibly as many as six, evolutionarily distinct families of integral

membrane transport proteins [17–19]. Our bioinformatic strategies have become increasingly

sensitive and refined over the past years. Here, we use these strategies to define, expand and

organize a novel superfamily, the Anoctamin (ANO) Superfamily, which, after the analyses

reported here, includes 7 families, three of known function and four of unknown function.

The bioinformatically-derived characteristics of the included proteins are described.

Anoctamins (TC: 1.A.17.1)

Anoctamins, also referred to as TMEM16 proteins, comprise a family of proteins that mediate

ion transport, phospholipid scrambling, and regulation of other membrane proteins [20–24].

Ano1 and Ano2 play roles in transepithelial ion transport, smooth muscle contraction, olfac-

tion, phototransduction, nociception, heat sensitivity and control of neuronal excitability [21,

22, 25, 26]. Mutations in these human anoctamins have been found to be associated with dis-

ease conditions including muscular dystrophies, febrile seizures and cerebellar ataxia [27–31].

Additionally, Ano5, has been implicated in muscle and bone diseases [32–34], Ano6 is impor-

tant for innate immunity, and mutations in Ano6 cause Scott Syndrome (a bleeding disorder)

[35, 36], while Ano10 may play a role in macrophage volume regulation [37]. Ano1 has been

reported to be the major apical iodide channel in thyrocytes [30, 38, 39]. Further, overexpres-

sion of the genes encoding Ano1 and Ano3 have been linked to several forms of cancer, specif-

ically to gastrointestinal stream tumors, breast cancers, and squamous cell carcinomas [27, 40].

Ano4 regulates aldosterone secretion in the zona glomerulosa of the human adrenal gland

[41]. Several anoctamins, most notably Ano6, have been shown to be phospholipid scram-

blases, facilitating phosphatidyl serine translocation from the inner leaflet of the plasma mem-

brane to the other leaflet [42–44], a process that can signal apoptosis although XKR8 is the

apoptotic caspase-regulated scramblase [45]. Some TMEM16 homologues, including the Nec-
tria haematococcus homologue, nhTMEM16, exhibit both ion channel and lipid scramblase

activities [21, 46–48]. It has recently been shown that mutation of a couple of residues in the

subunit cavity of TMEM16A convert the Cl- channel into a scramblase [21, 46].

Anoctamins are present in numerous eukaryotes that have been examined for these pro-

teins with 10 paralogs identified in vertebrates named Ano1 through Ano10 (TMEM16A-H,

THEM16J and K, respectively) [49], and several have been shown to be Ca2+-activated Cl-

channels (CaCCs). It was originally proposed that Ano1 and Ano2 have an 8-transmembrane

segment (TMS) topology with a re-entrant loop between the fifth and sixth TMSs [49], but this

proposal is now known to be incorrect [50, 51]. X-ray structural data for one homologue from

the fungus, Nectria haematococcus, and cryoEM data for mouse Ano1 support a 10 TMS

model lacking a reentrant loop [20, 48, 52, 53]. The potential relationship of this structure

to the functions of ion transport and lipid flipping has been discussed [20, 48]. The name

“Anoctamin” was given to this protein family prior to its structural elucidation as a result of

the originally proposed 8 TMS topology and the anion (Cl-, HCO3
-, I-, NO3

-, SCN-, F-, etc.)

conductances expressed by Ano1 and Ano2 (anion = ano; 8 = oct) [27, 54]. In spite of the facts

that members of the superfamily may have up to 10 TMSs, and some catalyze cation rather

than anion transport in addition to scrambling phospholipids, the term “anoctamin” appears

to be thoroughly entrenched in the scientific literature. It brings up 2.5 times as many
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publications in PubMed as the alternative term TMEM16, and 4.5 times as many as the term,

transmembrane channel or TMC. Hence, in this paper, the term “anoctamin” will be retained.

Anoctamin regulation has been extensively studied [51, 55–57], yet the mechanisms by

which an increased intracellular Ca2+ concentration activates chloride or cation conductance

and phospholipid flippase activity are still poorly understood [58]. Early studies indicated that

calmodulin, a Ca2+ binding protein, is required for this process, but the reported effect of cal-

modulin may have been indirect [59]. More recent studies have shown that the purified Ano1

protein alone is sufficient to mediate Ca2+-activation. Neither calmodulin, nor any other acces-

sory protein is required for channel activation by either Ca2+ or voltage [46, 60–63].

A set of two conserved glutamate residues between putative TMSs 6 and 7 have been sug-

gested to be responsible for Ano1 activation by Ca2+ [50, 51, 63]. On the other hand, Galietta

noted that anoctamins contain a series of 5 consecutive glutamate residues that are located in

the region between putative TMSs 2 and 3, and that these residues could be a site of both Ca2+

sensitivity and voltage-dependent activation [64]. However, Tien et al. [63], identified five

other acidic residues in the second half of the protein that appeared to be critical for Ca2+ sen-

sitivity. Yang et al. presented evidence that a K584Q mutation in TMEM16A/Ano1 (residue

559 in TMEM16F), alters the anion/cation selectivity [43], but this result could not be repro-

duced in a subsequent study [65]. Although the reasons for this discrepancy are unclear, the

evidence available suggests that residues facing the channel pore control both ion selectivity

and gating of the channel [66].

Wild type Anoctamin channels, Ano1 and Ano2, in the presence of a sub-optimal Ca2+

concentration will activate upon imposition of a positive membrane potential, and deactiva-

tion occurs when the membrane potential returns to its resting state [54, 67, 68]. When the

Ca2+ concentration is at optimal levels, the channel becomes active at negative membrane

potentials [69]. Splice variants of anoctamins have different levels of voltage and Ca2+ concen-

tration dependencies as well as ion selectivities [70, 71].

As noted above, other anoctamins have been examined for their transport functions and

physiological impacts. Most have been reported to be ion channels and/or phospholipid

scramblases, and some are believed to regulate other channels [21, 35]. Ano6 may act indi-

rectly in bone mineralization by activating the calcium transporter, NCX1 [72]. Ano10 may

function in volume regulation in macrophages [37], while Ano5 may be responsible for Limb-

girdle muscular dystrophies [32, 73, 74]. High-resolution structures of the fungal nhTMEM16

homologue are available, and the residues that bind Ca2+ as well as the subunit cavity used for

scrambling phospholipids have been identified, but major questions regarding the mecha-

nisms of ion and phospholipid translocation still remain [20, 48, 75].

Transmembrane Channel-like (TMC) proteins (TC: 1.A.17.4)

Through sequence similarity, the transmembrane channel (TMC) proteins have been sug-

gested to be homologous to anoctamins [76–78]. TMC proteins had also been predicted to

have an 8 TMS topology, as suggested for anoctamins, but as noted above, the x-ray data for

the fungal member of the Anoctamin superfamily, nhTMEM16, does not support this model

[20, 48]. Several conserved amino acyl residues (aas) have been identified in putative TMSs

4–7 that correspond in position and nature to residues in the hydrophobic regions of the anoc-

tamins [78]. TMC homologues have been studied primarily in animals, although homologues

have been found in other eukaryotic phyla (see TCDB and Table 1). Their organismal distribu-

tion differs from the species diversity recognized for the anoctamins.

There are 8 TMC paralogs in animals named TMC1 through TMC8. Mutations in TMC1,

the best studied TMC, cause deafness in both mice and humans and reduce Ca2+ permeability
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[79, 80]. It has been shown that mice lacking a functional TMC1 fail to develop working

cochlear neurosensory hair cells [81]. TMC1 and TMC2 expressed in these cells are crucial for

mechanotransduction, where Ca2+ enters the cell in response to sound vibrations [82]. TMC

gene therapy has been shown to restore auditory function in deaf mice [83]. Some TMCs may

allow transmembrane flow of Ca2+, Zn2+, and possibly other cations [84].

Additional experiments have elucidated possible functions for TMC1 and its homologues.

TMC1 acts as a sensor for salt chemosensation in Caenorhabditis elegans and is required for

behavioral avoidance in response to increased NaCl concentrations [85]. It plays a role in C.

elegans development and sexual behavior. Expression of C. elegans TMC1 in mammalian cell

cultures resulted in Na+-activated cation conductance. These data suggest a possible function

for TMC1 as an ionotropic receptor [85]. Functions of TMCs 3–8 are less well understood,

although TMC 6 and 8 are implicated in the human disease, epidermodysplasia verruciformis,

which involves increased susceptibility to human papilloma virus infection [86].

Calcium-permeable Stress-gated Cation Channel (CSC) proteins (TC: 1.

A.17.5)

Another family that has been associated with the Anoctamin Superfamily has been designated

the RSN1_7TM Family, previously known as DUF221, where DUF stands for “Domain of

Unknown Function” [87]. Several of these proteins are osmosensitive Ca2+-permeable cation

channels [88]. Hou et al. initially characterized an RSN1_7TM homologue from Arabidopsis
thaliana. This homolog proved to be a non-rectifying, plasma membrane, calcium permeable,

stress-gated, cation channel which they designated CSC1 (TC: 1.A.17.5.10) [88]. It was a 771

amino acyl residue (aa) protein predicted to have nine TMSs plus a reentrant loop between

putative TMSs 6 and 7, a prediction no longer likely to be correct (see above and below). It was

activated by hyperosmotic shock and proved to be permeable to Ca2+, K+ and Na+. Inactiva-

tion or channel closure was Ca2+-dependent. Bioinformatic analyses suggested the presence of

3 N-terminal TMSs, the first of which was considered to be a cleavable signal peptide. The C-

terminal region of 6 putative TMSs corresponded to the RSN1_7TM domain. Arabidopsis spe-

cies contain at least 15 CSCs [88], and some of the genes encoding the various plant homo-

logues are transcriptionally upregulated in response to various abiotic and biotic stresses

involving mechanical perturbation [89].

Table 1. Average protein sizes, numbers of predicted TMSs (based on average hydropathy plots) and source phyla for each of the seven major families in the Anoc-

tamin Superfamily.

Family TC Id Average protein

size (aas)

Average number of

hydrophobic peaks

Organismal phyla

ANO 1.

A.17.1

897 ± 155 9 Metazoa, Albunigaceae, Saprolegniaceae, Phaeophyceae, Salpingoecidae, Ichthyosporea,

ANO-L 1.

A.17.2

994 ± 134 8 Metazoa

TMC 1.

A.17.4

835 ± 143 9 Metazoa, Salpingoecidae, Viridiplantae, Ichthyosporea

TMC-L 1.

A.17.6

841 ± 101 9 Intramacronucleata, Peronosporales, Phaeophyceae, Cryptophyta

CSC 1.

A.17.5

774 ± 36 10 Metazoa, Viridiplantae, Fungi

CSC-L1 1.

A.17.3

903 ± 106 9 Metazoa, Viridiplantae, Fungi, Saprolegniaceae, Phaeophyceae, Pelagophycea,

Oligohymenophorea, Bacillariophyta, Spirotrichea, Eustigmatophyceae

CSC-L2 1.

A.17.7

703 ± 124 9 Hexamitidae

https://doi.org/10.1371/journal.pone.0192851.t001
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Hou et al. also characterized a CSC1 protein from the yeast, Saccharomyces cerevisiae, one

of four paralogues in this organism [88]. This channel was activated under hyperosmotic

conditions. This research group also characterized a CSC1 homologue in humans, and as

expected, it too proved to be activated by hyperosmolarity and Ca2+ [88]. The authors there-

fore characterized three presumed orthologues, one from a plant, one from a fungus, and one

from an animal, all exhibiting similar cation channel properties regulated by essentially the

same stimuli.

In this communication, we conclude that these three families (ANO, TMC, and CSC) as

well as four previously unidentified families (ANO-L, TMC-L, CSC-L1, and CSC-L2) are

members of the newly defined Anoctamin Superfamily. We provide the characteristics of the

proteins that comprise each of these seven families (see the superfamilies link in TCDB).

Results

As a result of the analyses reported below, within 1.A.17, the Anoctamin (ANO) family is rep-

resented by the identifier 1.A.17.1, TMC is represented by 1.A.17.4, and CSC is represented by

1.A.17.5. The four families consisting of proteins of unknown function were given the identifi-

ers 1.A.17.2 (designated the ANO-like or ANO-L Family), 1.A.17.6 (designated the TMC-like

or TMC-L Family), 1.A.17.3 (designated the CSC-like 1 or CSC-L1 Family), and 1.A.17.7 (des-

ignated the CSC-like 2 or CSC-L2 Family).

Family expansion

This work started by considering six families (TC: 1.A.17.1 to 1.A.17.6). Each of the original

six families was extended with our program findDistantFamilyHomologs (see Methods) to

incorporate divergent proteins. As a result of this expansion, an additional small family was

identified (CSC-L2; TC: 1.A.17.7). The CSC-L2 family consists of proteins of 600–850 aas with

at least 9 putative TMSs. These proteins are found in organisms from the Hexamitidae taxo-

nomic family, including microscopic free living and pathogenic flagellated protozoa of the

Giardia and Spironucleus genera [90].

Conserved domains

Results of querying Pfam [91] with members of the Anoctamin Superfamily were used to

study domain architectures for each family within the Anoctamin Superfamily (Fig 1). Seven

families (TC: 1.A.17.1-1.A.17.7) have different combinations of recognizable Pfam domains.

The main domain in each family was present in all members, while secondary domains were

not always identified in all members (see Methods). The predicted TMSs and domain arrange-

ments of the seven families (Fig 1A–1G) in the Anoctamin Superfamily showed distinct, but

often overlapping, domains. Three of the dominant domain designations, “Anoctamin”,

“TMC” and “RNS1-7TM” overlap and are part of the same Pfam clan Anoctamin-like

(CL0416), and thus suggest homologous, albeit divergent motifs (Fig 1).

In the Anoctamin family (Fig 1A; TC: 1.A.17.1), a large Anoctamin domain was recognized

that covered all putative TMSs [49]. A hydrophilic, N-terminal Anoctamin dimerization

domain was also identified. The ANO-L family proteins (Fig 1B, TC: 1.A.17.2) included two

overlapping Pfam domains: an Anoctamin domain encompassing all TMSs, and a C-terminal

TMC domain encompassing 3 putative TMSs. This observation suggests that the short TMC

domain is part of the full length Anoctamin domain (compare Fig 1A with Fig 1B).

TMC proteins (Fig 1C; TC: 1.A.17.4) only matched the TMC domain that contains three

predicted TMSs near the C-terminus, while TMC-L family members (Fig 1D; TC 1.A.17.6)

showed a domain architecture similar to that of ANO-L (compare with Fig 1B).
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The CSC Family (Fig 1E; TC: 1.A.17.5) contains three domains, an N-terminal RSN1 TM

domain (spanning putative TMSs 1–3), a central cytoplasmic PHM7 cyt domain (of unknown

function), and a C-terminal RSN 7TM domain (spanning putative TMSs 5–9). The RSN1

domains are defined as Ca2+-dependent channel domains, clearly reflective of their associa-

tions with functionally characterized members of the Anoctamin Superfamily. The domain

Fig 1. Predicted topologies and domain organizations of various members of the Anoctamin Superfamily. Open

rectangular bars denote the positions of hydrophobic peaks, indicating putative TMSs. The locations of recognized

Pfam domains are shown below thick gray lines representing the protein sequences.

https://doi.org/10.1371/journal.pone.0192851.g001
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organization of the CSC-L1 family (Fig 1F; TC: 1.A.17.3) also matched the cytoplasmic PHM7

cyt domain. This family shows overlap between the RSN1 7TM domain and the Anoctamin

domain, revealing the equivalence of these two distantly related domains. RSN1 TM has an

unknown function, but experiments in yeast have shown that Sro7P-deficient mutants, defec-

tive in a protein containing this domain, exhibit increased sensitivity to NaCl concentrations

because Sro7P, a large soluble protein that is unrelated to any member of the Anoctamin

superfamily, is responsible for localizing sodium pumps to the cell membrane in order to

remove excess Na+ from the cytoplasm. Overexpression of Sro7P has been shown to re-route

these sodium pumps to the plasma membrane, restoring NaCl tolerance [92]. The presence

of these three domains in nearly all CSC proteins suggests that the three domains function

together. The functions of uncharacterized CSC proteins are likely to correspond to those of

the three characterized members of the family [88].

Finally, the CSC-L2 family proteins (Fig 1G; TC: 1.A.17.7) exhibit the cytoplasmic PHM7

cyt domain and the Anoctamin domain, thus displaying a domain architecture similar to those

of the CSC and CSC-L1 families. BLAST searches against TCDB show that CSC-L2 family

members are more similar to proteins in the CSC and CSC-L1 families.

The Pfam domain matches thus suggest that all the families examined are members of a

superfamily. The results in this section were confirmed by NCBI’s Conserved Domain Data-

base (CDD) [93] matches obtained using rpsblast with composition-based statistics and mask-

ing low-information regions.

Anoctamin Superfamily comparisons providing evidence for homology

Pairwise comparisons, using BLASTP [94], were run as a first step in determining the groups

and relationships among the Anoctamin superfamily members. These results suggested the

groupings into seven distinct families, and the existence of the superfamily. Of all within group

BLASTP comparisons, more than 85% attained e-values below10-10, while few inter-group

comparisons failed to satisfy the e-value cutoff of 10−3. By the transitivity principle (if A is

homologous to B, and B is homologous to C, then A is homologous to C), these BLASTP inter-

family results provide evidence suggesting that all the proteins belong to a single superfamily.

To better support the suggested superfamily, we used our SuperFamily strategy (see

Methods). To run these analyses, we selected a negative control set of 87 families containing a

total of 3,332 transporter proteins in TCDB with no known relationship with the Anoctamin

Superfamily. The first step in the strategy is the expansion of each family by comparison

against NCBI’s NR protein sequence database. We ran this step using famXpander (see

Methods). Examination of the results from famXpander revealed that members of different

families matched the same protein sequences. Common matches were frequent between mem-

bers of the superfamily (1514 total proteins), while only three common matching proteins

(two between TC: 1.A.17.1 and TC: 2.A.1; and one between TC: 1.A.17.1 and TC: 2.A.29) were

found against our negative controls. Furthermore, the regions of the common matches cov-

ered by the alignments with the members of the different Anoctamin families had overlaps

ranging from 300 to 500 aas. In contrast, the regions of the common matches covered by the

alignments against the negative controls had overlaps ranging from zero to 40 aas. Therefore,

the links between different families of the superfamily, based on the transitivity principle, was

strengthened.

To provide further evidence for homology between the families of the Anoctamin Super-

family, GSAT scores between members of the different families were determined [95]. An

example of an alignment used as evidence of homology between the CSC and CSC-L1 families

is shown in Fig 2. Top scores between families are presented in Table 2. The lowest GSAT
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Fig 2. GSAT pairwise alignment of a homolog of the CSC-L1 family (XP_001010624) with a homolog of the CSC

family (XP_014661822). The alignment shows the local region identified by Protocol2 that was used as evidence for

homology between these two families. Family CSC-L1 has TC: 1.A.17.3 while family CSC has TC: 1.A.17.5. Notice that

despite the low identity levels (22.7%), the TMSs align well, and a hydrophilic region between the second and third

TMSs is shared (GSAT score 34.2 SD). TMSs were identified by running HMMTOP [96] on the full protein sequences

and then mapping the TMS coordinates in the alignment.

https://doi.org/10.1371/journal.pone.0192851.g002
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score that can be used to relate all seven families was 21.1 SD. Within each of the seven families

of the Anoctamin Superfamily.

To determine whether a 21.1 score was sufficiently high to provide evidence for homology,

we compared GSAT scores against numerous negative controls. Homologous proteins in the

87 families used as negative controls were compared with homologues of the ANO family (TC:

1.A.17.1) using the famXpander, Protocol2 and GSAT programs (see Methods). The highest

GSAT score obtained for the 87 negative controls was 18.7 SD (S1 Table), with 77 of them hav-

ing scores� 17 SD. Moreover, the correspondence of TMSs in the sequence alignments

against the negative controls did not make sense. For example, the aligned regions included

dissimilar numbers of TMSs, and repeat sequences observed for the negative control proteins

could not be observed for the Anoctamin Superfamily members. In clear contrast, TMSs

aligned well when comparing members of different Anoctamin families.

Phylogeny of Anoctamin Superfamily members

Phylogenetic trees of the expanded Anoctamin Superfamily were constructed using Phylip

[97] and MrBayes [98]. In addition, we clustered the sequences based on BLASTP bit scores

using SuperfamilyTree [99–102], and based on the Smith-Waterman algorithm as imple-

mented in SSEARCH [103] using our program mkProteinClusters (see Methods). All trees

showed the same clustering of sequences, produced essentially the same topology, and, in mul-

tiple cases, showed strong statistical support for the nodes separating each family from one

another (Fig 3). The only difference was the position of family ANO-L (TC: 1.A.17.2). The

clustering generated by SuperfamilyTree (S2 Tree) placed family ANO-L on the same main

branch as family ANO (TC: 1.A.17.1). This grouping, together with the average hydropathy

and similarity plots (Fig 4) and the conservation of Ca2+-binding residues (see section “Analy-

sis of Functional Residues” below), was used to name the family ANO-L. Trees built with

MrBayes and Phylip also placed family ANO-L near the center of the tree, but on the same

branch and closer to TMC-L (TC: 1.A.17.6), regardless of the fraction of gaps per position

allowed per alignment. The program mkProteinClusters arrived at the clustering of families

Table 2. Top GSAT scores (expressed in standard deviations (SD)) between members of the seven families in the Anoctamin Superfamily†. The inference of homol-

ogy is based on the Superfamily Principle. See the Methods section for procedural details. The table shows only the highest scores (columns 5–7) that allow the identifica-

tion of homology transitivity paths A!B!C!D† (columns 1–4) among all seven families. For each row, the cell corresponding to the comparison score in the transitivity

path is shaded (lowest score; see columns 5–7). Notice how families in rows 1, 4, 5, 7 and 8 are related by the same protein; that is B = C, which indicates that the same pro-

tein has significant alignments with both Family 1 (A; column 1) and Family 2 (D; column 4).

Comparison Score†

Family 1

(A)

Protein 1

(B)

Protein 2

(C)

Family 2

(D)

A vs B B vs C C vs D Aligned TMSs

1.A.17.1 XP_008873677 XP_008873677 1.A.17.2 104.5 252.9 30.1 8

1.A.17.1 KOO35990 XP_001433607 1.A.17.3 40.2 24.7 201.1 5

1.A.17.2 XP_003294027 XP_001022627 1.A.17.3 177.4 24.4 387.2 6

1.A.17.2 XP_014481354 XP_014481354 1.A.17.4 28.1 401.9 94.8 10

1.A.17.2 XP_014481354 XP_014481354 1.A.17.6 27.6 264.9 26.0 9

1.A.17.3 XP_001010624 XP_014661822 1.A.17.5 72.9 34.3 168.4 9

1.A.17.3 XP_001441614 XP_001441614 1.A.17.7 428.8 226.4 21.1 7

1.A.17.4 EPZ36648 EPZ36648 1.A.17.6 81.3 361.8 42.2 9

† Comparison scores were calculated using the GSAT program with 1000 random shuffles.

Families 1 (A) and 2 (D) are well established family members in TCDB, Protein 1 (B) is homologous to A and Protein 2 (C) is homologous to D. Proteins 1 and 2 were

obtained and compared using famXpander and Protocol2, respectively, as described in the Methods section.

https://doi.org/10.1371/journal.pone.0192851.t002
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shown in Fig 3 (clustering coefficient of 0.98), although it used bit scores produced by Smith-

Waterman alignments to estimate distances (see Methods and S3 Tree).

The newly discovered CSC-L1 and CSC-L2 Families seem to be most closely related to the

CSC family, as they form three clearly distinguishable groups on the same branch of the tree. A

similar relationship and clustering pattern is observed within the two TMC families (TMC and

TMC-L). However, as noted above, the relationship between the ANO and ANO-L families is

not as clear, given that ANO-L was found to be located next to ANO (S2 Tree) or next to

Fig 3. Phylogenetic tree of protein members of the Anoctamin Superfamily. The tree was generated with MrBayes [98]. The multiple alignment used

to build this tree was generated with MAFFT [104] and trimmed with trimAL [105] to ensure that each residue position in the alignment contained less

than 15% gaps. The seven families are labeled as indicated in the text. The labels of the leaves correspond to the last 2 components of their TC identifier.

Complete TC identifiers result from inserting “1.A.17.” to the left of each leaf label.

https://doi.org/10.1371/journal.pone.0192851.g003
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Fig 4. Average topological features of the seven families within the Anoctamin Superfamily. Plots for all families were generated with the

AveHAS [106] program. Each plot is composed of two curves. Top dark red lines represent average hydropathy. Bottom gray dotted lines

represent average similarity. Predicted TMSs are shown as vertical gray lines. Numbered bars above the hydropathy curves indicate the positions

of peaks of hydrophobicity, usually predicted to be TMSs using the HMMTOP [96] and WHAT [95] programs. This figure shows that there are

8 to 10 hydrophobicity peaks in all seven families, which likely correspond to 9 or 10 TMS, since, in this superfamily, some hydrophobicity

peaks (such as peak 7 in A) are composed of 2 TMSs. The similarity curves indicate that the regions containing TMSs have the highest levels of

conservation, and the corresponding multiple alignments shows that they have fewer gaps.

https://doi.org/10.1371/journal.pone.0192851.g004
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TMC-L (Fig 3, S1 and S3 Trees) in several trees, with the former also being supported by the

conservation of functional residues (see section “Analysis of Functional Residues”) and the lat-

ter being supported by their domain organizations (compare Fig 1B and 1D). It is thus appar-

ent that the three major functionally characterized families within the Anoctamin superfamily

comprise three principal branches each, with one functionally characterized family (i.e., ANO,

TMC, and CSC) per branch.

Because the characterized Anoctamins, TMCs and CSCs, are known to have distinct func-

tions, we suggest that these trees provide guidelines for the functional elucidation of members

of the families of unknown function. The four groups of proteins, represented by ANO-L,

CSC-L1, CSC-L2, and TMC-L families, were named on the basis of their Pfam domains (Fig 1)

and their clustering in the trees (Fig 3 and S1–S3 Trees).

Topological evaluations

The members of the Anoctamin superfamily were examined and characterized with respect to

protein sizes, topologies and organismal phyla (Table 1). All seven families exhibit comparable

protein sizes (703–994 aa) and topologies (8–10 hydrophobicity peaks corresponding to 9–10

TMSs), although some are much larger and may consist of “fusion” proteins with additional

hydrophilic domains. The spacing of TMSs and the sizes of the loops connecting the TMSs dif-

fer significantly. All homologues identified are from eukaryotes, but some families are far

more widely distributed than others. For example, members of the ANO-L family are the most

restricted in distribution, being found only in animals, while the CSC-L1 family is represented

in at least ten phyla. The TMC-L family is not found in animals (Table 1), and CSC-L2 (TC: 1.

A.17.7) is found only in unicellular eukaryotes.

Fig 4 shows average hydropathy plots for members of each of the seven families described

in Fig 3 and Table 1. These plots depict the average properties as a function of residue position

in the multiple alignments created as described in Methods. In each panel, the top dark red

lines indicate average hydropathy. Vertical grey bars below the hydropathy/amphipathicity

plots represent residues in predicted TMSs by HMMTOP while the dotted gray lines indicate

average similarity. High similarity in a hydrophobic region predicted to be a TMS correlates

with strong conservation. Well conserved regions with high hydrophobicity (inferred TMSs)

are indicated with numbers above hydropathy peaks. A total of 8 to 10 conserved hydropho-

bicity peaks are identified for each of the seven families, but the actual number of TMSs is

likely to be 9 or 10 because some hydrophobicity peaks involve 2 TMSs (Fig 5).

Lack of recognizable repeats

Attempts were made to identify repeat sequences in members of the Anoctamin Superfamily.

However, it was not possible to find significant evidence suggestive of the occurrence of internal

sequence repeats using the HHrepID [107] and AncientRep [95] programs. Similarly, examina-

tion of the 3-D structure of the fungal homologue, nhTNEM16, failed to reveal the presence of

reliable repeat structures. However, if we excluded the loops connecting membrane-spanning

α-helices, it was possible to observe a potential 3-TMS structural repeat with borderline signifi-

cance, RMSD = 3.57 Å over a 60 residue alignment where TMSs 3–5 align with TMSs 6–8 (See

Methods and S1 Fig). This value is similar to the RMSD values obtained by comparing known

repeat units within members of the MFS (without removing loops and selecting for high cover-

age alignments). For example, we observed RMSD values of 2.74 Å (over 74 residues) and 3.14

Å (over 95 residues) for three- and four-helix bundles, respectively, for the lactose permease

protein (PDB: 2CFP). This is not sufficient evidence to suggest that a sequence duplication

event gave rise to the proposed structural repeat. The lack of sequence similarity suggests that
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either repeat sequences have diverged beyond recognition, or, alternatively, that in contrast to

most families of large integral membrane transport proteins [17], members of the Anoctamin

Superfamily have not arisen via a route involving intragenic duplication.

Comparison of predicted TMS topologies with the X-ray structure for the

Nectria haematococca homologue (TC: 1.A.17.1.18)

As noted above, sequence-based topological predictions (Fig 4) for members of the seven fami-

lies in the Anoctamin Superfamily showed 8 to 10 hydrophobicity peaks. The 3-d structures of

1.A.17.1.18 (PDB: 4WIS and 4WIT) were therefore compared with the initial 9 TMS topology

inferred for this protein. After mapping the inferred TMSs onto the X-ray structure, a general

agreement with the organization of α-helices in the membrane plane was observed with the

notable exception of the third from the last peak of hydropathy. This broad peak, with a shoul-

der of hydropathy on the right side, corresponds to two TMSs separated by a β-turn (Fig 5).

We suggest that most members of the Anoctamin Superfamily have the 10 TMS topology

observed for the N. haematococca homologue. Proteins in family ANO-L have 8 conserved

hydrophobicity peaks (Fig 4); however, as Fig 5 shows, one of these peaks may be composed of

2 TMSs. As discussed below, at least some members of this family may lack the last TMS.

Analysis of functional residues

The 3D structure of the fungal homolog nhTMEM16 [48] contains six functional residues

responsible for binding Ca2+, which are located in TMS 6 (N448 and E452), TMS 7 (D503 and

E506), and TMS 8 (E535 and D539) (Fig 5). We followed two approaches to study the conser-

vation of these and the channel-forming residues for members of the superfamily. First, we

generated multiple alignments, combining the proteins of family ANO with the proteins of

each one of the other 6 families using MAFFT [104], and compared the positions correspond-

ing to the Ca2+-binding residues as well as the TMSs delineating the subunit cavity in

nhTMEM16. Second, we used the MEME suite of programs [109] to search for conserved

motifs across the superfamily and determined whether identified functional residues are part

of the top scoring motifs (Fig 6). For the purpose of the following discussion, the sequences

Fig 5. Average hydropathy plot (dark red line) showing the basis for the topological predictions made for the Nectria haematococca
(Fusarium solani) nhTMEM16 (anoctamin) protein (TC: 1.A.17.1.18), for which x-ray structures are available (PDB IDs 4WIS and

4WIT). Vertical tan bars show the positions of the predicted TMSs using the Loop Finder program (V. S. Reddy and M. H. Saier,

unpublished). The green bar shows the position of the α-helix corresponding to TMS 6. This helix was not predicted to be a TMS by this

program, HMMTOP [96] or CCTOP [108], although the x-ray structure confirmed that it is one. HMMTOP predicted TMSs 1 and 2 as a

single TMS, although the structure confirms that the corresponding hydrophobicity peak is composed of two TMSs. The two purple bars,

representing the position of transmembrane helices 7 and 8 in the x-ray structure, were predicted by these programs and AveHAS [106] to

be a single TMS (also note the 7th hydrophobicity peak in Fig 4A). This explains the discrepancy in the predictions for different members of

the Anoctamin Superfamily (between 8 and 10 TMSs). The locations, in the hydropathy curve, of the three pairs of functional residues that

bind Ca2+ in TMSs 6, 7 and 8 are depicted with blue, black and green circles, respectively.

https://doi.org/10.1371/journal.pone.0192851.g005
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Fig 6. Conservation of functional residues across the Anoctamin Superfamily. The sequence logos illustrate the

conservation of the Ca2+-binding residues N448, E452, D503, E506, E535 and D539 (columns 1, 5, 11, 14, 21 and 25,

respectively) in each family. N448 and E452 are located in TMS 6, D503 and E506 in TMS 7, and E535 and D539 in

TMS 8 (Fig 5). Spaces separate residues in the first, second and third Motifs in TMSs 6, 7 and 8, respectively. Positions

between pairs of functional residues in the same TMS were included to provide context. Notice that outside families

ANO (panel A) and ANO-L (panel B), the residues are poorly conserved, suggesting that different residues are

involved in Ca2+ binding in the other families.

https://doi.org/10.1371/journal.pone.0192851.g006
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between each pair of Ca2+-binding residues in TMSs 6, 7 and 8 will be referred to as Motifs A,

B and C, respectively. Families ANO (Fig 6A) and ANO-L (Fig 6B) exhibit the highest level of

conservation, with residues, asparaginyl (N), aspartyl (D), and glutamyl (E), predominating in

all three of the displayed motifs. The other families show considerable variation, but the

observed substitutions frequently involve compatible residues. The TMC family (Fig 6C)

shows poor conservation of motif A, while motif B exhibits a largely conserved NVL sequence

(columns 11–13), and motif C has a fully conserved Y (column 23). In TMC-L (Fig 6D) the

most conserved is motif C, where an NFXXD sequence predominates. In CSC (Fig 6E) no resi-

dues predominate. In CSC-L1 (Fig 6F), an I (column 4) predominates in motif A, RY (columns

11 and 12) predominates in motif B and YWVD (columns 22–25) is found in motif C. In

CSC-L2 (Fig 6G), no predominant residue is shared with CSC and CSC-L1, except for the Y in

column 12 of motif B, and a V in column 24 of motif C.

Focusing on the specific positions of the Ca2+-binding residues in the fungal nhTMEM16

protein (Fig 6), only two families, ANO and ANO-L, displayed well conserved D and E resi-

dues (Fig 6A and 6B). The rest of the families show considerable variation, but the following

positions exhibit compatible substitutions: (1) the N at position 11 in motif B of the TMC fam-

ily (Fig 6C), (2) the conserved N/Q and D/E at positions 21 and 25 in motif C of the TMC-L

family (Fig 6D), (3) the poorly conserved D/E at position 5 in motif A and the D at position 25

in motif C of the CSC family (Fig 6E), (4) the poorly conserved Q/N/D at position 5 of motif

A, the Q/D/N at position 14 of motif B and the fully conserved D at position 25 in motif C in

family CSC-L1 (Fig 6F), and (5) the D/Q at position 1 and the D/E/N at position 5 of motif A,

and the Q at position 21 of motif C in the CSC-L2 family (Fig 6G).

Since several of the known Ca2+-binding residues in the fungal nhTMEM16 are not con-

served across the superfamily, we sought alternative residues with negative charge or strongly

electronegative character that could bind Ca2+. This was done by examining residue positions

in close proximity in 3D space, one or two helical turns away from the identified Ca2+-binding

residues shown in Fig 6. That is, residues located about 3.6 or 7.2 residues away from the

assigned residues in these transmembrane helical segments. The results were remarkably

revealing. S2 Fig illustrates that at these positions (3, 4, 7 or 8 residues from the aforemen-

tioned Ca2+-binding residues) we found conserved N/D/E/Qs before and/or after the three

motifs in all families. The figure also shows the presence of positively charged residues adjacent

to (e.g., Motif C, family CSC-L1) or one helical turn away (e.g., Motif C, family ANO) from

negatively charged residues. These residues could stabilize the D at the end of motif C. These

observations suggest that alternative replacement residues or “helper” residues close to the

Ca2+-binding residues in nhTMEM16 may participate in Ca2+-binding.

As discussed above, other positions in the neighborhood of the Ca2+-binding residues in

nhTMEM16 are well conserved. Thus, we attempted to identify larger conserved motifs across

the superfamily. Despite the variation observed in the functional positions, the context pro-

vided by the neighboring residues is conserved to the extent that the most significant motif (50

residues long, E-value < 10−420) identified by MEME maps precisely to the region containing

the functional residues in TMSs 7 and 8 (i.e., D503, E506, E535 and D539) of nhTMEM16 (Fig

7). With the exception of 4 proteins (i.e. 1.A.17.6.1, 1.A.17.6.3, 1.A.17.6.7, and 1.A.17.3.2), for

which functional residues could not be properly identified (due to gaps in the corresponding

positions or the residues not mapping to the correct hydrophobicity peaks). The location of

this motif in all families, as inferred by MAST, maps precisely to the region where the

Ca2+-binding residues in nhTMEM16 are located. At the superfamily level, the region contain-

ing the other two Ca2+-binding residues in nhTMEM16, residues N448 and E452 in TMS 6,

is poorly conserved outside the ANO family. The second most significant motif (E-value

< 10−335) maps to TMSs 4 and 5 which are part of the subunit cavity for lipid scrambling in
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Fig 7. MAST output containing the top 3 motifs identified by MEME. The figure shows sequences with motif E-

values< 10−39. Motif 1 (red boxes) maps to TMSs 7 and 8, where 4 of the 6 Ca2+-binding residues in nhTMEM16 are

located. Motif 2 (cyan boxes) maps to TMSs 4 and 5 in nhTMEM16, which form part of the subunit cavity for

phospholipid translocation. Motif 3 (green boxes) maps to TMS 1, but this TMS does not interact with Ca2+ or the

substrate. Our results show that 94% (65/69) of the sequences in the superfamily map Motif 1 to the region that contains

4 of the 6 functional residues that bind Ca2+, and 98.5% (68/69) of the sequences map Motif 2 to TMSs 4 and 5.

https://doi.org/10.1371/journal.pone.0192851.g007
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nhTMEM16 and the Cl- channel in mTMEM16A [53]. This motif contains residues E352 and

K353 (relative to nhTMEM16), which interact with lipid headgroups and have been associated

with robust scrambling [110]. It is clear that these residues do not have the highest levels of

conservation (see positions 15–16 in the MEME logo of S3 File). Other charged residues (e.g.

E358 and K373) are much better conserved in this motif. Notwithstanding the poor conserva-

tion of some residues, with one exception (1.A.17.6.1), all proteins in the superfamily mapped

this motif to the regions identified to be homologous to TMSs 4 and 5 in nhTMEM16 (see

Methods). The third most significant motif maps to TMS 1 in nhTMEM16, but this TMS is

not involved in binding Ca2+, nor is known to interact with the substrate. In 2009, Hahn et al
[78] identified regions containing these 3 motifs (relative to nhTMEM16 TMS1, TMS 4–5 and

TMS 7–8) between the ANO and TMC families. In their alignments, albeit unknown at that

time, the residues that bind Ca2+ in ANO are not highly conserved within the region. Other

residues in TMSs 7–8 (i.e., the sequence PL[A/L]P) are clearly better conserved in these two

families (ANO and TMC). This is in agreement with our observation of poor conservation of

Ca2+-binding residues (Fig 6C and 6D). Our analyses also show that these 3 motifs, are well

conserved across all seven families within the superfamily. S3 File contains the output of

MEME and MAST applied to the whole superfamily.

Discussion

In this report, we provide bioinformatic evidence that strongly suggests that the Anoctamin

family of channel proteins (ANO) is related to both the TMC and CSC families. These three

families are now grouped into a larger superfamily which we have called the Anoctamin Super-

family. In addition to these three families, we have found four novel families of unknown func-

tion that belong to the superfamily. We named them the Anoctamin-like (ANO-L), CSC-like

(CSC-L1 and CSC-L2), and TMC-like (TMC-L) families based on their clustering patterns

(Fig 3 and S1–S3 Trees). Thus, we have expanded the Anoctamin Superfamily, from 3 to 7

families. The diverse functions of members of the former three families in cation, anion and

lipid transport suggest that the proteins of unknown function will similarly exhibit diverse

functions, perhaps more divergent than those currently recognized. We nevertheless anticipate

closer functional overlap between TMC and TMC-L, as well as between CSC and both CSC-L1

and CSC-L2. ANO-L could be closer in function to either ANO or TMC. Our analyses of both

the TMS and tree topologies of the proteins in all of these families suggest that they are all simi-

lar in their basic domain architectures (Fig 1), although they cluster as seven distinct families

on the trees (Fig 3). These observations should be useful guides for future studies.

Our protein sequence analyses identified 8 to 10 conserved hydrophobicity peaks (Fig 4)

that likely correspond to 9 or 10 TMSs, based on the observation that one hydrophobicity peak

can sometimes correspond to 2 TMSs (Fig 5). The predicted 8 and 9 TMS topology conflicts

with the high resolution fungal Anoctamin structure, which shows a 10 TMS topology [20, 48].

Based on the known structure and the topological analyses reported here, we suggest that most

superfamily members have a 10 TMSs topology. Although members of the ANO-L family

appear to have 9 TMSs, having lost the C-terminal TMS.

Since there is a notable difference between the substrates of Anoctamins, TMCs and CSCs

(e.g., anions vs. cations, in addition to lipids), we suspect that the mechanisms of channel acti-

vation will prove to be the most strongly conserved features of this superfamily, as supported

by our analysis of the conservation of sequence motifs that include known Ca2+-binding and

channel-forming functional residues. However, it is noteworthy that only two of the families

(ANO and ANO-L) show conservation of the Ca2+-binding residues known for nhTMEM16.

We suggest that the mechanism(s) of translocation and regulation mediated by these proteins
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differ in detail for members of the dissimilar families. Proposals as to the mechanisms of lipid

flipping by some members of the superfamily have recently been considered by Brunner et al.

[20, 48], as well as by Whitlock and Hartzell [75].

When using homology-based approaches to identify potential drug targets, it may be

equally important to consider transport mechanisms and substrate selectivities. Understand-

ing which domains of each protein share recognizable homology should allow researchers to

dissect the subfunctions of these proteins and design therapies to target proteins that are

important in disease progression. However, only high-resolution X-ray structures, such as

those published by Brunner et al. 2014 [48] (see also [20, 22]) coupled with detailed biochemi-

cal and genetic analyses, are likely to resolve the controversies regarding the detailed functions,

mechanisms and regulatory features of these proteins.

Methods

Examining conserved domains within members of the Anoctamin

Superfamily

All members of the ANO, TMC, and CSC families recorded in TCDB were used as query

sequences for searches against the Pfam [91] and NCBI’s Conserved Domain Database, CDD

[93, 111]. Pfam scans were run using hmmscan, from the HMMer software suite [112] using a

gathering threshold. If a family member did not return a significant hit with the most frequent

Pfam domain observed for that family (present in at least 50% of the members), then the

matching sequence regions of the family members that did report a hit were collected and

aligned with the Smith-Waterman algorithm, as implemented in SSEARCH36 [103], to the

sequence where the domain was not identified. If a significant alignment was found (E-

value < 10−3; with at least 70% overlap of the domain sequences), then the domain was

regarded as present or “rescued” in the protein without an initial Pfam hit.

CDD scans were run using rpsblast from NCBI’s blast suite [94]. The options for running

rpsblast were an e-value threshold of 10−2 (as recommended by the authors), compositional-

based statistics, and soft-masking of low-information segments.

Clustering and phylogenetic analyses

To investigate the relative divergence of each family inside the Anoctamin superfamily, we

used several methodologies to generate clusters and phylogenetic trees. Proteins listed under

TC: 1.A.17 (see S1 File) were thus grouped using the programs mkProteinClusters (https://

github.com/SaierLaboratory/TCDBtools), SuperfamilyTree [99–102], Phylip [97] and

MrBayes [98]. Multiple alignments were generated with MAFFT [104] using the L-INS-i

method (see S2 File). Poorly aligned positions with gaps were removed using trimAL [105].

For each multiple alignment, 3 trimmed alignments were built by keeping positions with gap

maxima ranging from 15% to 25%, with increments of 5%. Alignments with fewer gaps were

not considered to prevent the alignments from becoming too short. The program mkPro-

teinClusters runs hierarchical clustering as implemented in the R package (https://www.R-

project.org/) on a distance matrix calculated from bit scores produced from local protein align-

ments within the superfamily performed with BLASTP [113], FASTA36 [103], SSEARCH

[103], or UBLAST [114]. Clusters were produced using the Ward agglomerative method.

SuperfamilyTree uses tens of thousands of BLAST bit scores to derive 100 sampled trees [99–

102]. These trees were then averaged into a consensus tree using FITCH and CONSENSE

from the Phylip software suite with default parameters. Phylogenetic trees created using the

Phylip suite were built using the programs NEIGHBOR, FITCH and PROML with 100
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bootstrap replicas. MrBayes was used to generate trees assuming that substitution rates per

position are different and follow a gamma distribution with 4 rate categories. Posterior proba-

bilities were estimated using Metropolis coupling (1 cold and 3 heated chains) and at least

600,000 generations or until the average standard deviation of split frequencies fell below 0.01.

Trees were drawn with FigTree (http://tree.bio.ed.ac.uk/software/figtree/) and the Interactive

Tree of Life (iTOL: http://itol.embl.de/) [115]. To increase clarity, the tree in Fig 3 displays

only the bootstrap support values of the main nodes separating the families. However, the orig-

inal tree used to generate Fig 3 is provided in the Supporting Information section (S1 Tree).

Negative control set for homology

It is well documented that transmembrane segments contain low complexity hydrophobic

regions that may generate statistically significant sequence similarity. However, that does not

necessarily suggest shared ancestry, as it may instead be the result of common selective pres-

sures due to physical-chemical constraints in the membrane environment [116]. Our strategy

to overcome this hurdle consists in comparing the GSAT [95] scores among sets of potentially

related transporters to the scores obtained in alignments between transporters thought to be

unrelated. GSAT computes a z-score that compares the alignment score of two real biological

sequences to the average score obtained within a sample of alignments of shuffled sequences.

In this context, the alignment scores of randomized sequences are not used as a null model to

directly infer the significance of an alignment (e.g., a p-value). Instead, the z-score provides a

scale or baseline that can be used to rank alignment scores of homologous and non-homolo-

gous transporters. The goal is to identify a critical value for the z-score that discriminates

between homologous and non-homologous relationships for the families included in the posi-

tive and negative controls. We selected a set of 87 families from TCDB with no known rela-

tionship to the Anoctamin superfamily as negative controls. The 3,332 sequences within this

negative control set were compared against members of the ANO family (TC: 1.A.17.1) in the

same way used to compare the members of the superfamily with each other (see next section).

Identifying homology between clusters generated by the phylogenetic trees

We wrote the script, “areFamiliesHomologous”, to automate the three main steps in our strat-

egy to infer homology between families of transporters based on the transitivity principle

[102]. This pipeline connects multiple programs, including those in the BioV suite (https://

github.com/SaierLaboratory/BioVx) [95], to make the process significantly faster, more com-

prehensive, and to eliminate the possibility of human errors.

First, we made an exhaustive search for candidate homologous proteins in each cluster of

the phylogenetic tree with our program famXpander, which starts by running local BLAST

[113] searches against the NCBI non-redundant (NR) database. Alignments had to cover at

least 45% of the query and yield an E-value < 10−2. Then famXpander extracted the sequences

of the aligned regions and removed redundancies with CD-HIT [117] using a 90% identity

threshold. Finally, famXpander created a file of non-redundant putatively homologous

sequences in FASTA format.

Second, Protocol2 from the BioV Suite [95] of programs was used to find similarities

between pairs of lists of putative homologues obtained by famXpander. This program gener-

ates local pairwise alignments with the exhaustive Smith-Waterman algorithm, as imple-

mented in SSEARCH from the FASTA suite of programs [103], for all possible pairs of

proteins between two lists of homologues and estimates an initial GSAT score based on 500

shuffles. For each pairwise alignment, Protocol2 shows labeled TMSs in each sequence as
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predicted by HMMTOP [96]. These are then verified with hydropathy plots to identify which

TMSs are conserved between two families of transporters.

Third, the top scoring alignments, showing at least 5 overlapping TMSs and a minimal

alignment length of 150 residues, were verified using GSAT with 1000 shuffles. GSAT z-scores

were calculated for i) candidate homologues between different families, and ii) the original

transport protein in TCDB (i.e. the query sequence for famXpander) and its corresponding

BLAST match. Before calculating final GSAT scores, we inspected the alignments to make sure

that only sections containing hydrophobicity peaks were included; hydrophilic segments at

either the N- or the C-terminus were removed. If we labeled two proteins in different TCDB

families as A and D, the BLAST hits of A as B and the hits of D as C, then we could calculate

the GSAT scores for A-B, B-C, and C-D. The lowest of the three scores was regarded as the

comparison score. The three scores are given in Table 2, but only the comparison scores are

presented in S1 Table.

Multiple alignments of homologues and average hydropathy/

amphipathicity/similarity plots

Using the algorithm L-INS-i as implemented in MAFFT [104], a multiple alignment for each

family was created. To prevent non-conserved regions from showing in the hydropathy plots,

we required that at least 30% of the proteins in a family must contribute residues to any posi-

tion in the alignment. Thus, we used trimAL [105] to remove positions with>30% gaps. Aver-

age hydropathy plots were then created with the web-based program AveHAS (Average

Hydropathy, Amphipathicity and Similarity; http://biotools.tcdb.org/baravehas.html) [106]

using these multiple alignments. To improve clarity, only the hydropathy curves are shown,

and any conserved hydrophilic regions at either the N- or the C-terminus were removed in

order to focus the alignment on the transmembrane domains. AveHAS plots were used to

study the conservation of TMSs at the family level.

Identification of internal sequence repeats

HHrepID [107] and AncientRep [95] were used with default settings to seek possible internal

repeats (duplications) within each family of proteins. HHrepID uses a single protein sequence

to locate potential occurrences of internal duplications by using HMM-HMM comparisons.

AncientRep uses a multiple alignment as input and allows the user to select regions in the

alignment based on AveHAS [106] plots to guide the search of repeats. GSAT scores between

two sections of the alignment are generated. No significant repeats were identified in any

member of the Anoctamin Superfamily using these approaches.

Search of structural repeats within the 3D-structure of 1.A.17.1.18

The membrane-spanning α-helices in structures 4WIS and 4WIT were cut in sets of 3, 4 and 5

helix bundles. All non-overlapping helix bundles of the same size were aligned with the CCP4

[118] implementation of the SSM superpose algorithm [119]. No significant alignments with

RMSD values of< 4 Å with coverage of at least 60 residues were obtained. As a second

approach, we considered excluding the loop regions connecting α-helices within the bundles

to compare only the position and orientation of the TMSs. We identified two adjacent three-

helix bundles containing TMSs 3–5 and 6–8 that produced an RMSD = 3.57 Å with an align-

ment of 60 residues (see S1 Fig). If loops were considered, this alignment was also observed

with a significantly higher RMSD value (4.68 Å over 79 aligned residues).
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Identification of distant family members within the Anoctamin Superfamily

All sequences from a reference family in TCDB were automatically extracted with the program

extractFamily, which connects to TCDB, downloads the sequences and returns them in one of

several formats (i.e. fasta, column or blast database). Then, famXpander is run on all proteins

of the reference family using BLASTP searches against the NCBI non-redundant protein data-

base in order to get a list of non-redundant BLAST hits showing a minimal alignment coverage

(e.g. 70% of the query sequence) and an E-value < 10−2. Next, we ran our program findDis-

tantFamilyHomologs that searches for distant members of any given family of transporters.

The program first parses the output of famXpander and discards all hits with E-values below a

predefined threshold value (e.g., 10−5) as they are already represented in TCDB. HMMTOP is

then run on the sequences of the remaining BLAST hits with higher E-values, and only

sequences with a user-defined minimal number of predicted TMSs are further considered.

The remaining sequences are then BLASTed against TCDB to produce a set of proteins that do

not have a more significant hit with a family other than the query family, and the e-value is not

lower than a predefined threshold. The program then removes redundant sequences from the

resulting list of candidate homologs based on a given E-value threshold (e.g., <10−5), although

redundancy is allowed if their sequence length ratio is large (e.g.,>1.8). It reports the accession

numbers, preferably UniProt IDs if available, of the resulting distant candidate homologs. This

list is finally manually curated to select for the most likely true distant members of the query

family.

Conservation of functional residues

Seven multiple alignments were generated using the algorithm L-INS-i as implemented in

MAFFT [104]. The first alignment includes only the members of the ANO Family; the other

six alignments correspond to the combination of the proteins in the ANO Family with the pro-

teins in each one of the other 6 families. Columns corresponding to the Ca2+-binding residues

and the subunit cavity in the structure of nhTMEM16 were identified. S3 Fig shows one repre-

sentative sequence from each family, illustrating the positions of the Ca2+-binding residues.

Notice that these residues are located in the fourth to last (TMS 6) and third to last (TMS 7–8)

hydrophobicity peaks. The only exception is family ANO-L, where the multiple alignment sug-

gested that all 5 members lack the last hydrophobicity peak (TMS 10 in nhTMEM16; Fig 4 and

S3B Fig), even when the actual functional residues are highly conserved (Fig 6B). This is sup-

ported both by the position of the functional residues and by high GSAT scores in Protocol2

alignments between members of the ANO and ANO-L families, where the alignments do not

include the characteristic 10th TMS of the ANO family (data not shown). Sequences with gaps

in the positions of functional residues were also removed. A total of ten sequences (14%) were

not considered for the study of conservation of Ca2+-binding residues, due to the uncertainty

associated with their locations, leaving family ANO with 18 members, Family ANO-L with 4,

Family TMC with 10, Family TMC-L with 3, Family CSC with 10, Family CSC-L1 with 10 and

Family CSC-L2 with 4 members. S4 Fig shows three examples of sequences that were disre-

garded because they did not behave as the rest of the members in the superfamily (see S3 Fig).

Sequence logo plots were generated with the program SEQLOGO [120] for all filtered align-

ments focusing on the positions of the functional residues (Fig 6).

The full sequences of all proteins in the superfamily that passed our filtering criteria were

used to run MEME [109] in order to search for the top 5 motifs of length 20 to 60 aas (with

5-residue increments and E-value < 10−100). We used a maximum of 1000 iterations and a

minimal distance of 10−7 between motif frequency matrices to achieve convergence. We

worked with motifs of 50 residues because this motif length included most of the Ca2+-binding
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residues in the nhTEM16 structure. Of the top 5 motifs we searched, only three had a

MEME E-value < 10−100. We used the motifs discovered by MEME to run MAST and locate

the motifs (E-value < 10−5) in all proteins within the superfamily. Relative to the structure of

nhTMEM16, motif 1 maps to the region containing 4 of the 6 residues that bind Ca2+, motif 2

maps to TMSs 4–5, which form part of the subunit cavity, and motif 3 maps to TMS 1. See text

for discussion of the results. S3 File shows the results of MEME and MAST applied to the

Anoctamin Superfamily.

Supporting information

S1 Table. Top GSAT scores of the ANO family (1.A.17.1) versus all 87 families in the nega-

tive control. The comparisons between each pair of families was carried out using famXpan-

der, Protocol2 and GSAT as specified in Methods. Scores below 15 were deemed as sufficiently

low to obviate the need of further analysis. Scores above 15 were subject to the same analysis

used to generate Table 2 in the manuscript, but the table shows only the comparison score.

That is, the lowest of the three scores A-B, B-C, and C-D (see main text and Table 2). As

described in the text, high scoring families in the negative control did not show TMS align-

ments that made evolutionary sense. GSAT scores� 17 are shaded. For convenience, this table

is also provided in CSV format as file: S1_table.csv.

(CSV)

S1 Fig. Searching for structural repeats. The membrane spanning α-helices in the structures

of the fungal homologue (TC: 1.A.17.1.18; PDB: 4WIS and 4WIT) were cut in sets of non-

overlapping three-helix bundles. Bundles were then aligned using the rigid SUPERPOSE algo-

rithm as detailed in Methods. The top scoring alignments of helix bundles containing TMSs

3–5 (light yellow color) and 6–8 (dark brown color) are shown using two approaches. Labeled

arrows identify each pair of aligned helices. A. Front view of the direct alignment of bundles

(RMSD = 4.68Å over 79 residues). B. Bottom view of the alignment in A. C. Front view of the

alignment when loops connecting helices are excluded (RMSD = 3.57Å) over 60 residues. D.

Bottom view of the alignment in C. The noticeable improvement in the alignment RMSD,

when comparing A and C, shows that despite the variability in loop regions, the actual TMSs

have similar organization in three-dimensional space.

(TIF)

S2 Fig. Illustration of residues D/E/N/Q/K/R/S in positions preceding and following the

motifs A, B, and C. The residues within these 3 motifs are highlighted, and the aforemen-

tioned residues outside of these motifs are shown to illustrate the possible alternative residues

that might function in Ca2+ binding (see Fig 6 and Discussion in text). Numbers preceding

and following motif labels represent the position away from these motifs. A dash represents a

residue not cited above. The first and last positions of each motif correspond to the Ca2+-bind-

ing residues in TMS 6, 7 and 8, respectively, of the nhTMEM16 homolog. Motifs were found

as described in Methods.

(PDF)

S3 Fig. Hydropathy plots illustrating the positions and conservation of functional residues

in representative proteins of each family within the Anoctamin Superfamily. The locations

of the Ca2+-binding residues in TMS 6 (blue circles), TMS 7 (black circles) and TMS 8 (green

circles) are shown relative to nhTMEM16. Positions of the transmembrane α-helices (tan

bars) in nhTMEM16 (1.A.17.1.18) are drawn as observed in the corresponding 3D-structure

(A). Tan bars in the rest of the panels (B-G) indicate hydropathy peaks. Notice how the func-

tional residues in family ANO (A) are located in the fourth to last (TMS 6) and third to last
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peaks (TMSs 7–8) of hydrophobicity. This is true for all families, except ANO-L (B) where

they are located in the third to last and second to last peaks of hydrophobicity. This suggests

that the last hydrophobicity peak (TMS 10 in ANO) is missing from B. All five members of

family ANO-L (1.A.17.2) show the same pattern (see Discussion in text), except for member 1.

A.17.2.3 which also lacks TMS 9 (see S4A Fig).

(PDF)

S4 Fig. Hydropathy plots of proteins that were not considered for the analysis of conserva-

tion of Ca2+-binding residues. The locations of the Ca2+-binding residues in TMS 6 (blue cir-

cles), TMS 7 (black circles) and TMS 8 (green circles) are shown relative to nhTMEM16. Tan

bars illustrate the locations of hydrophobicity peaks. A. Protein from ANO-L (1.A.17.2.1) is

missing the last two hydrophobicity peaks corresponding to TMSs 9 and 10 in nhTMEM16.

This is suggested because the functional residues are in the right locations relative to the TMS

where they were found and because alignments with members of the ANO family do not

include the last 2 TMSs (data not shown). B. A protein from TMC-L (1.A.17.6.2) is missing

the last hydrophobicity peak (S3A and S3D Fig). C. A protein from CSC-L1 (1.A.17.3.2) maps

the functional residues in TMS 7–8 to a non-hydrophobic region that includes gaps in posi-

tions associated with Ca2+-binding residues. All proteins are, nevertheless, true members of

their respective families because they all contain the relevant Pfam domains (Fig 1 in the text),

produce high GSAT scores in Protocol2 comparisons (see Methods in text), and recover other

members of their own family when blasted against TCDB.

(PDF)

S1 Tree. Original tree file used to generate Fig 3. This tree was generated using the MAFFT

program as described in Methods. Notice how family ANO-L is located on the same branch as

family TMC and TMC-L. This file can be easily opened with any tree viewing application (e.g.

FigTree).

(TREE)

S2 Tree. Tree generated with the SuperfamilyTree program. This tree is very similar to the

S1 Tree, except that it groups family ANO-L on the same branch as family ANO. This file can

be easily opened with any tree viewing application (e.g. FigTree).

(TREE)

S3 Tree. Tree generated with the mkProteinClusters program. This tree generates the same

family groupings as does the S1 Tree. This file can be easily opened with any tree viewing

application (e.g. FigTree).

(TREE)

S1 File. All sequences in the Anoctamin superfamily that were considered in this report.

Sequences are provided in FASTA format.

(FAA)

S2 File. Multiple alignment used to generate the tree in Fig 3 in the manuscript. The align-

ment was generated with the L-INS-i algorithm as implemented in MAFFT and trimmed with

the trimAL program to keep positions with less than 15% gaps (See Methods). Alignment is

provided in FASTA format.

(FAA)

S3 File. Conserved motifs in the Anoctamin Superfamily. The file contains the output of

MEME and MAST for the entire Anoctamin Superfamily.

(ZIP)
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