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Abstract

We investigate how changes in network structure can lead to pathological oscillations simi-
lar to those observed in epileptic brain. Specifically, we conduct a bifurcation analysis of a
network of two Jansen-Rit neural mass models, representing two cortical regions, to investi-
gate different aspects of its behavior with respect to changes in the input and interconnec-
tion gains. The bifurcation diagrams, along with simulated EEG time series, exhibit diverse
behaviors when varying the input, coupling strength, and network structure. We show that
this simple network of neural mass models can generate various oscillatory activities, includ-
ing delta wave activity, which has not been previously reported through analysis of a single
Jansen-Rit neural mass model. Our analysis shows that spike-wave discharges can occur
in a cortical region as a result of input changes in the other region, which may have important
implications for epilepsy treatment. The bifurcation analysis is related to clinical data in two
case studies.

Introduction

Epilepsy is regarded as the second most common neurological disease after stroke. The hall-
mark of epilepsy is recurrent unprovoked seizures, during which a network of the brain is
hyper-excitable [1]. Medication is the main treatment for controlling epilepsy. However,
approximately 30% of patients are not well treated by anti-epileptic drugs and suffer from
recurring seizures [2]. Epilepsy surgery is a treatment option for patients whose seizures con-
tinue despite pharmacological interventions. However, surgical intervention is not viable for
all patients due to the risks involved in the removal of brain tissue [3]. Hence, there is a strong
research effort directed towards alternative methods to control seizures. In order to develop
new robust therapies, there is a need to understand the mechanisms that lead to seizures. This
has proven to be a difficult problem to unravel from an experimental point of view. Therefore,
computational modeling studies are an alternative to understand epilepsy at a network level
and generate new hypotheses regarding the basic mechanisms that lead to seizures.
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Opver the past sixty years, computational neural modeling has contributed to the develop-
ment of theory that explains brain dynamics at different spatiotemporal scales. Microscopic
models, such as those of [4] and [5], describe single neuron dynamics. Mesoscopic neural
mass models have also been developed in parallel to the microscopic models, with notable
early contributions from [6, 7], and [8]. Mesoscopic, neural mass, or neural field models
describe the averaged activity of cortical ensembles. Modeling at the mesoscopic scale is partic-
ularly important for epilepsy, as this is the scale observed through clinical electroencephalo-
graphic (EEG) and intracranial EEG recordings.

There are numerous studies that have used neural mass models to study epilepsy. The mod-
els generate hypotheses regarding the mechanisms that underlie the transitions from normal
brain activity to seizures. For example, [9] used a model proposed by [10] to replicate alpha
and epileptic-like activity by changing the model parameters. The same group also developed a
multi-region model to study the effect of changing long-range connectivity [9]. They observed
that, for high interconnection gains, all regions showed synchronous behavior that mimicked
electrographic seizure recordings. These results motivated other researchers to further develop
and investigate neural mass models to reproduce a wider range of observable brain dynamics
(see [11-14] for more information).

Recently, [15] investigated the effects of network structure on seizure spread in a four-region
network through computer simulation. Their results demonstrated that seizure spread from an
onset region was highly dependent on the structure of the network. Furthermore, altering the
network structure by adding or removing interconnections between regions could preserve or
annihilate seizures. They also presented a network structure in which some regions show seizure
behavior while the other regions show normal behavior. These results highlight that the config-
uration of populations in the network significantly affects the initiation and propagation of epi-
leptic seizures. These analyses, based on computer simulations, can be studied more rigorously
by tools from control theory [16, 17] and graph theory [18, 19], or by a bifurcation analysis.

Bifurcation analysis enables visualization of the dynamical repertoire of a computational
model undergoing parameter variations. For example, a bifurcation analysis will show where a
model that is undergoing parameter changes transitions into different types of oscillations.
[20] used bifurcation analysis to show how changes in the external input to neural mass mod-
els led to alpha-like signals described by a limit cycle and seizure-like output described by an
orbit that results from a saddle-node homoclinic bifurcation. More recently, a bifurcation
analysis of a neural mass model with variations in a time delay revealed a possible mechanism
for the transition from alpha to seizure activity [21]. Understanding how such bifurcations
occur is critical in interpreting many high-level brain functions. Using bifurcation analysis,
[22] provided evidence that functional connectivity may be increased during seizures.

Previous bifurcation analyses of neural mass models have enabled theoretical and computa-
tional studies to reproduce important activity of the brain, providing insights into possible
mechanisms underlying transitions between different brain states. However, networked
neural mass models have not been widely analyzed in this way. It is well known that network
structure has a significant effect on cortical dynamics, such as seizure generation. Therefore, a
bifurcation analysis to study the behavior of two interconnected neural mass models is an
important step towards understanding how network structure mediates seizure mechanisms.
Although bifurcation analyses of networked neural mass models have been previously reported,
for instance [23, 24], previous studies used different models such as a Wilson-Cowan neural
population. The current study provides a bifurcation analysis of two interconnected Jansen-Rit
neural populations, which each consist of three interacting neural populations. Models with
three or more populations exhibit a range of dynamics that align with many different observed
cortical activities, especially epileptic activities [14]. Bifurcation analysis of two interconnected
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Jansen-Rit neural populations was recently studied in [25], where the input of the network was
fixed to a specific value at which the single neural mass population exhibits the oscillatory
behavior. In [25] the effects of changing the interconnection gain were studied by computing
the maximal Lyapunov exponent (MLE) for limit cycles. In [26, 27], the authors conducted
bifurcation analysis of two interconnected Jansen-Rit neural populations in a region in which
the network shows an epileptic behavior. Both inputs and interconnection gains were consid-
ered as the bifurcation parameters in [26, 27]. In contrast to aforementioned work, we explored
a wide range of network behaviors, rather than focusing on a specific region of the parameter
space. By changing the network configuration and external inputs, we found unique behaviours
for a coupled network, which were not possible for a single neural mass model. Furthermore,
we explored unexpected dynamics of the network that have important implications for epilepsy
related surgery. Finally, we demonstrate our analysis is relevant for real world epileptic seizures,
by relating the bifurcation diagrams to data using a parameter inference method.

This paper is organized as follows. In Section 1.2, we introduce the multi-region neural
mass model that is used in this study. Sections 1.3 to 2.3 present bifurcation analyses for three
different settings of inter-connectivity. Section 2.4 relates the estimation results to the bifurca-
tion analyses. Finally, we demonstrate how clinical insights are gained from our new analyses,
and discuss future work in Section 3.

1 Methods
1.1 Ethics statement

The research involving human intracranial EEG data, presented in Section 2.4, was approved
by the Human Research Ethics Committee at St. Vincent’s Hospital Melbourne (Low Risk
Research 145/13).

1.2 Model description

In this section, we briefly present the mathematical representation of a neural mass model that
describes a cortical area. We start from a model proposed by [28] that is used in Section 2.4.
We explain how this model can be reduced to achieve the well-known model described in pre-
vious work [9, 10]. The [28] model contains three parts: pyramidal neurons, excitatory (spiny
stellate) neurons, and inhibitory neurons. A pyramidal unit receives input from three sources:
distant regions u, an excitatory unit v,, and an inhibitory unit v;. The dynamics of the neural
mass model are described by the following set of ordinary differential equations [28]:

V.= z
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where the post-synaptic potential, denoted by v,, is the deviation of the membrane from the
resting potential, ¢,,,,, is the gain for the post-synaptic response kernel, c,,,,, is the number of
connections between populations, and (,,,, is the reciprocal of the synaptic/membrane time
constant. The index # (post-synaptic) may represent the pyramidal (p), excitatory interneuron
(spiny stellate) (e), or inhibitory interneuron (i) populations. The parameter u describes the
external input firing rate. v,;, vp», v,3 (mV) are post-synaptic potential on the pyramidal cell
induced by excitatory feedback, inhibitory feedback and external input, respectively. The post-
synaptic potential of the pyramidal cell is then defined as v, = v;,; — v, + v,3. The sigmoid
function, g(v,,,), characterizes internal firing rates as a function of the pre-synaptic (subscript
m) membrane potential, defined by

_ 2e,
Lt exp(r(v, — )

gv) (2)
where r defines the slope of the sigmoid, vy, is the mean firing threshold, and 2e, is the maxi-
mum firing rate.

In order to achieve the model in [9, 10], it is first assumed that the following set of equalities
holds on excitatory gains and time constants, o, = 0; = Qep = Qup = Oy (pe = Lpi = Lep = Cup 2
(o aip = a;, {jp = {;. These assumptions imply that the internal mathematical models of excit-
atory and inhibitory neurons are the same; however, their influence on post-synaptic potential
of the pyramidal cell are different. Furthermore, the same mathematical formulation is used to
model the influence of input u and excitatory feedback v,; on the pyramidal cell. Therefore,
we can define a new variable that incorporates the influence of u and v, leading to

Vi EV, Y,
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Z, 2z
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Given the above definition, the post-synaptic potential of the pyramidal cell can be written as
vp = v1 — v5. Furthermore, it is supposed that the co-activation of spiny stellate and inhibitory
cells are proportional and mathematically described as,
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It is also assumed that the number of connections between the input and the pyramidal cells is
equal to one, i.e. ¢, = 1. It should be pointed out that this assumption is not conservative math-
ematically since we consider u £ c,,u as a new input for Eq (1). Considering all aforementioned

assumptions, the tenth-order system in Eq (1) is reduced to the sixth-order state-space model,
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Eq 3 describes the reduced model of single neural mass model. In order to interconnect the
reduced neural mass models and construct a network, it is assumed that the pyramidal unit also
receives input from neighboring regions that is added to the external input w. In this case, the
neural mass model network with N regions is described by [9, 10]

v, =2
g = alg(v,—vh) — 20z — ')

v o=z
. . . N . . A2 .
2 =dl (uj +d,g(d.m) + Z K”vé) —20z -,
=114 (4)
v, =2

g, = alldg(dv) — 204 — O

S
[

2
2 = odlgW —vh) — 202 - U,

where superscript j = 1, .. ., N indexes the neural mass in region j. The parameters o/, o, C];, ],:, C{i
are considered known. The two state variables v; and z; are used to interconnect region j to the
other regions in the network. The effect of external regions on local dynamics is parametrized
by the coupling gain K > 0 (mV~'s™") and coupling outputs v! [9, 10]. Note that K** = 0,
i=1,..., n Aschematic diagram of a two-region network is depicted in Fig 1.

The model (4) implies that each region j shows different behaviors depending on the region
parameters, external inputs /(t) (s™') and coupling gains. The complexity of the model is
increased dramatically for a network with a large number of regions. Even for a network with
two regions, it is difficult to analyze the effects of variations of parameters and coupling gains.
In this manuscript, we consider a network with N = 2 regions, region a and region b, and pro-
vide a rigorous analysis. The model parameters and their interpretation are given in Table 1
(also see [9]).

We now state the assumptions that are required for further analysis. The first assumption is
that the local parameters of the two regions are identical, and changes in the network behavior
result from a varying input. This assumption implies that these two regions belong to the same
cortical area. For Sections 2.1 and 2.2, we will make a second assumption that the coupling
gains between the two regions are symmetric; i.e., K> = K>' = K. The second assumption is
relaxed in Section 2.3. Although the assumptions limit the generality of the results, the net-
works shows very complicated behavior when the coupling gain is varied and valuable insights
are gained. The assumptions are required to gain these insights and similar approaches have
been used in previous studies [9, 15].

Three cases are analyzed (see Fig 1). In case I, the same input is applied to both regions.
This structure can be seen as a network of two regions that are located near each other and
receive common input. These two regions are involved in the same function; i.e., the same
input and the same hierarchical level. In case II, we assume that only region a receives input,
representing two regions that could be in same area with the same parameters, but with differ-
ent levels of hierarchy. In case III, region a receives input and the feedback from region b is
removed. In Section 2.2 and 2.3, we will point out that this change in the structure of the net-
work induces interesting changes in the dynamics.
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Fig 1. The schematic diagram of network of Jansen’s model and three underlying cases. A. The schematic diagram of the neural mass model for two cortical regions
described by Eq 4. B. Elements of a neural mass, showing the synaptic kernel on the left and the sigmoidal nonlinearity on the right.

https://doi.org/10.1371/journal.pone.0192842.9001

Table 1. The parameters of model (4), used in Jansen and Rit’s original model [9].

Parameter

Description

Value

Q,, Q;

Average gain of excitatory (e) and inhibitory (i) synaptic gains | a, = 3.25 mV, @; =22 mV

11 1
[ SR

Average time constant of post-synaptic potential. d is the
connection between regions.

(,=100s"", (=505, {;=33s""

Cpe> Cep> Cpis
Cip

Average number of synaptic contacts of excitatory and

inhibitory connection

Cpe = €5 Cep = 0.8¢, ¢; = 0.25¢, ¢;p =
0.25¢ with ¢ =135

Vin €0, T

Threshold, half of the maximum output, and slope of sigmoid | v4 =6 mV, ¢y =2.5 s r=056

function g(v)

mV~!

https://doi.org/10.1371/journal.pone.0192842.t001
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1.3 Equilibria

In order to start the bifurcation analysis, the first step is to find the equilibria of the network by
setting the left hand side of (4) to zero for j = a, b. This leads to the following set of equations:

ae a a a
Vi = (_g(vl —%), % =0,
a OC_ ab, b a __
Vi C (u +Cepg( )+K Vﬁ)’ Z _07
e (5)
ai a a
Vg = Zcipg(cpivo)’ ZZ = Oa
vy =7g(v1 —vg) z5 =0
Sa
o= (vb—vb) =0
0 - C g 1 2/ (]
% 1 Kby b
Vl é ( +Cepg( ) ) Z1 - Y
E (6)
%;
Vé’ = Zcipg(cpivg)7 Zé’ =0,
o
G =), 2 =0
d

We define the EEG signal corresponding to region a and region b as y* :== v{ — v§ and
¥? =" — 45 [9]. Now, from (5) and (6), we can write the equations describing the EEG at

equilibrium as [25]

% o %, %, a % % a £ “
Y= C—eu +C_e epg<c_ecpeg(y )) _Zcipg<c_ecpig()/ )) ¢ gdK g0,

o,
Y= puay cepg(g peg(y”)> - C—clpg (g p,g(yb)) : Ed K*g(y").

Since (7) is implicit in terms of u“, u’, K* and K%, a computational approach is utilized in
which the values of 1%, u”, K’ and K** are considered to be fixed, and the values of y* and "
are obtained subsequently. Then, the equilibria of the network corresponding to those fixed
values can be determined from (5) and (6). The goal of the bifurcation analysis is to analyze
the behavior of the underlying network arising around equilibria as parameters of the network
are varied.

2 Results

2.1 Case I: Bifurcation analysis with a common input

In case I, the applied inputs and interconnection gains are considered to be same for both
regions, i.e., u* = u” = u and K = K** = K. We consider u as the bifurcation parameter that
changes continuously, and consider discrete interconnection gains K = 25, 50, 100, 150. Con-
sidering both the input » and the interconnection gain K as continuous bifurcation parameters
provides a more comprehensive analysis of the underlying networks, but is beyond the scope

of this paper.
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We categorize the equilibria of the network into two groups. The first group contains the
set of equilibria, called symmetric equilibria, that are equal; i.e., y* = y” = y*. This set of equilib-
ria results from the symmetrical structure of network, which can be observed from both Fig 1
and Eq (7). The symmetry makes it possible to rewrite Eq (7) to

o o

y= fu + Zecepg (?cpeg(ys))

- gg( ,,,.g(f)) + 2k, ®)

e

which is used to compute the symmetric equilibria. The second group of equilibria correspond
to the asymmetric solutions, which are unequal. The asymmetric equilibria are computed
using Eq (7).

Note that both Eqs (7) and (8) are nonlinear, so it is not possible to find explicit expressions
for y* and y” in terms of u and K. Therefore, we utilize a numerical approach to find the
solutions by changing the value of y* € (-3.5, 12) in Eq (8) and then calculating the value of
the corresponding input u. The asymmetric equilibria are computed using the feature of the
CL-MATCONT package [29], that exploits the continuity of solutions with respect to the vari-
ation of u.

2.1.1 Bifurcation analysis with weak coupling (K = 25). Two separate bifurcation analy-
ses were conducted corresponding to the symmetric and asymmetric solutions to the equilib-
ria. The equilibria that correspond to the symmetric solution are shown in Fig 2A. The values
of u for all bifurcation points for symmetric case are presented in Table 2. In all figures pre-
sented in this paper, the solid black lines represent the stable equilibria; i.e, all eigenvalues of
the Jacobian matrix have negative real parts, and the black dashed lines show unstable equilib-
ria. Fig 2A shows two subcritical Hopf bifurcations H, ; and H, , that occur where the input,

u = —-14.46 or u = -21.43. For a single region neural mass model, there is only one correspond-
ing subcritical Hopf bifurcation [20]. These two subcritical Hopf bifurcation lead to the pres-
ence of two limit cycles LC, ; and LC, ;. The simulated EEG signals corresponding to each
limit cycle are shown in Fig 2T, (the initial conditions and the corresponding values of the
input u for all times series are provided in Appendix B). Since the limit cycles are unstable,
they repel nearby trajectories and, consequently, the trajectories are attracted by the stable
equilibria.

Fig 2A also shows a saddle-node homoclinic bifurcation, indicated by SN, ;, when the input
u = 110.5. The saddle-node homoclinic bifurcation leads to the appearance of two orbits. We
point out that a Shlinkov saddle-node can have more than one homoclinic orbit simulta-
neously if the dimension of the underlying system (number of states) is strictly larger than 2.
An example of Shlinkov saddle-node with a pair of the homoclinic orbits is reported in the
modified Morioka-Simizu model [30]. More information can also be found in http://www.
scholarpedia.org/article/Shilnikov_saddle-node_bifurcation. In our study, the dimension of
the system is 16. LC, 3 and LC, 4 (see Appendix A for details of Shilnikov saddle-node homo-
clinic bifurcation detection) that generate epileptic-like spike and wave discharges, as seen in
Fig 2T,. The two types of spike and wave discharges have the same frequency as each other,
but different amplitudes. The orbit LC, 3, which is plotted in grey, terminates when the input u
exceeds 125.7. This termination occurs at SN, , and SN, 3, which is due to a collision of the sta-
ble cycle LC, 5 with the unstable limit cycle LC, ; originating from the subcritical Hopf bifurca-
tion H, ;. Similarly, the orbit LC, 4 plotted in red, collides at SN, 4 and SN, 5 (1 = 136.4) with
the unstable limit cycle LC, , originating from the subcritical Hopf bifurcation H, ,.

A supercritical Hopf bifurcation H, 3 occurs when the input is increased above u = 71.56.
The stable equilibrium point becomes unstable resulting from the complex eigenvalues of the
Jacobian matrix crossing the imaginary axis. This Hopf bifurcation gives rise to a stable limit
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Fig 2. Bifurcation diagram for the symmetric solution for case I with coupling gain K = 25. The time series in Panels T, — T;) show the
EEG associated with each bifurcation using the same color. The solid black lines show stable fixed points, the solid colored lines show stable
oscillatory behavior and the dashed lines show unstable fixed points and unstable oscillations. The initial conditions and the corresponding

values of the input u for all times series are provided in Appendix B.

https://doi.org/10.1371/journal.pone.0192842.9002
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Table 2. The values of input u at bifurcation points in Fig 2.

Bifurcation H,, H,,
Values of u -21.43 -14.46

https://doi.org/10.1371/journal.pone.0192842.t002

H2,3 H2,4 HZ,S HZ,6 SNz,l SNZ,Z & SNZ,S SN2,4 & SNZ,S
71.56 93.4 298.6 3134 112 125.7 135.4

cycle LC,. Another two complex eigenvalues cross the imaginary axis when the input reaches
u = 93.46 resulting in another supercritical Hopf bifurcation H, 4. It should be noted that the
equilibrium point remains unstable since the Jacobian matrix has eigenvalues with positive
real part. In multi-dimensional systems, Hopf bifurcation occurs if a pair of complex eigenval-
ues crosses the imaginary axis while the rest of eigenvalues can have positive or negative real
parts. The type of bifurcation (supercritical or subcritical) is determined by computing the
first Lyapunov coefficient (see [31, Chapter 5]). These two Hopf bifurcations lead to the
appearance of two stable limit cycles LC, and LCs. These two limit cycles disappear when the
input exceeds 298.6 and 313.4. Fig 2T; shows the alpha rhythm-like EEG for stable limit cycles
with a frequency of approximately 10Hz. The two alpha-like oscillations have slightly different
amplitudes and frequencies.

During continuation, two branch points BP; and BP, were detected on the symmetric equi-
libria curve. At these points, other branches of equilibria arise that correspond to the asymmet-
ric solution, and are depicted in Fig 3A and 3B for region a and region b, respectively. Fig 3A;,
3A, and 3A; (Fig 3By, 3B, and 3B3) correspond to the lower, middle, and upper parts of the
equilibria curve in Fig 3A (Fig 3B), respectively. The pair of equilibria for y* and y* are shown
with the same color and linestyle. For example, if y* is an equilibrium point located on the blue
solid-line in Fig 3A,, the corresponding equilibrium point y” is also located on the blue solid-
line in Fig 3Bs. Fig 3 shows that the equilibria of y* and j” are not necessarily identical even
though the underlying network has symmetric structure. Consequently, different EEG time
series can be observed at each region with a suitable initialization.

All bifurcations found for the asymmetric equilibria are plotted in Figs 4-6 for both regions.
The values of u for all bifurcation points for asymmetric case are presented in Table 3. Panels
A (A, - A,) and B (B; — B,) show the bifurcation structures for regions a and b, respectively.
Simultaneous bifurcation points and corresponding limit cycles in both panels are color
coded. During continuation, we found six subcritical Hopf bifurcations Hy 1, Hy 3, Hy g, Hys,
H,ye and, H, ; that are located in different parts of equilibria curve, and lead to the appearance
of six unstable limit cycles (see Figs 5, 6A;, 6A,, 6B; and 6B,). Two limit cycles LCy ;, LCy4
(LCy 5 LCyg), plotted in same color, collide via a fold bifurcation of limit cycles (or Limit
Point of Cycle (LPC)) at u = 106 (see Fig 6A, and 6B,), which is interesting from a technical
perspective since it is a point where a limit cycle is born under other parameter variations.

We also found two supercritical Hopf bifurcations for non-symmetric equilibria that are
indicated by Hy; and H, g, and are located in different parts of equilibria curve. The supercriti-
cal Hopf bifurcations Hy g and H, , occur at u = 88.93. As a result, two stable limit cycles
appear, which generate alpha-like oscillation (10 Hz). The corresponding behavior for LC, g is
show in Fig 4T, and 4T, (the initial conditions and the corresponding values of the input u for
all times series are provided in Appendix B). However, similar behavior is generated by other
stable limit cycle LC, , with different amplitude. The limit cycles LCy g, LCy 7 (LCy,, LCy3),
plotted in the same color, collides via LPC at u = 106 as shown in Fig 6A, and 6B,.

By considering all limit cycles detected from the symmetric and asymmetric branches of
equilibria, it is concluded that the network can generate alpha-like activity for the input ranges
87.43 <14 <106 and 71.56 < u < 313.4, that correspond to the asymmetric and the symmetric

PLOS ONE | https://doi.org/10.1371/journal.pone.0192842 March 27,2018 10/51


https://doi.org/10.1371/journal.pone.0192842.t002
https://doi.org/10.1371/journal.pone.0192842

@'PLOS | ONE

Bifurcation analysis of coupled neural mass models

A Region a Region b
8 8
’{“4—/
S
s s
£ . \M E
>8 3 >0
® ©
5 5
@ @
[o] 6]
i) m
w w
) L L L s 4l n L n ,
-40 0 40 80 120 -40 0 40 80 120
Input Firing Rate  u (Aps/s) Input Firing Rate  u (Aps/s)
A B
1 1
25 25
Branch Branch
= Paint =y Point
= =
E 4 (BFy) E BP)
= b
© ©
2 £
-4 1=
@ @
a ()
i) m
w w
4 L L L s 4 n n N ,
-40 0 40 80 120 -40 40 80 120
Input Firing Rate  u (Aps/s) Input Firing Rate  u (Aps/s)
B,
2
1
N
50
NS
S8
N Sxg
~ e = Ss
s T = Ss
E O € S5
£ ™x = S5
> RS = T8s
R >
o [, =
T [aa ]
5 N Branch 5
@ N \\\\\ Point @
o N N (P ©
w "\ w
25l . L L 250 L L ,
-40 0 40 80 -40 0 40 80 120
Input Firing Rate  u (Aps/s) Input Firing Rate  u (Aps/s)
A B
3 3
-
s P
P Peld
P
=
6.5 B5
< Branch =
= = Branch
E Point E Paint
e (BP,) - (®P,)
T ®
e £
=) =)
@ Z @
[u] 77 (6]
) pyAd m
w / 7 w
77
551,/
i L L L L L
-40 0 40 80 40 80

Input Firing Rate  u (Aps/s)

Input Firing Rate  u (Aps/s)

Fig 3. Equilibria curves for asymmetric solutions of case I with coupling gain K = 25. A) and B) Second branch of
equilibria for regions a and b, respectively. A;-A;) Magnified parts from panel in A) corresponding to the bottom, the
middle and the upper parts. B;-B;) Magnified parts from panel in B) corresponding to the lower, the middle and the
top parts. The black lines correspond to the symmetric solutions; the red, blue, green, cyan and magenta lines
correspond to asymmetric solutions. The equilibria for y* and y” are shown with the same color and line style. For
example, an equilibrium point with blue solid-line in Panel A;) corresponds to an equilibrium point with blue solid-

line in Panel B;).

https://doi.org/10.1371/journal.pone.0192842.9003
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cases, respectively. This dynamical regime is vastly more complex than a single region model,
which generates alpha activity for 89.83 < u < 315.70 from one stable limit cycle [20].

2.1.2 Bifurcation analysis with intermediate coupling (K= 50). The bifurcation diagram
for case I with coupling gain K = 50 is qualitatively similar to the case K = 25 in terms of types
of limit cycles and shapes of equilibria branches. The differences between K = 25 and 50 are
the points at which the bifurcations occur and the amplitudes of oscillations. Similar to the
case K = 25, two orbits, resulting from a saddle-node homoclinic bifurcation coexist for 110.5
<wu<114.3 and 106.2 < u < 134.4. Two stable limit cycles emerge from supercritical Hopf
bifurcations at u = 53.24 and u = 97.2 and vanish at 4 = 310.5 and u = 280.7, respectively. A
similar situation to the case K = 25 is observed for the limit cycle corresponding to the second
branch of equilibria. Due to these similarities, the bifurcation diagrams are not presented.

2.1.3 Bifurcation analysis with strong coupling (K = 100 and 150). The symmetric solu-
tions to the equilibria were computed and are plotted in Fig 7 for case I with strong inter-
region coupling gain (K = 100). The values of u for all bifurcation points for symmetric case
are presented in Table 4. Fig 7 shows two stable limit cycles LC; 4 and LC; 5 that originate from
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supercritical Hopf bifurcations H; 4(H; 5) and H; ¢ respectively. The first limit cycle LC; 4
occurs for the input range 107.1 < u < 241.7. The limit cycle LC; 5 arises as a result of LPC
with an unstable limit cycle at the indicated point LPC; ;, and terminates at u = 303.3. The fre-
quency of oscillations from both LC; 4 and LC; 5 is approximately 10 Hz, corresponding to
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Table 3. The values of input u at bifurcation points in Fig 4.

Bifurcation Hy, Hg, H,s Hyy Has Hye Hyz Hys

Values of u -12.27 88.93 87.43 -16.10 -16.10 -12.27 87.43 88.93
https://doi.org/10.1371/journal.pone.0192842.t003
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Table 4. The values of input u at bifurcation points in Fig 7.

Bifurcation H;, H;, H; ;3 Hy 4 H;s H; ¢ SN,
Values of u -46.74 -13.28 11.92 107.1 241.7 303.3 107.4

https://doi.org/10.1371/journal.pone.0192842.t004

alpha-like activity as shown in Fig 7T, and 7T} (the initial conditions and the corresponding
values of the input u for all times series are provided in Appendix B). Contrary to the network
with weak coupling (K = 25), there is only one limit cycle LC; , that generates spike-wave-like
discharges. The limit cycle LC; , arises from a saddle-node homoclinic bifurcation, denoted by
SNy 1, and collides with an unstable limit cycle through LPC at the point indicated by LPC; ,.
The frequency and amplitude of spikes for this case are approximately the same as with weak
coupling.

There are two subcritical Hopf bifurcations H; ; and H;, that generate the unstable limit
cycles LC; ; and LC; 5 respectively. The limit cycle LC;; emerges when the input u = —46.74.
We couldn’t identify how LC; ; ends by increasing u as CL-MATCONT package was not able
to proceed the continuation process further. The limit cycle LC; ; begins at u = —13.28 and
ends at u = 11.92 through Hopf bifurcation H; ;. The EEG time series in the bottom part of Fig
7 shows decaying oscillations that settle down to constant values corresponding to stable
equilibria.

For coupling gain K = 150, the network has two branches of equilibria that correspond to
the symmetric and asymmetric parts. The bifurcation diagram for the symmetric equilibria for
K =150 is plotted in Fig 8. The values of u for all bifurcation points for symmetric case are pre-
sented in Table 5. The initial conditions and the corresponding values of the input u for all
times series are also provided in Appendix B. The diagram has a notable exception of the dis-
appearance of the small unstable limit cycle LC; 5 which results from a subcritical Hopf bifur-
cation for K = 100. The reason is that, for the corresponding range of u, the Jacobian matrix
for the system 4 has no complex eigenvalue with zero real part. There are also differences in
the levels of the input at which other types of bifurcations arise. For the asymmetric case of
equilibria, there are two unstable limit cycles, arising from subcritical Hopf bifurcations, that
do not lead to any interesting behavior and are not discussed further.

2.2 Case II: Bifurcation analysis of two coupled neural mass models with a
single input

In this section, the bifurcation analyses of the neural mass model network are presented where
the input is applied only to region a (see Fig 1). Similar to Section 2.1, the first step of the bifur-
cation analysis is finding the equilibria of the overall system. We follow the procedure in Sec-
tion 1.3, setting u” to zero. Additional notes on calculating the equilibria for this case are
provided in Appendix C.

2.2.1 Bifurcation analysis with coupling gain K= 50. Fig 9 depicts three branches of
equilibria and bifurcation diagrams for region a and region b. In the sequel, we refer to the
equilibria in Fig 9A, 9D, 9B, 9E, 9C and 9F by the first, second, third branch of equilibria,
respectively. Since the bifurcation diagrams in Fig 9C and 9F are complicated, their magnified
parts are depicted in Figs 10 and 11. The values of u for all bifurcation points are presented in
Table 6. These figures illustrate that the equilibria of region a are very similar between all three
branches. However, the equilibria for region b have a more complex structure (see Appendix
C for further explanation).

There are two stable limit cycles LCo 3 (Fig 9A and 9D) and LCy ;5 (Figs 9C, 9F and 10C,,
10C,, 10F; and 10F,) on the first and the third branches of equilibria that exist between
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Table 5. The values of input u at bifurcation points in Fig 8.

Bifurcation Hg
Values of u -62.21

https://doi.org/10.1371/journal.pone.0192842.t005

HS,Z HS,S H8,4 SNS,I
128 190.7 294.4 104.4

supercritical Hopf bifurcation points (Hg,, Ho 3) and (Ho g, Ho o), respectively. These limit
cycles exist for input values roughly between u = 83 and u = 300 (see Table 6 for the exact
value of ). Similar to Case I, supercritical Hopf bifurcations lead to stable limit cycles which
generates stable oscillations, depicted in Fig 9T, 9T, 9T and 9T, that resemble alpha activ-
ity (the initial conditions and the corresponding values of the input u for all times series are
provided in Appendix B). These two limit cycles generate different types of alpha activity with
the same frequency at distinctly different amplitude ranges in region b. In order to study the
behavior of the network near the stable limit cycles, we simulated the EEG signals with initial
conditions close to the cycles and plotted the corresponding time series shown in the lower
part of Fig 9. The time series associated with the stable limit cycles on the first and third
branches verify that the limit cycles are stable.

We found several subcritical Hopf bifurcations on all branches of equilibria. The one for
the first branch Hy ; results in the unstable limit cycle LCy ;. This limit cycle collides with the
limit cycle LCy , via a saddle-node bifurcation at the point SNy ,. The limit cycle LCy , origi-
nates from a saddle-node homoclinic bifurcation at the point SNy ;. The stable limit cycle
LCy, produces spike-wave-like signals with a frequency of approximately 3 Hz, which is
observed in region a (Fig 9T,). However, the spike-wave-like signal does not appear in region
b as shown in Fig 9T. Instead, region b shows an EEG signal similar to delta-wave activity (Fig
9T},). The occurrence of delta wave activity is interesting considering the strong links between
epileptic seizures and sleep [1].

The unstable limit cycle LCo 4 in Fig 9B and 9F originates from subcritical Hopf bifurcation
Ho 4, and appears to collide with the limit cycle LCy 5 at u = 129.4. At this point indicated by
LPCy, LPC was detected. The limit cycle LCy 5 originates from a homoclinic bifurcation of a
saddle-saddle (denoted by SS ; in Fig 9B and 9E) which was originally proposed by Shilnikov
(see http://www.scholarpedia.org/article/Shilnikov_saddle-node_bifurcation). We observed
that the trajectories initialized near the limit cycle LCo 4 converge to the equilibria on the first
branch. Furthermore, the trajectories that initialized near the limit cycle LCy 5, depicted in Fig
9T5 and 9T, converge to the LCqy , on the first branch of equilibria. There are two subcritical
Hopf bifurcations Hy 5 and Hg 4 for the second branch of equilibria that lead to the existence of
the unstable limit cycle LCy 6. By initializing the system near to this limit cycle, the trajectories
converge to the limit cycle LCy 5 as shown in Fig 9T and 9Tg. Therefore, the analysis indicates
that this second branch does not contribute to specific behaviors.

Fig 9C and 9F shows the bifurcation diagram for the third branch of equilibria that are
magnified and labeled in Figs 10 and 11. In contrast to the bifurcation diagram for the first
branch of equilibria, the unstable limit cycle LCy , (Figs 10C;, 10F, and 11C,(a)), which arises
from subcritical Hopf bifurcation Hy 7, does not collide with the unstable limit cycle LCy ;,
(Fig 10C; and 10F,) resulted from a saddle-node homoclinic bifurcation SNy 5 (Figs 10C;,
10F, and 11C,(a)). During continuation of the third limit cycle LCy ;, we detected LPC, which
is plotted by a gray plus sign. At this point, the limit cycle LCy ; collides with the limit cycle
LCyg (see Fig 10C;, 10F; and 10C;(c)). By proceeding the continuation, we detected another
LPC point. We labeled the limit cycle after this point as LCy . We also noticed that the
toolbox detected Neimark-Sacker bifurcation of limit cycles. Neimark-Sacker bifurcation of
cycles is a co-dimension 1 bifurcation corresponds to the case when the multipliers are
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Fig 9. Equilibria and bifurcation diagrams for case II with coupling gain K = 50. A), B), and C) are the first, second, and
third branches of equilibria for region a. D), E), and F) are the first, second, and third branches of equilibria for region b.
Panels T;-T1o) show the EEG time series corresponding to the each part in the bifurcation diagrams. The solid black lines
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show stable fixed points, the solid colored lines show stable oscillatory behavior and the dashed lines show unstable fixed
points and unstable oscillations. The initial conditions and the corresponding values of the input u for all times series are
provided in Appendix B.

https://doi.org/10.1371/journal.pone.0192842.9009

complex and simple and lie on the unit circle. (see [31] for more details). denoted by gray red
circles, at two points; (i) the intersection of limit cycles LCy g and LCq ;4 (Figs 10F, and
11c,(d)) (ii) the intersection of limit cycles LCq ;o and LCy ;; (Fig 10C, and 10F,). To study the
simulated EEG corresponding to these limit cycles, the initial value was chosen near each limit
cycle. We observed that trajectories converge to either the equilibria on the third branch or the
equilibrium point on the first branch.

Near the saddle node point SN ; (Figs 10C,, 10F; and 11C(a)) on the third branch, we
noticed that there exists a saddle-node homoclinic bifurcation, which results in an appearance
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https://doi.org/10.1371/journal.pone.0192842.g010
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https://doi.org/10.1371/journal.pone.0192842.9011

of the limit cycle LCy ;, (Fig 10C, and 10F,). By initializing the system close to this limit cycle,
we observed that it produces unstable spikes in region a and an oscillation in region b. These
spike-wave discharges have a frequency similar to that observed during seizures in clinical
EEG recordings, until the activity of each region settles to the equilibrium point. During the
continuation of this cycle, three LPCs and one Neimark-Sacker bifurcation of cycles are
detected (see Figs 10C,, 10F;, 11¢,(a), 11¢,(b) and 11c¢,(c)). By selecting an initial condition

Table 6. The values of input u at bifurcation points in Figs 9, 10 and 11.

Bifurcation Hy, Hy, Hy ;3 SN ; SN,
Values of u -12.5 89.43 315.3 113.3 136.1
Bifurcation Ho 4 Hy s Hye SSo1
Values of u -19.34 82.55 308.7 106.1
Bifurcation Hy; Hog Hoyo SNy 3
Values of u -25.7 75.98 302.9 100.9

https://doi.org/10.1371/journal.pone.0192842.t1006
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near each limit cycle and simulating the EEG, we observed the solutions converge to the equi-
libria on either the first branch or the third branch.

2.2.2 Bifurcation analysis with coupling gain K = 250. By increasing the coupling gain to
K =250, two branches of equilibria for region b join up, which results in the appearance of a
saddle node in the joint point (refer to Appendix C). As a consequence, the new saddle-node
homoclinic bifurcation starts that leads to new behavior in the network, such as observing
spikes in only one region or in both regions for all inputs larger than the value at which the
saddle node arises. Fig 12 shows all equilibria branches and bifurcations that are detected in
this case. In order to present this case, we split the first branch of equilibria from the saddle
point and present them in different sub-figures (Fig 12A and 12B for equilibria of region a,
and Fig 12D and 12E for equilibria of region b). The values of u for all bifurcation points for
symmetric case are presented in Table 7.

Fig 12A, 12B, 12D and 12E show the bifurcation diagram from the first branch of equilibria.
There are six Hopf bifurcations detected on this branch (H;, ;-H;, ) and only two of them
(Hiz,2,H12,3,) are supercritical. Fig 12A and 12D illustrate three limit cycles LC;, ;—LC;; 5 that
arise from the bottom part of this branch. Similar to the case of K = 50, the unstable limit cycle
LCy,, collides with the limit cycle LC,, , that appears from the saddle-node homoclinic bifur-
cation. The time series associated with the limit cycle LCy, ,, depicted in Fig 12T, and 12T,
verify that the limit cycle causes region a to produce spikes while region b generates delta activ-
ity (the initial conditions and the corresponding values of the input u for all times series are
provided in Appendix B). Furthermore, the stable limit cycle LC,, 3, results from supercritical
Hopf bifurcation, provokes alpha activity in both regions as shown in Fig 12T; and 12T,. The
bifurcation analysis of the top part of the first equilibria branch, shown in Fig 12B and 12E, is
similar to the second branch of equilibria of the previous case; the trajectories of the network
initialized near the limit cycles LC;, s — LC,, 7 are either attracted by the stable limit cycles or
attracted by the stable equilibria on the bottom part of the first equilibrium curves.

From a topological point of view, the differences between the two cases with coupling gains
K =50 and K = 250 emerge from limit cycles that arise from the third branch of equilibria and
the appearance of a limit cycle from the saddle-node homoclinic bifurcation on the first
branch. The bifurcation analysis shows that the limit cycle LC;, 4 starts near the saddle-node
homoclinic bifurcation on the first branch of equilibria, denoted by SNy, 5 in Fig 12A, 12B,
12D and 12E for u = 613.7, and it exists for all values of input larger than u = 613.7, which
means that the underlying network can generate spikes in both regions for large values of u in
contrast to all previous cases in which spikes disappear for large values of u. The time series
associated with the limit cycle LC;, 4, shown in Fig 12T and 12T, verify that this limit cycle
generates spikes in both regions.

All limit cycles that emerge from the second branch of equilibria are depicted in Figs 12C,
12F and 13. There are four Hopf bifurcations (Hi, 7-H;, 19) among which three are supercriti-
cal (Hy,5-Hjs 10). All limit cycles LCy, 9, LCy3,16, LC12,17, originated from supercritical Hopf
bifurcations, generate alpha activity with frequency 11 Hz as depicted in Fig 13T and 13T,
(the initial conditions and the corresponding values of the input u for all times series are pro-
vided in Appendix B), and Fig 12T,-12T,. The stable limit cycle LCy, ;4 starts at u = 267.2
from supercritical Hopf bifurcation and collides with LC, ;5 through LPC bifurcation at
u = 84.73. We also observed that the limit cycle LC,, ;5 collide with the limit cycle LC;, 1, via
LPC at u = 107.2. We were not able to proceed the continuation further to check the origin of
the limit cycle LCy, 14. The time responses in Fig 13T;-13T 5 shows that the trajectories of the
network near these limit cycles converge to the equilibria on the first branch. The stable limit
cycle LCy,,17 starts at u = 330.1 and exists for all values of input larger that u = 330.1. As a con-
sequence, the network can also generate alpha activity in both regions for large values of u;
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Fig 12. Bifurcation diagrams for case II with coupling gain K = 250. A) and B) are the bifurcation diagrams for the

first branch of equilibria for region a, and C) is the bifurcation diagram for the second branch of equilibria for region a.
D) and E) are the bifurcation diagrams for the first branch of equilibria for region b, and F) is the bifurcation diagram for
the second branch of equilibria for region b. Panels T;-T),) show the EEG time series corresponding to the each part in
the bifurcation diagrams. The solid black lines show stable fixed points, the solid colored lines show stable oscillatory
behavior and the dashed lines show unstable fixed points and unstable oscillations. The initial conditions and the
corresponding values of the input u for all times series are provided in Appendix B.

https://doi.org/10.1371/journal.pone.0192842.9012
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Table 7. The values of input u at bifurcation points in Figs 12 and 13.

Bifurcation His Hi,, Hiss SN2, SNi,,
Values of u -15.99 82.59 308.7 111.6 133.3
Bifurcation Hisa Hi,s5 Hise SSi21 SN2
Values of u -39.86 59.82 293.2 77.62 613.7
Bifurcation Hisy Hizg Hizo Hizio SNi24
Values of u -89.2 -63.13 267.2 330.1 48.49

https://doi.org/10.1371/journal.pone.0192842.t007

however, in all previous cases, alpha activity was only observed for values of u in finite
intervals.

The stable limit cycle LCy, o (see Fig 13) arises from supercritical Hopf bifurcation H;,.
However, it collides with the limit cycle LC;, ;o via LPC as shown in Fig 13F; and 13C,(a). By
looking at these figures, it is possible to see how different bifurcations lead to different limit
cycles. The times series associated with these limit cycles are shown in Fig 13T, 13T, and
13T5-13T,,. We mention that Neimark-Sacker bifurcations of cycles (indicated by gray circle
in Fig 13) and period-doubling bifurcations (indicated by gray hexagram in Fig 13) are
detected during the continuation.

Remark 1 We initialized the model to the right from the saddle node SNy, 4 in order to
check the existence of a limit cycle. It seems that there exists a limit cycle which generates the
output depicted in Fig 13T, and 13T 5. We couldn’t do the continuation from this point due
to software limitations.

2.3 Case I1I: Bifurcation analysis of two coupled neural mass models with a
single input and feed-forward structure

In this section, we present the bifurcation analysis of case III, which is graphically depicted in
Fig 1. Similar to previous cases, we start by finding equilibria of the network by solving (7)
with u” and K" set to zero. We observe that equilibrium curves for region b are qualitatively
similar to Case II. However, the equilibrium curves for region a are slightly different. Hence,
we analyze the bifurcation diagram for the network with interconnection gains K = 50 and
250, and explain the important differences.

The bifurcation diagrams of the network with K = 50 are presented in Figs 14 and 15. The
values of u for all bifurcation points are presented in Table 8. It can be seen that the bifurcation
diagram of the first and second branches of equilibria are qualitatively similar to the case in
Section 2.2.1. For the third branch of equilibria, there is a stable limit cycle LC,, ; (Fig 14C and
14F) that, similar to the previous cases, produces the alpha activity that is shown in Fig 14T
and 14T (the initial conditions and the corresponding values of the input u for all times series
are provided in Appendix B). There is an unstable limit cycle that emerges for u = —12.15 from
supercritical bifurcation H,, 7. This limit cycle collides with other limit cycles through LPC as
can be seen in Fig 14C and 14F. By continuing along the curve, we detected several LPC points
(indicated by gray plus sign), Neimark-Sacker bifurcations of limit cycles (indicated by gray
circle). Since there are many of them and consequently many limit cycles, we haven’t labelled
them. However, all limit cycles can be clearly seen in Fig 15. The simulated EEG for some sta-
ble limit cycles are plotted in Fig 15T,-15Tj (the initial conditions and the corresponding val-
ues of the input u for all times series are provided in Appendix B). We also observed that the
simulated trajectory of the network for unstable limit cycles converges to either the branch of
equilibria in Fig 14A and 14D or the limit cycle LC,,,. Furthermore, we found a limit cycle
that appears from the saddle-node homoclinic bifurcation of equilibria at SN 4 5. This orbit
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Fig 13. Magnified parts from the bifurcation diagram of the third branch of equilibria in Fig 12C and 12F. The
panels C,) and F,) show the magnified parts of bifurcation diagram in Fig 12C and 12F that are indicated by C; and F,,
respectively. Panels C,(a)) and C,(b)) show the magnified parts of Panel C;). Panels T;-T1¢)) show the EEG time series
corresponding to the each part in the bifurcation diagrams. The panels T,;) and T;3) show the EEG time series for the
case in Remark 1. The initial conditions and the corresponding values of the input u for all times series are provided in
Appendix B.

https://doi.org/10.1371/journal.pone.0192842.9013
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Fig 14. Bifurcation diagrams for case III with coupling gain K = 50. A), B), and C) are the first, second, and third
branches of equilibria for region a. D), E), and F) are the first, second, and third branches of equilibria for region b.
Panels T;-Ts) show the EEG time series corresponding to the each part in the bifurcation diagrams. The solid black
lines show stable fixed points, the solid colored lines show stable oscillatory behavior and the dashed lines show
unstable fixed points and unstable oscillations. The initial conditions and the corresponding values of the input u for

all times series are provided in Appendix B.

https://doi.org/10.1371/journal.pone.0192842.9014
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PLOS ONE | https://doi.org/10.1371/journal.pone.0192842 March 27,2018 27 /51


https://doi.org/10.1371/journal.pone.0192842.g015
https://doi.org/10.1371/journal.pone.0192842

@° PLOS | ONE

Bifurcation analysis of coupled neural mass models

Table 8. The values of input u at bifurcation points in Figs 14 and 15.

Bifurcation
Values of u
Bifurcation
Values of u
Bifurcation
Values of u

H14,1

-12.15

H14,4

-12.15

Hl4,7

-12.15

https://doi.org/10.1371/journal.pone.0192842.t008

H14,2 H14,3 SN14,1 SN14,2
89.83 315.7 113.6 136.4
Higs Hiye SS14,1
89.83 315.7 113.6
H14,8 H14,9 SN14,3
89.83 315.7 113.6

provokes spike-wave-like discharges in region a and periodic output that is alpha-like with
some amplitude modulation, as plotted in Fig 15T and 15T,.

The bifurcation diagrams for coupling gain K = 250 are plotted in Fig 16. The values of u
for all bifurcation points are presented in Table 9. Similar to case II with coupling gain
K =250, there is a limit cycle LC4 4 that starts from a saddle-node homoclinic bifurcation
SNj4,5 on the first branch of equilibria for 4 = 631. As shown in Fig 16T and 16T, region b
and region a show spike-wave-like discharges with the frequency of 1.25Hz and constant
behavior in the time domain, respectively, when the whole network evolves on the cycle (the
initial conditions and the corresponding values of the input u for all times series are provided
in Appendix B). The bifurcation diagram of the second branch of equilibria in Fig 16C and
16F includes a stable limit cycle LCy¢ 19, results from a supercritical Hopf bifurcation, and gen-
erates alpha-like activity in both regions (Fig 16T and 16T},). The unstable limit cycle LCy4g
collides with the limit cycle LCy¢ o, resulting from the saddle-node homoclinic bifurcation, for
u = 135.4. According to the simulated EEG in Fig 16T, and 16Ty, the limit cycle LCy¢ g results
in the appearance of spikes with the frequency of 3Hz in the region a and delta-like output in
the region b.

2.4 Relationship to clinical data

We have presented a series of snapshot bifurcation diagrams to explore different behaviors
that can be observed in interconnected neural mass models. In this section, we relate our anal-
yses to clinical ECoG recorded from two electrode channels during seizures from a single
patient with refractory temporal lobe epilepsy. Data was obtained from a previous clinical trial
(see [32] for details, the current patient is subject 3. In the current estimation, two focal elec-
trode channels were selected based on the signal energy at seizure onset. Electrodes were 5 mm
in diameter, and the two channels were separated on the order of centimeters. The coupled
Jansen and Rit model from this work has been theorized to describe EEG/MEG activity [11];
hence, is suitable for ECoG measured at this scale. State and parameter estimation were con-
ducted on two 6 minute recordings (sampled at 400 Hz), each containing a different epileptic
seizure. The estimation approach used a method of Gaussian belief propagation (see Appendix
D for detail on the estimation method) to simultaneously track fast states (the membrane
potentials of the population in the coupled neural mass model and their derivatives), the slowly
varying bifurcation parameter u (representing the external input to each neural region), and a
DC offset to compensate for drift introduced by changes in the input parameter (since the data
had previously been amplified using a common average reference, removing most true DC
content from the signal). We first estimated the parameter u from data using the assumed den-
sity filter. We then performed forward numerical integration of the model states using the esti-
mated values for u and keeping all other values fixed. Simulation provides further insight into
the predicted dynamics of the output ECoG based on alterations in input.

PLOS ONE | https://doi.org/10.1371/journal.pone.0192842 March 27,2018 28/51


https://doi.org/10.1371/journal.pone.0192842.t008
https://doi.org/10.1371/journal.pone.0192842

®'PLOS | one

Bifurcation analysis of coupled neural mass models

A, Region a Dy, Region b
e
LC‘“\)/,’(% SN, 163
LC\G.! T
7 LCoea
S sfH ’ L\, s *fo
£ 6.1 Joint Point ' £
d> H SN 163 a>
= 163 =
5 5
@ b A Mz &
& SSn SN (OIS
Woar SO e u -70 0 100 200 300
~ 2k — e
i
SNyg,—> —8— Subcritical Hopf i i
= Supercritical Hopf i 1
—— Saddle-Node (Ve i Joint Point
g Saddle-Saddle ; =~ ’9 i SNygs
0 . . 2 i i
-70 0 100 200 300 400 500 600 700 -70 0 100 200 300 400 500 600 700
Input Firing Rate u (Aps/s) Input Firing Rate u (Aps/s)
12 1247 e
LC gyt PO, - v.i 168
7 sS.
// LCy; . °T e ? > \’/ e, X
-
Cw_ S -k ‘ M~
\// P - 164 ‘;\ = - Lc
= int Pai & - 164
E 8 Heo o 4 - _ - Joint Point S 8 ‘E—‘;f:— 161 e
= 4 / - Vi SNygs = f
/
> . 4 - P4 > Hiea
K - = 1 HQSE K]
g S e g
7] Y = \H\w.s >
[0} ~ N []
w ~ N w
w 4r ~ w
N PG,
S >V
1
70 Joint Point
0 ya 05 SN(SJ
-100 0 100 200 300 400 500 600 700 -100 0 100 200 300 400 500 600 700
Input Firing Rate u (Aps/s) Input Firing Rate u (Aps/s)
c F
14 8.5
P
-
— 4 —
) - S
E E
o 8f o
E] Ses5f
2 2
7] 7]
V] (O]
w w |
w w
at g
|€<—— SN,
0 45 }
-150 0 100 200 300 400 500 600 700 -150 0 100 200 300 400 500 600 700
T Input Firing Rate u (Aps/s) T Input Firing Rate u (Aps/s)
S2. 1 92, T 107:'5 12,7 e
€ e LCy, LC. 9l 9 (X N
= $ \ s
B
>
]
IS
=3
2]
3 6
0 5.8 £ 10.6 0
Y e 7 e M 170 80 16 1716 17
T T LC.,, T Time(s) T
S o06)2 105[ 4 e 12 6 750 8 Le 750 10
£ e L 63 16.11 16,127
= 162 O %
a>~ /
©
2
=)
2]
2
w -1.6 0.8 0 5.5 6
16 17 16 17 16 18 16 17

Time(s)

Fig 16. Bifurcation diagrams for case III with coupling gain K = 250. A), B), and C) are the first, second, and the
third branches of equilibria for region a. D), E), and F) are the first, second, and the third branches of equilibria for
region b. Panels T;-Tjo) show the EEG time series corresponding to the each part in the bifurcation diagrams. The
solid black lines show stable fixed points, the solid colored lines show stable oscillatory behavior and the dashed lines
show unstable fixed points and unstable oscillations. The initial conditions and the corresponding values of the input u

for all times series are provided in Appendix B.

https://doi.org/10.1371/journal.pone.0192842.9016
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Table 9. The values of input u at bifurcation points in Fig 16.

Bifurcation Hie, Hie Higs SNi6.1 SN
Values of u -12.15 89.83 315.7 113.6 136.4
Bifurcation Higa Hies Hiss SS161 SNig3
Values of u -12.15 89.83 315.7 113.6 629.5
Bifurcation Hie7 Higg Hiso SNi64 SNig 5
Values of u -12.15 89.83 315.7 113.6 135.4

https://doi.org/10.1371/journal.pone.0192842.t009

The estimation proceeded as follows, data were first pre-processed using a zero-phase band-
pass (1-180 Hz) and notch filter (50Hz notch), and upsampled (lowpass interpolation) to 1200
Hz. Data were also scaled to reflect the dynamic range observed in the bifurcation analysis
(approximately 0—12 mV). The estimation algorithm has three steps; initialization, prediction,
and update. Initialization sets the estimation prior as a multivariate Gaussian probability den-
sity function (pdf) over the estimation states and parameters. The next step is to predict the
posterior pdf by propagating the Gaussian prior through the non-linear, discretized neural
mass equations. The update step then adjusts the predicted posterior based on the incoming
measurement. Finally, the prior is reinitialized as a Gaussian distribution with the same mean
and variance as the posterior, and the process is iterated for the next time step (dt = ;). In
the case of a linear model, this estimation scheme is known as the Kalman filter [33]; however,
here we are able to use a fast, semi-analytic solution to the belief propagation step to remove
the linearity assumption. Unlike sampling based approximations, such as the unscented Kal-
man filter [34], our estimation method provides a precise solution for belief propagation.
Nevertheless, several simplifying assumptions are used; model and measurement errors are
described by additive, white Gaussian noise, and cortical dynamics are assumed to be Markov-
ian, or memoryless. These assumptions are certainly not ideal for modeling epileptic dynam-
ics; however, without this simplification there is no tractable solution for tracking parameters
in real time. To our knowledge this algorithm reflects the current state-of-the-art for joint state
and parameter estimation in the neural mass model [28], and the best available solution for
relating measured ECoG to the hidden bifurcation parameter u.

The following sections relate the estimation results for the bifurcation parameter u in each
of the three models (Case I, II, and III) for weak coupling (K = 50) to the dynamic snapshots
that were presented in the preceding sections. The estimation is the statistically most likely
evolution of the input parameter u given a distribution conditioned jointly on the model
parameters and data (and subject to the assumptions outlined above). In addition to perform-
ing estimation, we also implemented a deterministic forward simulation of the coupled regions
using the Runge-Kutte method on the discretized form of Eq 1. We first estimated the parame-
ter u from data using the assumed density filter. We then performed forward numerical inte-
gration of the model states, using the estimated values for 1 and keeping all other parameter
values fixed (according to Table 1). Simulation provides further insight into the predicted
dynamics of the output ECoG based on alterations in input. All code used for estimation and
simulation was implemented in MATLAB and Statistics Toolbox (release 2015a, The Math-
Works Inc., MA, United States) and is available online from https://github.com/pkaroly/
Bifurcation-Estimation.

2.4.1 Seizure one. Fig 17A and 17B show recorded ECoG from two channels for seizure
one (data were sampled at 400 Hz and bandpass filtered between 1—180 Hz). For interconnec-
ted model in the Case I, the estimation results are plotted on the left wall panel of Fig 17C and
17D. These figures indicate that, during the early stage of the seizure, the estimated input u
varies between 80 and 100 followed by a sudden increase to approximately 200. By comparing
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Fig 17. Recorded ECoG from two channels for seizure one and the bifurcation diagrams. Panels A) and B) are ECoG recordings of the same
seizure (seizure one) on two different electrode channels. Recording was taken five minutes prior to seizure onset (red dashed line) and continued for
1 minute after offset (red dashed line). C) and D) show the bifurcation diagrams corresponding to case I, estimated input parameter u during the
seizure (left wall panel) and the output ECoG after forward simulation based on the estimated input (right wall panel). Note that the plot only shows
estimation from 10s before seizure onset to 10 s after seizure offset. E) and F) show the same plots as C) and D) but correspond to case II of the
coupled neural mass model. Insets show the different waveforms (color-coded) that were found during forward simulation (right wall panel).

https://doi.org/10.1371/journal.pone.0192842.9017

the estimated parameter to the bifurcation plot in the floor panel of Fig 17C and 17D, we see
that, for the first range of the input, the system has two orbits which are associated with spike
generation. However, the bifurcation diagrams show that by increasing the input, the system
transitions to the limit cycle. There is no clear transition at the end of the seizure (red dashed
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line) as the model does not transition back to a fixed point within a 10s period following sei-
zure termination. Consequently, if the estimated input is applied to the model in forward sim-
ulation (with all other parameters fixed), it will show alpha activity at the end of seizure, as we
see in the right wall panel of Fig 17C and 17D. The discrepancy between the predicted output
and actual ECoG results in a large estimation error. The filter covariance is proportional to
prediction error, so the estimated parameters will eventually adjust to better reflect the data;
however, in this case, adjustment is not fast enough to capture the transition out of the seizure.
Therefore, this model configuration may not be suitable to capture the observed behavior for
seizure one, where there was a clear transition in the ECoG waveform at seizure termination
(see Fig 17A and 17B)).

The estimation process yielded a similar range of inputs for cases IT and III, suggesting that
the transition between normal behavior and epileptic activity mainly results from the first
branch of equilibria, since the bifurcation diagram associated to the first branch of equilibria
for case II (Fig 9A and 9D) is the same as case III (Fig 14A and 14D). The estimation results in
the left wall panel of Fig 17E and 17F show that, early in the seizure, the input varies between
80 and 90, then briefly reaches a peak around 200, approximately 40 s into the seizure. This
input peak pushes the trajectory of the system into the limit cycle after some transient spiking
possibly caused by the orbit originating from the saddle-node homoclinic bifurcation. The
transition in region a also drives region b to transition into a limit cycle. This transition corre-
sponds to the seizure reaching its peak amplitude on the ECoG in Channel A (Fig 17A). How-
ever, as the input drops to the range of 90 to 100, the system state is attracted once more to the
cycle, and returns to epileptiform spiking activity in region a and amplitude modulated alpha
activity in region b, before returning to a fixed point.

2.4.2 Seizure two. Fig 18A and 18B show recorded ECoG for seizure two. The estima-
tion results for Case I (Fig 18C and 18D) for seizure two are very similar to the previous sei-
zure. However, Case II (Fig 18E and 18F) shows some differences to seizure one. The
estimation for Case II was the same of that for Case III. Here, for Case II, the input is higher
(u > 110) early in the seizure and continues to vary around this level. Conversely, during sei-
zure one, the peak was higher (1 > 200), and occurred later in the seizure (at approximately
40s). Following the peak in seizure one, the input dropped approximately monotonically.
These lower yet sustained input peaks during seizure two indicate that the states of the sys-
tem experienced more transients near the homoclinic orbit. Consequently, in the simulated
ECoG obtained from the estimated input u (right wall panels of Fig 18E and 18F), we see
epileptic spiking during the seizure only in region a. This is consistent with bifurcation
analysis in Fig 9A and 9D in which only region a shows spikes. The difference between the
results for the two data sets suggest that during some seizures region b is driven into a limit
cycle, but during other seizures this state change does not occur. Interestingly, seizure two
occurred in the middle of the day (around 1pm), whereas the first seizure occurred at night
(approximately 10pm), so it is possible the different mechanisms were related to different
states of arousal, although many more seizures would be required to investigate this
hypothesis.

3 Discussion

This paper presented a bifurcation analysis of a neural mass model for two cortical regions.
The results detail the rich repertoire of dynamics that the network can generate and how the
range of possible activity varies with changes in the external inputs and interconnectivity
gains. The bifurcation plots extend previous analyses of single region neural mass models and
show that the dynamics of the interconnected neural masses can generate a far broader range
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Fig 18. Recorded ECoG from two channels for seizure two and the bifurcation diagrams. Panels A) and B) are ECoG recordings of the same
seizure (seizure two) on two different electrode channels. Recording was taken five minutes prior to seizure onset (red dashed line) and continued for 1
minute after offset (red dashed line). C) and D) show the bifurcation diagrams corresponding to case I, estimated input parameter u during the seizure
(left wall panel), and the output ECoG after forward simulation based on the estimated input (right wall panel). Note that the plot only shows
estimation from 10s before seizure onset to 10s after seizure offset. E) and F) show the same plots as C) and D) but correspond to case II of the coupled
neural mass model. Insets show the different waveforms (color-coded) that were found during forward simulation (right wall panel).

https://doi.org/10.1371/journal.pone.0192842.9018

of oscillatory dynamics, including multiple alpha-like rhythms, transient bursting, spikes, and
delta wave activity.

Interestingly, for all cases and all interconnectivity gains, the models were able to produce
alpha-like oscillation. Furthermore, in all of the scenarios that were explored, the alpha-like
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rhythms occurred concurrently in both regions or not at all. Similar to earlier studies consider-
ing a single region model [13, 20], the alpha rhythms were always generated by stable limit
cycles originated from supercritical Hopf bifurcations. A key difference for the multiple region
model is the existence of multiple types of alpha-like rhythms, representing different limit
cycles with various amplitudes ranges. It is also interesting to note that network of identical
regions with symmetric coupling and balanced inputs can generate oscillations with different
amplitudes across the regions. The idea of the coexistence of multiple types of a discrete num-
ber of alpha rhythms builds on existing studies and should be investigated experimentally [35].

Our analysis revealed interesting insights into the possible mechanisms of the generation of
spike-wave discharges. In case I of the symmetrical network with weak inter-region coupling,
our results are naturally similar to existing results for a single neural mass model [20]. How-
ever, further important insights can be gained when studying two regions. As the coupling
gain is increased, we see a merger of the outer limit cycle, which is responsible for the alpha-
like rhythm, with the pathological orbit that is responsible for the generation of spike-wave
like discharges. This merger of the respective limit cycles represents one candidate explanation
for the process of epileptogenesis. Although, it should also be pointed that there are other can-
didate models for seizure transitions. In this work, for all values of connectivity gains, the
model can transient from fixed points to orbit and vise versa. These transitions may also be the
responsible model for seizure.

For Case IT with high interconnection gains, the underlying network was able to generate
spikes for values of input larger than a specific value as seen in Fig 12. This new result shows
the networks with this structure can transition to an epileptic form pattern of activity given a
sufficiently strong input, as the orbit, resulted from saddle-node homoclinic bifurcation, is the
only stable pattern of activity. This finding contrasts other cases when a perturbation from
other stable cycles may also be required. This network was able to generate alpha activity for
values of input larger than a specific value as seen in Fig 12. This is also a new observation
which shows that this structure can exhibit alpha activity for sufficiently strong input.

In Case III (Fig 16), we alarmingly see the occurrence of spike-wave discharges in region b
(associated with the limit cycle LCy¢ 4) due to increases in input to region a. The spikes do not
occur in region a. The reason why this is alarming is that region b was set to represent back-
ground activity. Region b simply experienced a flow on effect from changes in the input to
region a and is otherwise normal. This scenario poses a problem for planning epilepsy related
surgery. The analysis shows that the presence of focal spike-wave discharges is not a sufficient
condition to locate the pathology. The ideal treatment target in this scenario would be to limit
the input in region a, as removal of region b would not treat the root cause.

The interconnected neural mass models are able to produce delta wave-like activity in
Cases II and III. Interestingly, we observed stable delta wave-like activity in one region (Figs
9T,, 12T,, 14T, and 167T,), and spike-wave-like activity in the other region (Figs 9T, 12T,
14T, and 16T)). Delta activity was defined based on the frequency of oscillation (between 0.5-
4Hz), and having a lower amplitude than epileptiform activity. The generation of delta-like
activity may be linked to epileptiform spike generation in this model. Since the delta wave is
observed during sleep, these networks can be potentially utilized to model and form a deeper
understanding of nocturnal seizures in which a part of brain exhibits seizure activity while
other parts do not. Our estimation results in Section 2.4 also suggested there are multiple
mechanisms of seizures, which may correspond to different alertness levels. A more rigorous
investigation estimating mechanisms of seizures at different times of day is the focus of ongo-
ing work.

The estimation results showed that the model in Case I might not be representative of brain
during and after the seizure. The estimated input could steer the model from spike-wave-like
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activity and a stable limit cycle; however, it was not able to transition back to a resting state. As
a consequence, the estimated input did not drive the system to return to the pre-ictal state at
the end of seizure. In contrast, the forward simulation using the estimated input showed that
Case IT and III could generate non-identical spikes in both regions, and also transition between
spike-like activity to the pre-seizure behavior after the end of the seizures. Note that although
the transition from a fixed point to a limit cycle arising from a Hopf bifurcation is referred to
as ‘alpha’ activity, this class of transition is also used to describe seizure onset [36, 37]. The esti-
mation results showed that the transition from a fixed point to a limit cycle occurred during
seizures. For Case I, the failure to transition out of the limit cycle suggests that the models in
Case IT and III more closely capture seizure dynamics than Case I. We can speculate from this
that once a seizure has spread, either an asymmetric, or possible alteration of the existing con-
nectivity pattern is required for its termination. This is consistent with the analysis of [38],
who suggest that a distinct bifurcation is required for seizure termination, compared to seizure
onset.

Our estimation approach was conservative, as we estimated the input with other parameters
fixed. By estimating more parameters, it may be possible to obtain a more realistic approxima-
tion of the true behavior. However, with more free parameters, it becomes difficult or impossi-
ble to relate the estimated parameter trajectories to a bifurcation analysis. Therefore, such an
extension is beyond the scope of the current work. Nevertheless, our estimation is a qualitative
picture of dynamical state changes from recorded ECoG, which may provide insight into
mechanisms of seizures. For instance, we found that during seizure one, both regions were
driven into the limit cycle, whereas in the second seizure this was not the case. Once the system
enters a limit cycle, the pathologic state may be harder to terminate, due to a hysteresis effect
whereby lowering u does not immediately reverse the effects of the transient increase (as
shown in Fig 17E and 17F). Identifying such differences in seizure mechanisms is important
for targeting treatment.

Before closing our discussion, it should be mentioned that the computational model is a
crude approximation of a real brain. Nevertheless, it is challenging to present a more compre-
hensive model that describes a wide range of brain activities. The authors caution the reader to
interpret the results as possible behaviors that can be generated from two interconnected corti-
cal regions, rather than behaviors that will occur. Also, we stress that the range of possible
dynamics holds for the two region model. Further increasing the complexity of the model by
adding neural populations or cortical regions will undoubtedly yield a more complicated bifur-
cation structure. Nevertheless, the work can be regarded as a contribution, demonstrating the
flexibility of this neural mass modeling framework.

As future work, this analysis can be extended by using co-dimension 2 bifurcation analysis
with respect to both the interconnection gain and another network parameter. From a techni-
cal perspective, it is also valuable to analyze the geometric property of the limit cycles LCy; 4
and LC4 4 that are born from the saddle-node homoclinic bifurcation in the first branch of
equilibria in Cases II and III as the limit cycles LC,, 4 generates spikes in both regions while
the limit cycles LC4 4, generates spikes in only region b.

A Detection of a saddle-node homoclinic bifurcation

A homoclinic orbit is a trajectory connecting a hyperbolic equilibrium (saddle node) to itself.
There is no general method to find and identify a limit cycle; however, it is possible to compute
it using the continuation procedure provided in the MATCONT package [29]. In order to
check if the bifurcation is saddle-node homoclinic, the period of oscillation versus the
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Fig 19. Detecting a saddle-node homoclinic bifurcation. The period of oscillation versus the bifurcation parameter p. The period
eventually increases when the value of p approaches to the point at which saddle-node bifurcation occurs.

https://doi.org/10.1371/journal.pone.0192842.9019

bifurcation parameters is usually plotted (it is depicted for case I with connection gain 25 in
Fig 19). As the bifurcation parameter u approaches the bifurcation point, the period of oscilla-
tion is eventually increased (diverges to infinity) which means that the cycle is born from this
point.

B Initial conditions for time series depicted in bifurcation diagrams

The following tables provide initial conditions and the values of inputs that have been used to
generate time series in all bifurcation diagrams.

Table 10 shows the initial conditions and the values of input for time series depicted in Fig
2T,-2T;.

Table 11 shows the initial conditions and the values of input for time series depicted in Fig
4T, and 4T,
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Table 10. The initial conditions and the values of input for time series depicted in Fig 2T ,-2T};.

Limit [VS,ZS,V‘;,ZT,V;,Z;,Vg,zg,Vg,Zg,V?,Zlb,Vg,ZZb,Vg,Zg] Inputu

Cycle

LGy, [0.08 -1.33 18.44 -10.83 13.35 10.36 0.28 -0.65 0.08 -1.33 18.44 -10.83 13.35 10.36 0.28 -0.65] 29.25

LC;, [0.08 0.93 16.95 36.44 9.89 -15.56 0.24 0.39 0.09 -1.13 18.39 -11.58 -13.12 6.40 0.28 -0.59] 29.17

LCys [0.07 1.87 16.14 131.21 8.40 -48.23 0.21 0.51 0.09 -2.76 21.36 -10.78 17.48 -2.11 0.31 -1.51] 116.15

LCyy [0.08 -2.8221.41 -11.24 17.68 -10.12 0.31 -1.55 0.08 -2.82 21.41 -11.24 17.68 -10.12 0.31 116.06
-1.55]

LCy5 [0.10, -1.41, 24.21, -3.82, 18.32, -10.71, 0.35, -0.97, 0.12, 1.16, 24, 10.87, 14.91, 7.81, 0.32, 198.7
0.88]

LCyp [0.121.01 24.14 7.56 15.28 6.42 0.33 0.76 0.12 1.01 24.14 7.56 15.28 6.42 0.33 0.76] 201.65

https://doi.org/10.1371/journal.pone.0192842.1010

Table 11. The initial conditions and the values of input for time series depicted in Fig 4T, and 4T».

Limit Cycle | [ve, 2%, v, 28, v, 28, ve, 28, v, 28 v0 28 vE, 28 v 2! Input u
LCy7 [0.09 -0.25 20.26 -2.47 13.77 -1.23 0.30 -0.17 0.01 0.0005 4.56 0.05 3.09 -0.0035 0.03 0.0002] | 90.50
https://doi.org/10.1371/journal.pone.0192842.t011

Table 12 shows the initial conditions and the values of input for time series depicted in Fig
7T,~7Ts.

Table 13 shows the initial conditions and the values of input for time series depicted in Fig
8T,-8T,.

Table 14 shows the initial conditions and the values of input for time series depicted in Fig
9T,-9T\,.

Table 12. The initial conditions and the values of input for time series depicted in Fig 7T,-7Ts.

Limit [vg,zg,v‘f,zf7v;z;‘,vg,zgﬁvg,zavf7zf,v§’7z§,v§7z§] Inp“tu
Cycle

LGy, [0.07 1.10 15.37 61.67 8.60 -35.33 0.21 0.18 0.07 1.10 15.37 61.67 8.60 -35.33 0.21 0.18] 29.14
LC;, [0.04-0.73 17.34 -294.26 14.21 -225.55 0.24 -2.56 0.02 0.02 0.38 7.09 44.32 3.43 9.27 0.062 116.08

0.41]

LCy s [0.09 0.37 17.83 9.76 11.13 -0.32 0.26 0.23 0.08 -0.38 18.14 -7.04 12.18 -1.03 0.27 -0.24] 5.86
LCy 4 [0.12 0.64 24.99 2.63 16.52 5.01 0.34 0.48 0.12 0.64 24.99 2.63 16.52 5.01 0.34 0.48] 198.90
LC;s [0.10 -1.58 25.14 -3.78 19.3 -11.45 0.35 -1.073 0.12 1.24 25.01 11.18 15.46 9.73 0.33 0.97] 201.94

https://doi.org/10.1371/journal.pone.0192842.1012

Table 13. The initial conditions and the values of input for time series depicted in Fig 8T ,-8T.

Limit Cycle |[v2, z¢,v¢, 20, ve, 28, v, 28 Vb, 20 Vb, 20 vh, 28 vh, 2b] Input u
LCs, [0.06 0.87 13.79 55.37 7.67 -38.17 0.19 -0.07 0.06 0.87 13.79 55.37 7.67 -38.17 0.19 -0.07] 29.01
LCs, [0.03 -0.81 16.47 -308.04 13.72 -220.95 0.23 -2.61 0.02 0.3 6.98 44.38 3.35 11.62 0.05 0.50] 102.07
LCy 5 [0.11-0.37 24.28 0.87 17.25 -2.32 0.34 -0.26 0.11 -0.37 24.28 -0.87 17.25 -2.32 0.34 -0.26] 158.18
LCg 4 [0.11 -1.64 25.67 -3.79 19.82 -11.58 0.36 -1.11 0.12 1.26 25.61 11.01 15.83 10.92 0.33 0.99] 200.94

https://doi.org/10.1371/journal.pone.0192842.t013
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Table 14. The initial conditions and the values of input for time series depicted in Fig 9T ,-9T .

Limit Cycle | [v2, 20, v2. 27, v8, 28, vi. 20, Wb, 20, v 2b, Wb, 2. 98 2 Input u
LGy, [0.04 -0.62 16.83 -277.72 13.59 -217.71 0.23 -2.47 0.002 0.001 1.15 -2.26 2.59 0.23 0.007 0.01] | 119.02
LCy [0.10 -1.31 23.99 -3.62 18.03 -9.30 0.34 -0.90 0.002 0.004 1.27 0.39 2.61 -0.004 0.007 0.0005] | 200
LCy 5 [0.02 0.15 6.49 20.80 3.47 5.64 0.05 0.20 0.05 -0.002 10.58 0.07 6.05 0.28 0.15 0.008] 119.02
[
[

LCy 6 0.10 -1.33 23.68 -3.74 17.78 -7.067 0.34 -0.89 0.05 0.004 10.19 0.18 5.79 -0.13 0.14 -0.0002] | 183.92
LCo15 0.10 -1.33 23.79 -3.67 17.88 -7.13 0.34 -0.89 0.08 0.03 17.36 0.17 11.13 -1.69 0.26 -0.0008] 181.45

https://doi.org/10.1371/journal.pone.0192842.t1014

Table 15. The initial conditions and the values of input for time series depicted in Fig 12T ,-12T,.

Limit Cycle |[ve,z¢,v2, 22, ve, 28, v, 28 Vb, 20 vb, 20 vh, 28 vh, 2b) Input u
LCy, ), [0.04 -0.64 17.71 -270.42 14.23 -218.83 0.24 -2.44 0.006 0.03 3.17 -7.06 2.71 2.59 0.01 0.13] 119.04
LCiy3 [0.10 -1.32 24.26 -3.41 18.27 -9.15 0.34 -0.90 0.009 0.02 3.93 2.19 2.93 -0.11 0.02 0.007] 201.93
LCir4 [0.15-0.0001 38.26 0.12 27.75 0.06 0.45 0.0004 0.02 0.0061 6.34 0.97 3.67 0.36 0.06 0.01] 621.40
LCis 16 [0.11 -1.43 26.13 -4.71 19.99 -7.09 0.36 -0.94 0.09 0.47 20.02 -0.21 12.99 -33.89 0.28 -0.05] 192.06
LCyy 7 [0.13-0.14 32.56 -2.21 23.89 -17.65 0.41 -0.21 0.10 0.85 20.40 11.63 12.69 -8.20 0.29 0.49] 389.46

https://doi.org/10.1371/journal.pone.0192842.1015

Table 15 shows the initial conditions and the values of input for time series depicted in Fig
12T, - 12T,

Table 16 shows the initial conditions and the values of input for time series depicted in Fig
13T,-13T}s.

Table 17 shows the initial conditions and the values of input for time series depicted in Fig
14T,-14Ts.

Table 16. The initial conditions and the values of input for time series depicted in Fig 13T,-13Ts.

Limit [ve, 28, v, 20, v, 28 ve, 28 vh Zb v 2b vh 2b v 2t Input u
Cycle
LCyrs [0.07 -2.70 21.57 -27.52 18.01 -57.76 0.30 -1.84 0.09 0.19 19.57 11.39 12.67 13.02 0.28 0.28] 59.98
LCyy0 [0.08 0.08 16.99 0.28 10.80 -5.53 0.25 -0.01 0.09 -0.49 19.32 -6.04 13.26 -0.50 0.28 -0.31] -62.16
LCy3,10 [0.07 0.13 15.63 0.45 9.70 -10.09 0.23 -0.04 0.08 -1.28 19.22 -14.52 14.03 -6.56 0.29 -0.83] —-85.21
LCiz 11 [0.07 0.09 14.70 0.44 9.006 -6.67 0.22 -0.03 0.08 -1.34 19.10 -15.88 14.002 -8.49 0.28 -0.88] -99.15
LCiz12 [0.04 0.02 10.12 0.83 5.74 -14.13 0.14 -0.01 0.08 -1.13 18.36 -17.69 13.19 -8.70 0.27 -0.75] —46.69
LCiz13 [0.01 0.02 4.73 2.97 3.11 -0.02 0.03 0.01 0.08 -0.70 17.33 -16.38 11.89 -5.06 0.26 -0.45] 37.04
LCiz14 [0.05-1.68 22.09 -145.71 18.27 -191.73 0.259 -2.65 0.04 0.08 12.47 -63.82 7.99 -83.25 0.18 111
-1.10]
LCyz,5 [0.07 -2.58 22.48 -39.38 18.67 -77.60 0.32 -2.15 0.05 0.57 15.51 -24.87 9.78 -101.38 0.22 -0.82] | 95.75
Remark 1 [0.02 0.03 6.57 2.72 3.76 -0.54 0.06 0.001 0.08 -0.83 17.66 -17.09 12.30 -6.17 0.26 -0.54] 49.23

https://doi.org/10.1371/journal.pone.0192842.1016

Table 17. The initial conditions and the values of input for time series depicted in Fig 14T,-14T,.

Limit Cycle | [v2, 28, v¢, 28, va, 28, vi, 28, vE, 20, w0 28, vh, 28 vE 2] Input u
LCyap [0.04 -1.02 19.79 -220.68 16.01 -2.06.03 0.26 -2.43 0.002 0.004 1.16 -0.73 2.59 0.24 0.006 0.01] | 128.08
LCias [0.10-1.31 24.09 -3.51 18.11 -9.20 0.34 -0.90 0.002 0.001 1.27 0.39 2.61 -0.004 0.007 0.0005] 203.29
LCy4; [0.111.11 23.73 10.07 14.82 5.76 0.32 0.82 0.08 -0.03 17.37 -0.12 11.17 1.64 0.26 0.0002] 199.30

https://doi.org/10.1371/journal.pone.0192842.t1017
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Table 18. The initial conditions and the values of input for time series depicted in Fig 15T ,-15T.

Limit Cycle | [v¢, 20, v{, 20, va, 28, vi, 28, vE, 20, w0 28 vh, 28 vE 2Y] Input u
T, [0.08 2.73 15.10 302.19 5.52 71.07 0.15 2.71 0.08 0.04 16.93 4.84 10.72 5.49 0.25 0.08] 137.23
Ts [0.030.29 8.21 43.51 4.14 8.95 0.08 0.42 0.08 0.21 16.67 11.40 10.32 8.27 0.24 0.22] 115.45
Ts [0.03 0.29 8.26 43.30 4.17 8.72 0.08 0.41 0.083 -0.04 16.83 -2.09 10.79 -2.26 0.25 -0.05] 114.22

https://doi.org/10.1371/journal.pone.0192842.1018

Table 18 shows the initial conditions and the values of input for time series depicted in Fig
15T, -15Ts.

Table 19 shows the initial conditions and the values of input for time series depicted in Fig
16T,-16T,.

C Notes on equilibria for case |l

As pointed out in Sections 1.3 and 2.2, the equilibria for the second case are obtained from (5),
(6) and (7) with u” = 0. In this case, (7) can be written as follows (K** = K = K):

e

r= Zeg(Fas0r) - Zas(Lasr) i

)
Y= %Cepg (% peg()’b)> - %Cipg(% p,.g(yb)) +a,
where
w ‘%“ucagfg(yb)
10
o a (10)
“ =g e

This implies that finding the equilibria of the whole network is equivalent to finding the equi-
libria of each single region when the input of each region are defined by (10).

We first claim that, the equilibria of region a are affected significantly by changing u” rather
than changing the values of K while the equilibria of region b are affected significantly by varia-
tions of K. Since the sigmoid function satisfies g(-) < 2e,, the following inequalities are

Table 19. The initial conditions and the values of input for time series depicted in Fig 16T, and 16T ,.

Limit Cycle |[v¢,z¢,v¢, 28, ve, 28, v2, 28 Vb, 20 vb 28 w8, 28 vE, 2Y] Input u
LCis [0.03 -0.62 16.61 -277.80 13.42 -216.96 0.23 -2.47 0.006 0.01 3.13 -9.38 2.72 2.56 0.01 0.12] 119
LCi3 [0.10-1.31 24.17 -3.42 18.18 -9.12 0.34 -0.89 0.008 0.01 3.92 2.17 2.92 -0.11 0.02 0.007] 205.87
LCi6a [0.150 38.67 0 28.02 0 0.45 0 0.03 0.24 8.03 35.61 4.11 7.52 0.08 0.35] 650
LCis11 [0.01 -0.25 6.95 -91.17 5.77 -84.90 0.12 -1.86 0.07 -0.02 17.91 -45.75 12.03 -65.50 0.26 -0.73] | 119
LCis 12 [0.09 -0.82 23.93 -9.67 17.72 -65.88 0.33 -1.13 0.09 0.52 19.85 2.71 12.68 -14.09 0.28 0.19] 200.35

https://doi.org/10.1371/journal.pone.0192842.1019

PLOS ONE | https://doi.org/10.1371/journal.pone.0192842 March 27,2018 39/51


https://doi.org/10.1371/journal.pone.0192842.t018
https://doi.org/10.1371/journal.pone.0192842.t019
https://doi.org/10.1371/journal.pone.0192842

@° PLOS | ONE

Bifurcation analysis of coupled neural mass models

obtained from (10):

. a, . 2e,0l
ut <=u"+—2=K
e é/aCd
(11)
i’ <2€0a5K.
- GG

For typical values of e, ¢, {;, and {; (see Table 1), the value of % is on the order of 1072

2
2:“;; K is much smaller than the variation of u even for large
values of K. Hence, y” and, consequently, the equilibria of region a are not affected significantly

2
e

and, consequently, the variation of

o,

by feedback from region b due to the small interaction term - Kg(3"); however, the equilibria

Cebd

of region b are significantly affected by the output of region a.
In order to find the equilibria, we used a numerical approach to find all values for y* and y”

which satisfy (9) and (10) for different values of u* and K. To do so, we varied the value of

yb € (=20, 20) and calculated the value of y* from the second equation in (9), i.e. from solving

the equation,

0 CBC &, %, %; %
80) = ot (1 = Zes(Fanst)) + Feng(Fag0) ) (12)

e

Y(y'.K)

By knowing the value of y* and y’, the associated value u” was obtained from the first equation
in (9), which can be rewritten as

oS (P (e wim) B o %ee oty o % _
u _OC <Cecepg(€ecp€g()’ )> Ccipg<Cecpig(y )) +€e€ng(yb) y) (13)

e

i

Since g(v) is a strictly increasing function and 0 < g(v) < 2eq, Eq (12) has a solution if and
only if

0 < Y(,K) < 2, (14)

Among all values of yb € (-20, 20), the acceptable ones are those that satisfy (14). As a con-
sequence, some values in the interval y;, € (20, 20) may not be equilibria. For typical values of
€o, Ay, (4 and {4 (see Table 1), we plotted T(yb, K) for yh € (=30, 30) and different values of K
in Fig 20. This figure indicate that the inequality (14) cannot be satisfied fur sufficiently large
and small values of j* that means that there exist no equilibria for those values of y°. From the
magnified part of the figure, it is observed that, for all values of K, there is no equilibrium point
for y” € (4.57, 6.07). Furthermore, the underlying network has equilibria for all values for
yb € (-1.9, 4.57) if K = 250, 300. However, this is not the case for K = 50, 100, 150, 200. This
indicates that the second region has three branches of equilibria that do not intersect for
K =50, 100, 150, 200. This point can be seen from Fig 21. The lower and middle branches join
up as the coupling gain is increased (for K = 250, 300), which leads to the appearance of a sad-
dle-node in the bifurcation diagram of the system. Hence, for the second case, we studied the
bifurcation diagram for interconnection gains K = 50, 250. In all bifurcation diagrams, the sta-
bility of equilibria has been determined by computing the eigenvalues of Jacobian matrix
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Fig 20. The values of Y(y", K) for different values of coupling gain K.
https://doi.org/10.1371/journal.pone.0192842.9020
which is represented by
Ju T
J= (15)
]21 ]22
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where ], = [J;J] with

3’

0 1 0 0
- 20 Wlh(V, —¥) 0
0 0 0 1
o0ld dh(d ) 0 -’ —20
Ji = :
0 0 0 0
A0, dh(d) 0 0 0
0 0 0 0
0 0 odlh(,—v) 0
: d ( 1 2_) i (16)
0 0 0 0
—dh(vi—v)) 0 0 0
0 0 0 0
0 0 0 0
Jj= 7
0 1 0 0
e 20 0 0
0 0 0 1
| —wOh( V) 0 =g 2]

_ 2ereqplrluy—v) £ _ - .
and h(v) = % for j = 1,2. Furthermore, the matrices J; for j # l are defined as

0 0 00 00 0 07

000000 O O

]jl = : (17)
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D Estimation method
D.1 Augmented model of a cortical region
The model of a cortical region Eq (1) can be written in the form

% = Ax + B@(Cx), (18)

where x € R™ is a state vector representing the postsynaptic membrane potentials generated
by each population synapse and their time derivatives. There are two states per synapse and
N, = 2N, is the total number of states, where for N; synaptic connections in the models the
state vector is of the form

x=[v z ... Y 2%

The matrix A encodes the dynamics induced by the membrane time constants. For N, synap-
ses, A has the block diagonal structure

A:diag(‘l’l ‘I’Ns),

where the n™ synapse is described by

0 1
v, - [ ] |
-0 -2,

The matrix of synaptic gains from internal inputs, B, has the diagonal form

B:diag(o o, ... 0 O(Nj)’

The vector function ¢(-) has the following form
$(Cx)=[0 gle,x) ... 0 gley ,.x) 0 u]' (19)

The adjacency matrix, C, defines the connectivity structure of the model. It is a matrix of
zeros or ones that specifies all the connections between the cell population types (excluding
external inputs) that has the block structure

0 0 ... 0 07
6, 0 Con1 0
C=
0 0 0 0
LCna O N1 O]

For example, if the PSPs from synapses 1 and 2 are summed and transformed by the sigmoid
to give the input firing rate to synapse n, then row 2n of C with have the form

¢.=[1 01000 ... 0 0]

It is necessary to discretize the model to numerically integrate the equations and run simu-
lations. The discrete time version of the model is

X, = A‘sx, + B‘@(Cxt) +w, (20)
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The matrices A° and B are discrete time versions of A and B, respectively, and are defined in
[28]. For ease of notation, we shall abbreviate increments or decrements in time (by the inte-
gration time step) by t + 1 or  — 1, respectively. The additional term w, captures uncertainty in
the neural mass model for estimation purposes (w, ~ A/(0,Q) € R™).

The neural mass model is mapped to electrophysiological measurements by the observation
equation

y,= Hx, +v, (21)

where H € R™*% is the observation matrix, v ~ A(0,R) € R" is the observation noise, N, is
the number of states, and N, is the number of observations.

D.2 Re-parametrization for model for inversion

To estimate the input within our framework, we assume that it is varying on a time scale much
slower than the state variables (v and z). Following this assumption we can reduce the model
dimension since

v, = constant = u ~ o,¢,

» 7 (22)

<
in the steady state limit. A further modification for model inversion induces a new parameter,
A, to deal with DC offsets on the EEG signals due to electrode-tissue interactions. The offset
parameter is added to the post-synaptic potential at the excitatory to pyramidal connection
Eq (1),

1’/},1 =z, + A, (23)

but removed from it where it feeds back to the system in the sigmoidal activation function.
This way the system dynamics are unaffected by this addition, but the observation is offset by
A (since v, contributes to the EEG). The additional parameter enables us to estimate a slowly
(with respect to the sate variables) changing DC offset in real data. We also modify the form of
the activation function g(-) to

gv) =glv) = % (erf(v ; v") + 1) (24)

where ¢ = 1.699/r. The function g(-) enables precise propagation of Gaussian distribution
through time in the estimation method. It only differs from g(-) slightly at the turning points
of the sigmoid and does not change the dynamics of the system significantly.

The modified vectorized activation function has the following form

;;(CX) =[0 gle,x+a—x) 0 glegx+ia—Lr) ... 0 Zleg ,.x)]  (25)

where N, = N, — 2 (from the input modification).

Any neural mass model with an arbitrary number of populations can be written in the form
described above, including the model of the two coupled regions that we employ in this paper.
It is straight forward to construct the matrices A, B and C, therefore for the sake of concise-
ness, we leave the basic form of the state-space model here.

D.3 Augmentation for model for inversion

In order to perform online joint state and parameter estimation we augment the model and
concatenate the inputs and measurement offsets to the state vector. To define to the
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augmented model we first define a vector of parameters as
0=1[u uw 2 ]

The trivial dynamics for the parameter are model as

=0 (26)

or in discrete time as

0t+1 = 0:' (27)

The state vector x and the parameter vector 6 are concatenated to form the augmented state
vector

E=[x" 0"]". (28)
Our augmented state-space model is
gt = A()étfl + B()QS(CU&FI) + Wiy (29)

where w, ~ N (0, Q). The state vector & € R"*' and matrices Ag, By, and Cgare € R¥*" and
have the form
B 0
) B(-) =

0 0

A, 0 C o

A, = ,C, = (30)

0 I 0 0

To make the next step a little easier we will simplify the notation by dropping the subscript
0 on the system matrices and abbreviate the activation function giving

gt = Agt—l + B¢(C§t—1) +Tw_. (31)

D4 A filter for the population model

The filter provides an estimate of the most likely sequences of states, At*, and the associated

error covariances, P, given (uncertain) knowledge of the biophysics and anatomy of the brain
regions of interest combined with the noisy EEG measurements, y,. The method is based on
the Kalman filter [33], but falls in the category of an assumed density filter (using a Gaussian
prior). The optimal state estimates can be formally stated using the expectations

& = ELly.¥a- vl (32)

1S:r = E[(gt - é:r)(gt - éj)TL (33)

which are known as the a posteriori state estimate and state estimate covariance, respectively.
The a posteriori state estimate is computed by correcting the a priori state estimate, which is a
prediction though our model and defined as [28]

éf :E[‘gr|Y1vY2a"'vY:—1}
= E[AE, , +Bo(&, ) +wW/] (34)
= Aé?——l + Bét—h
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where the vectors (note the square root is element-wise and o is the Hadamard product)

by =yl Boo )4 1)
ﬁt = Céttl ) (35)

o, =2(diag(CP; ,C") +¢%).

The a posteriori state estimate is calculated using a weighted difference between an uncertain
prediction of the observations (EEG) and the actual noisy measurements

& =& +K (v-HE). (36)
EEG prediction error
The weighting to correct the a priori augmented state estimate, IC,, is known as the Kalman

gain. The Kalman gain is computed from the confidence in a prediction of the augmented
state and the noisy measurement model by

K,=P /H (HP,H" +xR) ", (37)

where K is an annealing parameter. The annealing schedule is

ty—t

K, = Ki (38)

t

and «y is a larger number. Following this schedule the annealing parameter will decrease from
Ko to 1 following a geometric series. When the annealing parameter is high, the Kalman gain is
small and the measurements are not full utilized. The annealing has the effect of slowly intro-
ducing corrections from the measurements on initialization, avoiding taking large steps
towards local minima when our initial uncertainty is high. The a priori state estimate error
covariance is

P, =E[&-&)E &)
:E[( gt 1+B¢(C§t 1) TW (A§+ +B(Abt 1))()T] (39)
= AP AT +BE[¢(§71)¢ (ét, )] +Q— B¢t 1¢T B' +®,_ +<I)tT1v
where

o, = AE[§I—1¢T (Cél—l)]BT - A&ilE[‘JbT (Cét—l)]BT

(40)
=A(P  ,C' o1xA")B’

A = (n6) Vexp(—BoBoc). (41)

We can analytically calculate all the elements of P, except for E[p(&, ,)é' (€, )], which is
know to have no analytic solution. Nevertheless, we can compute a precise solution (to error
of 107'*) as explained in [39]. The elements, indexed by i and j, of the matrix resulting from
evaluating the expectation are equivalent to the probabilities of the bivariate Gaussians

E[¢(CS, )9 (CE, ,)]; = P(x >0,y > 0), (42)
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where (x,y)" ~ N (u, ) and

H = _[(Céttl)i’ (Céttl)j]—r
. (diag (CP, ,CT) +¢2), (CP, ,C"),
(CP,_,CT), (diag (CP,_,CT) +¢?),

These probabilities can be computed easily in Matlab using, where each element is mvncdf
o, u2).

For a linear observation function, the a posteriori covariance is then updated by using the
Kalman gain to provide the correction

P/ = (I- KH)P;. (43)

Practically, the actual state is not known so the Kalman filter must be initialized with the

best guess for &g and IA’J R

covariance for time t = 0. The other parameters that must be initialized are Q and R.

which provides the a posteriori state estimate and state estimate

D.5 Filter initialization

This section provides the parameter values that were initialized prior to implementing the
assumed density filter. Values are also provided in the code (https://github.com/pkaroly/
Bifurcation-Estimation)

To initialize %3 and P we used the empirical mean and covariance of the states based on a
forward simulation of the model.

The model and measurement noise, Q and R are given by

6, 0 ... 0 0 0 0
0O 6, ... 0.0 0 0
Q=90 o0 5, 0 0 0 (44)
0 0 0 o, 0 0
0 0 0 0 o, 0
0 0 0 0 0 o
o, 0
R = (45)
0 o

The terms o, and o, are the standard deviation of the model noise for the membrane poten-
tials, v and derivatives, z. The terms ¢,, and 0y, correspond to the model noise of the input and
DC offset. We did not explicitly include model uncertainty for the derivatives and input offset;
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however, we set 0, and 0, to small positive numbers for numerical stability of the filter.

o, =1x107° V

v

o, =1x10° V
; (46)
o, =1x10° V

u

o, =1x10° V

The term 0, = 1 x 10~* V'is the standard deviation of the measurement noise.

The values of 0,, 0,, and 0, reflect the relative certainty in the model as opposed to the data.
Practically, these values require some tuning to achieve filter stability, with a balance between
perfectly tracking the recorded ECoG (overfitting), versus ignoring the data. For a more thor-
ough discussion of the effects of tuned parameters on the estimation accuracy the reader is
referred to [28].
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