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Abstract

This study was divided into two complementary parts. In Part 1, we proposed a novel paddle

strokes analysis based on the force signal from a 30-s all-out tethered test; and compared

these results with video recordings. In Part 2, we investigated the relationship between force

data from the same test with paddle stroke results from both methods. Eleven male elite sla-

lom kayakers (Brazilian national team) were evaluated. The tethered test was conducted for

force parameters analysis (peak-force, mean-force, impulse). Video recording analysis was

conducted, and the performed strokes (V.NumberPaddle) was counted and frequency (V.Fre-

quencyPaddle) calculated by the V.NumberPaddle divided by 30 (i.e. total time of test). The

new method consisted of performed strokes and frequency achievement from a load cell

force signal analysis (S.NumberPaddle and S.FrequencyPaddle, respectively). Paired test-t did

not show difference between methods results, but significant correlations were only

obtained for the number of paddle strokes. Force parameters were only correlated with S.

NumberPaddle and S.FrequencyPaddle. Overall, considering the theoretical and practical

application, we propose that the new method should be used as an alternative to the video

recording.

Introduction

In kayaking, the force development during strokes has significant relevance for overcoming

the aerodynamic and hydrodynamic resistances (i.e., drag), thus increasing the boat velocity

[1]. Also, the influence of force on the athlete’s performance been demonstrated [2–4]. How-

ever, information on factors that could influence the total force developed, such as stroke

types, techniques, and frequency, remain scarce, especially in canoe slalom discipline [5–8].

Dealing with these limitations, our group recently developed a specific on-water tethered

ergometer to evaluate slalom kayakers [9]. The tethered canoe system (TCS) allows the appli-

cation of physiological protocols concomitantly with force data acquisition. Furthermore, we

demonstrated significant and inverse relationships between variables from a 30-s all-out test

(e.g., peak force, mean force, and impulse) with the slalom kayakers performance (i.e., time of

race) during a simulated canoe slalom race [9].
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Despite the TCS progress and initial promising results, some points remain to be clarified.

We believe the next step is to investigate which factors contribute to the force development

during the tethered tests. Thus, this TCS’s 30-s all-out test must evaluate the number and fre-

quency of paddle strokes. With this information in hands, coaches may analyze if the total

force produced is related with the number and frequency of performed strokes. Since the total

force produced during the TCS’s 30-s all-out test is related with the athletes performance dur-

ing simulated race [9], information about the performed strokes and total force production

may improve the slalom kayakers training sessions and, therefore, their performance. To our

knowledge, this has not yet been addressed.

Conversely, investigations concerning the paddle stroke analysis (i.e., number and fre-

quency) were conducted with other canoeing disciplines [3, 10, 11]. To generate paddle strokes

and force development data, sophisticated equipment, including multiple cameras for the two-

dimensional (2D) and three-dimensional (3D) kinematics analysis, are used. Despite generat-

ing important data from direct measurement, this equipment and analysis method might not

be accessible to coaches during a daily routine. Although canoe slalom coaches could record

training sessions and later analyze performed paddle stroke data, this procedure can be time-

consuming.

Alternatively, accelerometers coupled to the paddle shaft can provide real-time information

about the blade/water interaction [12], stroke cadence [13], and stroke power [14]. On the

other hand, these studies were designed to provide alternative equipment to acquire the above-

mentioned variables, and it is understandable that few subjects were considered in these inves-

tigations. However, taking into account the slalom athletes variability in terms of force devel-

opment and anaerobic metabolism [5], new procedures must be conducted within a larger

sample, mainly for elite athletes. Moreover, the association between stroke characteristics (i.e.,

number and frequency of performed strokes) and the total force produced remain scarce, espe-

cially for the canoe slalom. Previous reports have suggested that this association might influ-

ence the performance of slalom athletes [5, 15].

Therefore, in this study, we are proposing an alternative analysis for the evaluation of num-

ber and frequency of paddle strokes performed by slalom athletes during a 30-s all-out test.

Moreover, we investigate the relationship between results provided by this analysis with total

force produced during the same test. Thus, in Part 1, our aims were: a) to propose a new

method based on the force signal for measuring the slalom kayakers paddle strokes during a

30-s all-out tethered test; and; b) to compare the new method results with the counted paddles

strokes from the video recording. Since the new method is based on a direct measurement of

total force signal, we hypothesized that similar results with the video recording method for

number and frequency of performed strokes will be obtained. In Part 2, we investigated the

relationship between the total force data from the all-out test with the paddle stroke results

(i.e., the number of paddle strokes and frequency) from both methods. Considering the force

signal method is based on a sensitive analysis of total force vector in a time series, we hypothe-

sized that the number of paddle strokes/frequency would be significantly correlated with the

total force parameters (peak force, mean force and impulse) obtained from the TCS’s 30-s all-

out test.

Materials and methods

Design

All procedures were designed to address the hypotheses of this study. Eleven male slalom kay-

akers from the Brazilian national team were evaluated for a two-week period. Evaluations took

place at approximately the same time of day (± 1 h). All subjects were in the pre-season
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training phase. Part 1 was conducted to compare the number and frequency of paddle strokes

from a novel analysis based on the force signal from the 30-s all-out tethered test with those

from the video recording. Subsequently, in Part 2, we related the results from Part 1 with the

force parameters obtained from the 30-s all-out test.

Subjects. Eleven male elite slalom kayakers (19 ± 2-years-old, 71.0 ± 6.9 kg, 175.5 ± 7.6

cm, 10.2 ± 1.4 fat %) from the Brazilian national team (i.e., single kayak class—K-1) partici-

pated in this study. Fat percent was calculated according to Jackson and Pollock [16] by the

measurement of seven skinfolds (i.e., chest, axilla, triceps, subscapular, abdomen, supra-iliac,

and thigh). Ten of the eleven elite athletes (i.e., ~91%) are classified in the canoe slalom world

ranking according to the International Canoe Federation (ICF). All athletes had at least 5 years

of experience in international competitions. Athletes without international experience not

familiarized within the K-1 class were not considered in the sample. Before the experimental

procedures, athletes were asked to keep the same individual hydration/food habits and avoid

hard physical activity, alcohol, and caffeine ingestion. Experimental procedures risks were pre-

viously explained, and athletes/parents provided written, informed consent authorizing the

athlete’s participation in this study. All experiments were approved by the Ethics Committee

of the School of Medical Sciences, University of Campinas.

Procedures

All procedures were conducted on the Tethered Canoe System (TCS) [9], which was composed

of a load cell (CSL/ZL-MK, SP, Brazil, 250 kgf capacity) using strain gauges from Wheatstone

bridge application (1/2 Bridge). A keel (35 x 25 cm structure and 5.00 mm of thickness) was

coupled bellow the boat rear to stabilize the ergometer. The load cell was fixed to a suction pad

(Vonder, Curitiba, Brazil) anchored to the pool wall. In its center, it was coupled to a metallic

hook connected to an elastic cord (length, 320 cm; external diameter, 16.60 mm; internal

diameter, 4.00 mm; thickness, 6.30 mm; Altaflex, SP, Brazil). While some investigations pre-

ferred the use of inextensible steel cable for tethered swimming [17–18], running [19] or semi-

tethered running [20] evaluations, others have used by the elastic cord, mainly for swimming

[21–24]. The adoption of a steel cable instead an elastic cord is related to the characteristic of

the ergometers. For instance, the steel cable was considered in the semi-tethered running to

smooth variations of the orientation resulted from ground contact [20].

Our decision to opt for the elastic cord in the TCS is related to: a) the gradual resistance

imposed by the elastic cord might represent some situations that occur during the canoe sla-

lom competitions, such as the negotiation of upstream gates; b) the time taken to reach peak

force during the all-out tethered test using an elastic cord is close to the mean time of gates

transposition during slalom competitions [9], increasing the evaluation specificity; c) the total

forces provided during the all-out test using the elastic cord are related to the slalom athlete’s

performances from a simulated race [9]; d) due the relatively high forces applied, after a given

paddle stroke, the inextensible steel cable pulls the slalom athlete a little backwards creating

slack between paddle strokes, hampering the execution of the subsequent forward stroke; e) to

analyze force decay along time, studies using the steel cable in tethered evaluation commonly

employs digital filtering techniques [17–19]; on the other hand, the elastic cord serves as an

analogic filter.

The digital signal was converted with a module USB 6008 (National Instruments, TX,

USA). Signals were obtained at a high frequency of 1000 Hz, then processed and filtered using

LabView-Signal-Express 2.0 (National Instruments, TX, USA). The system was calibrated with

known weights (0, 5, 10, 15 and 20 kg) and converted into force units (N) using a linear equa-

tion (~R2 = 0.99).

Paddle stroke analysis from the tethered canoe system
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All-out tests were accomplished in an outdoor swimming pool (25 m). Before the applica-

tion of the 30-s all-out test, athletes performed two familiarization sessions. Each slalom kay-

aker used the same double-bladed paddle and the same boat (kayak model arrow, 355 cm

length; 61 cm width, 16 kg mass). Although canoe slalom athletes use an individual set-up (i.e.,

boat and paddle) during competitions [5], we opted to standardize the TCS ergometer; other-

wise, in future investigations, it will be difficult to replicate the results provided by the all-out

tethered test. The kayak specifications used in the TCS (i.e., kayak length, width, and mass, as

well as the double-bladed paddle) are in agreement with the rules of the International Canoe

Federation (ICF). On the other hand, athletes used their individual paddle. Kayakers warmed

up by self-paced paddling for 5 min, followed by a passive recovery of 5 min. The athletes were

instructed to paddle for 10 s with the elastic cord under no strain, and then perform the test at

an all-out intensity for 30 s after the signal (whistle) was sounded.

Part 1—Comparison between the paddle stroke analyzing methods

The number of performed strokes and frequency were analyzed by two methods. The first was

a video recording analysis using a Full HD video camera (Sony HDR-PJ200, 30× Optic Zoom,

300 Hz capture frequency) positioned on the swimming pool side edge. Each video record

from the tests was individually analyzed and edited from the beginning (i.e., whistle sound)

until the end of the test (i.e., next 30-s). Two experienced researchers analyzed the videos indi-

vidually. A previous investigation [9] demonstrated that, during the all-out tethered test using

the TCS slalom, athletes only performed forward strokes [6]. Therefore, the first researcher

counted the performed forward strokes (V.NumberPaddle) according to the following criteria:

a) when blades move in the forward direction; b) when a propulsive stroke was performed

within the top hands moving straight forward; and c) when paddle drags straight through the

water [6]. The second researcher revised the videos to provide a double-check analysis on the

performed strokes counted by the first. Both researchers agreed in all analysis, and a third

researcher was not necessary. Also, the paddle frequency (V.FrequencyPaddle) throughout the

test was considered as: V.FrequencyPaddle = V.NumberPaddle / 30; and at each 5-s as: V.Fre-

quencyPaddle5-s = V.NumberPaddle of each 5-s / 5.

The second method of stroke analysis relied on the total force signal measured by the load

cell. The elastic cord used served as an analog filter, producing a semi-continuous signal (Fig

1). This method was based on the count of oscillations in the force vector in a time series, each

force peak being defined as one paddle stroke. To identify each oscillation objectively, a

MatLab (The MathWorks Inc., MA, USA) function was built (S2 File)).

At first, a derivative of the force vector was calculated to obtain its rate of change (RC).

Then, the MatLab function identified every change of sign in the RC vector, building a new

vector (change of sign vector—CSV) with the x,y coordinates of the force in the time series.

Every time the RC vector positive change denotes the start of a rise in the force vector, defining

the beginning of a new paddle stroke. The end of a stroke was defined as the start of the next

one. Because of the elastic cord and the all-out characteristics of the test, in the test beginning

(up until ~ 10 s), the force vector was always rising, so we interpolated the CSV vector linearly

to achieve the same size of the force vector and then subtracted it from the force vector. Next,

we used this difference to better identify the oscillations during the test, performing a new

derivative of it, and again identifying the change of sign in the obtained RC, producing a new

change of sign vector (CSV2) (Fig 1). The CSV2 vector was then used to obtain the number of

paddle strokes (S.NumberPaddle), and the individual stroke frequency (S.FrequencyPaddle) for

each given paddle stroke. Unlike V.FrequencyPaddle, S.FrequencyPaddle was obtained by the

time elapsed for completion of one cycle in CSV2, initiating at one down point (Fig 1C; red

Paddle stroke analysis from the tethered canoe system
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asterisks), passing a peak in the signal and finishing in the next down point. This enabled the

calculation of frequency for each single paddle instead of a mean paddle frequency over the

entire effort or a given period. A search for outliers was performed, excluding every paddle

Fig 1. The moments when the force signal for a given athlete (a and b- black) changed from falling to rising were

registered, and a new vector (PRV) was built with this information (b—gray). Then, by subtracting both vectors, a

third vector was built (PRV2), and the oscillations become clearer (c). Finally, the moments when the force signal

changed from falling to rising were registered again, being considered as a start and end of each paddle stroke.

https://doi.org/10.1371/journal.pone.0192835.g001
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stroke that lasted less than 0.4 s. This period was adopted considering the unlikely capacity of

the kayakers to perform more than 2 strokes per s. Therefore, we considered every signal <0.4

s as an odd noise from our system, possibly caused by double oscillations in one single paddle,

or other oscillations caused by the kayak interaction to the water.

The number of performed strokes and frequency were also analyzed at 5-s intervals for

both methods. Considering that strokes variables are expected to decay throughout the all-out

test, with this procedure, we aimed to investigate whether these methods are reliable for the

entire duration of the test. To address the first aim of this study, the number of performed

strokes, frequency, and strokes variables at each 5-s from both methods were compared.

Part 2—Relationship between the paddle strokes results with the force data

The paddle stroke results were tested for correlations with the force data from the 30-s all-out

tethered test. These include the absolute and relative peak force, mean force, and impulse. The

relative results were calculated based on the slalom kayaker body mass. The peak force (Peak-

Force) was considered as the highest force result registered during the all-out test. Mean force

(MeanForce) was considered as the mean of the entire force signal. The impulse was calculated

by the numerical integration of a trapezoidal method from the force signal total area.

Statistical analyses

The statistical software package STATISTICA 7.0 (StatSoft, OK, USA) and the Matlab 5.3 soft-

ware (MathWorks, Massachusetts, USA) were used for all analysis. The mean and standard

deviation (s) were calculated for all studied variables. Homogeneity and normality were con-

firmed using the Levene and Shapiro-Wilk tests, respectively. Paired t-test, the coefficient of

variation (CV), and effect sizes (ES) [25] were used to compare the variables from the video

recording and the force signals. The Cohen’s categories used to evaluate the magnitude of the

ES were: small if 0� |d|�0.5; medium if 0.5 < |d|� 0.8; and large if |d|> 0.8). The relation-

ship analyses were conducted by the Pearson product moment correlation (r). The agreement

between variables from the video recording and the force signals was conducted by the Bland-

Altman analysis [26]. Confidence intervals [27] were calculated for the test-t statistical signifi-

cance (p), CV, ES and the relationship analysis with α = 0.05(σ/
p

n) (i.e., 95%). In all cases, sta-

tistical significance was set at p<0.05.

Results

Part 1—Comparison between the paddle stroke analyzing methods

Comparing the two methods, we detected no differences in the number of performed paddle

stroke and frequency (Table 1). A significant correlation was only obtained for the number of

paddle strokes (r = 0.68; p = 0.02). Small and medium effect sizes were verified by the number

of performed strokes and frequency (0.380 and 0.490, respectively). In general, low coefficient

of variation was obtained (CV<10%). The Bland-Altman analysis between methods is shown

in Figs 2, 3 and 4. The agreement between methods for the number of strokes is good (Fig 2A).

Despite the fact that the agreement is weak during the first 5-s interval (Fig 3A), during the

rest of the test, the agreement is very good (Fig 3B, 3C, 3D, 3E and 3F). Overall, good agree-

ment was visualized for the paddle frequency (Figs 2B, 4A, 4B, 4C, 4D, 4E and 4F). The Fig 5

shows the paddle frequency analysis from both methods considering the 5-s intervals (5a) and

by the force signal method at every stroke (5b).

Paddle stroke analysis from the tethered canoe system
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Part 2—Relationship between the paddle strokes results with the force data

The absolute and relative peak force, mean force, and impulse are shown in Table 2. Low coef-

ficients of variation were obtained for all force results. Positive and significant correlations

were visualized between all force data (i.e., absolute and relative peak force, mean force, and

Table 1. Comparison between the number of performed paddle stroke (NumberPaddle) and frequency (FrequencyPaddle) from the video recording (V) and the force

signal (S).

Mean ± s p r ES CV (%)

V.NumberPaddle (n) 48.18 ± 4.17 0.16 0.68� 0.380 4.53

(2.91 ± 7.32)

S.NumberPaddle (n) 46.82 ± 2.99

(2.09 ± 5.25) (-0.2 ± 0.9) (0.14 ± 0.91) (0.10 ± 1.50) (3.17 ± 7.95)

V.FrequencyPaddle (Hz) 1.61 ± 0.14 0.70 0.58 0.490 5.03

(0.10 ± 0.25)

S.FrequencyPaddle (Hz) 1.62 ± 0.10

(0.07 ± 0.18) (-2.3 ± 3.3) (-0.03 ± 0.88) (0.01 ± 19.43) (3.51 ± 8.83)

�Significant relationship; Lower and upper confidence limits are showed between parentheses; p = paired test-t statistical significance; r = Pearson product moment;

ES = effect sizes; CV = coefficient of variation; V.NumberPaddle−number of performed strokes acquired by the video recording method; S.NumberPaddle−number of

performed strokes acquired by the force signal method; V.FrequencyPaddle−analysis of paddle frequency performed by the video recording method; S.FrequencyPaddle

−analysis of paddle frequency performed by the force signal method; The present analysis was performed for the total time of the test (i.e 30-s).

https://doi.org/10.1371/journal.pone.0192835.t001

Fig 2. Bland-Altman analysis between the number of paddle strokes (a) and frequency (b) from both methods.

https://doi.org/10.1371/journal.pone.0192835.g002
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impulse) with the S.NumberPaddle and S.FrequencyPaddle (range = 0.74–0.83) (Table 3). On the

other hand, poor relationships were obtained between the results from the video recording

(i.e., V.NumberPaddle and V.FrequencyPaddle) with the force data (range = 0.31–0.41).

Discussion

The present study demonstrate the possibility of gathering slalom kayaker’s paddle stroke data

using a novel direct method. This method has several advantages compared with the video

recording approach. These include the measurement of the number of performed paddle

strokes and frequency using a time-saving and simple practical approach. Despite the similar

results obtain by the two tested methods, significant relationships with the force data were

only visualized using the new method. Thus, considering the theoretical basis and practical

application, the force signal method provides better results than the video recording, and

therefore, should be adopted.

Independently of the variability in racecourses and obstacles (e.g., gate placement, depth of

water, and magnitude of waves) [28], slalom kayakers must perform high-intensity efforts (i.e.,

paddle strokes) to achieve better performance [5]. In line with this, Vieira et al., [15] have dem-

onstrated the reproducibility of technical parameters during simulated races. Apart from the

myriad of stroke types analyzed, these authors found that the total number of paddle strokes

Fig 3. Bland-Altman analysis between the number of paddle strokes at each 5-s interval from both methods. Agreement between

the performed strokes from 0 to 5 s (a), 5 to 10 s (b), 10 to 15 s (c), 15 to 20 s (d), 20 to 25 s (e), and 25 to 30 s (f).

https://doi.org/10.1371/journal.pone.0192835.g003
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during the two races were not different, were significantly correlated, and provided a low coef-

ficient of variation (p = 0.37; r = 0.81; CV = 4.53). Also, the stroke types performed by slalom

kayakers during races and their effects on the boat were described in detail [6]. These studies

have shown that paddle stroke data is critical for improving the performance of canoe slalom

athletes, and must be properly investigated.

Since our group has shown a significant relationship between slalom kayaker’s performance

and force parameters from the 30-s all-out test [9], we aimed to investigate the relationship

between the number and frequency of performed paddle strokes during this test with the total

force development. However, before we deal with this issue, another concern regarding the

methods to collect paddle stroke data was investigated. Thus, considering the V.NumberPaddle

and S.NumberPaddle, our results suggest the number of paddle strokes performed during this

test can be achieved from both methods. The agreement between the tested methods is weaker

Fig 4. Bland-Altman analysis between paddle frequencies at each 5-s interval from both methods. Agreement between the paddle frequencies from 0 to 5 s (a), 5 to

10 s (b), 10 to 15 s (c), 15 to 20 s (d), 20 to 25 s (e), and 25 to 30 s (f).

https://doi.org/10.1371/journal.pone.0192835.g004
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for the number of paddles in the first 5-s (Fig 3A). In the rest of the all-out test, the agreement

between the two tested methods is good. Differences in the number of strokes could be

Fig 5. a)–Paddle frequency analysis from the video (red) and force signal method (black) considering the 5-s interval.

b) Paddle frequency analysis conducted by means of the force signal method considering each paddle stroke

performed by the slalom kayaker. All athletes performed at least 42 strokes. Only one slalom kayaker attained 52

strokes, explaining the absence of standard deviation on the last three points on the graph.

https://doi.org/10.1371/journal.pone.0192835.g005
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explained by human bias when analyzing video footage, as well as the difficulty in defining the

criteria for categorizing paddle strokes as in a given period. Regarding the signal method, at

the beginning of the test, it is harder to identify the strokes, since the force is rapidly rising,

explaining the greater divergence between the tested methods in the first 5s. Overall, when cal-

culating the number of strokes, the agreement between the tested methods is good.

In addition to the number of paddle strokes performed, a non-significant relationship

between the V.FrequencyPaddle and S.FrequencyPaddle (r = 0.58; p = 0.06) was also detected.

Using the video recording, biases might be more pronounced when calculating the paddle fre-

quency since this is a mean frequency over a given period (30-s in this case). For the analysis at

each 5-s interval, a similar procedure was applied (i.e., the paddle strokes performed at each

5-s interval was divided by 5). For example, the first and third columns of Table 3 (V.Number-

Paddle and V.FrequencyPaddle) the correlations have similar p values and CI values. This prob-

lem is explained by the calculation used to obtain the paddle frequency throughout the test

when using the video method since the paddle frequency was indirectly calculated as the num-

ber of paddle strokes divided by the time of the all-out test (e.g., 30-s). We propose that is it

more difficult to calculate the paddle frequency using a video record than using the novel

method proposed.

Table 2. Absolute (A) and relative (R) force data from the 30-s tethered all-out test.

A.PeakForce A.MeanForce R.PeakForce R.MeanForce A.Impulse R.Impulse

(N) (N) (N•kg-1) (N•kg-1) (N•s) (N•s•kg-1)

Mean 178.21 126.35 2.52 1.79 3766.05 53.33

s 27.21 18.43 0.37 0.26 585.72 8.27

CI–s (α = 0.05) 19.01 ± 47.75 12.88 ± 32.34 0.26 ± 0.65 0.18 ± 0.46 409.25 ± 1027.90 5.78 ± 14.51

CV (%) 5.55 5.86 5.78 5.99 5.43 5.45

CI–CV (α = 0.05) 3.93 ± 9.42 4.15 ± 9.95 4.09 ± 9.81 3.93 ± 9.42 4.24 ± 10.17 3.86 ± 9.25

CI–Lower and upper confidence limits; CV–coefficient of variation.

https://doi.org/10.1371/journal.pone.0192835.t002

Table 3. Relationship between the paddle strokes results and the force data.

V.NumberPaddle (n) S.NumberPaddle

(n)

V.FrequencyPaddle

(Hz)

S.FrequencyPaddle

(Hz)

A.PeakForce r = 0.34; p = 0.30 r = 0.76�;p = 0.01 r = 0.34;p = 0.30 r = 0.81�;p = 0.001

(N) CI = -0.33–0.78 CI = 0.29–0.93 CI = -0.33–0.78 CI = 0.41–0.95

R.PeakForce r = 0.31;p = 0.34 r = 0.77�;p = 0.001 r = 0.31;p = 0.34 r = 0.79�;p = 0.001

(N•kg-1) CI = -0.36–0.77 CI = 0.32–0.94 CI = -0.36–0.77 CI = 0.36–0.94

A.MeanForce r = 0.41;p = 0.19 r = 0.79�;p = 0.001 r = 0.41;p = 0.19 r = 0.83�;p = 0.001

(N) CI = -0.25–0.81 CI = 0.36–0.94 CI = -0.25–0.81 CI = 0.46–0.95

R.MeanForce r = 0.38;p = 0.24 r = 0.78�;p = 0.001 r = 0.38;p = 0.24 r = 0.80�; p = 0.001

(N•kg-1) CI = -0.28–0.80 CI = 0.34–0.94 CI = -0.28–0.80 CI = 0.38–0.95

A.Impulse r = 0.37;p = 0.25 r = 0.75�;p = 0.01 r = 0.37;p = 0.25 r = 0.80�; p = 0.001

(N•s) CI = -0.30–0.79 CI = 0.27–0.93 CI = -0.30–0.79 CI = 0.38–0.95

R.Impulse r = 0.33;p = 0.31 r = 0.74�;p = 0.01 r = 0.33;p = 0.31 r = 0.75�;p = 0.01

(N•s•kg-1) CI = -0.34–0.78 CI = 0.25–0.93 CI = -0.34–0.78 CI = 0.27–0.93

Lower and upper confidence limits for Pearson product moment (r).

https://doi.org/10.1371/journal.pone.0192835.t003
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Conversely, the same data calculated by the force signal was conducted considering the spe-

cific time of a given paddle stroke. By proposing this method, we solve one of the limitation

associated with the video recording approach related with the necessity of count the performed

strokes. It is true that kinematic analysis from 2D and 3D video analysis allows a more detailed

investigation of paddle stroke phases and frequency [1]. However, these procedures might not

be practically applicable during the daily routine of canoe slalom training, thereby slowing the

transition from theory to practice. Additionally, video methods are often time-consuming,

technically challenging, and costly [4]. Although rate watches and phones are valid real-time

measurements, these device still requires force development. The new method proposed here

is relatively cheap (compared to 2D and 3D video analysis) and can be easily carried out imme-

diately after the test, reducing the time spent on paddle stroke analysis. Furthermore, positive

and significant relationships were visualized between all force variables from the all-out test

with the slalom kayakers paddle frequency when analyzed by the force signal method.

Reinforcing the differences between stroke frequencies variables obtained by the two studied

methods, significant relationships between the force and impulse parameters were only detected

with the S.NumberPaddle and S.FrequencyPaddle (Table 3). The absence of significant relation-

ships between force and impulse with V.NumberPaddle and V.FrequencyPaddle leads us to believe

that the new method is more robust at identifying the number and frequency of paddle strokes

performed during the test. Regarding practical application, it is hypothesized that a stronger

athlete could develop faster paddle strokes and, thus, a higher number and frequency of paddle

strokes. Although deliberately trying to accelerate the stroke frequency could result in faster but

weaker strokes, we believe this was not the case in this study due to the level of the studied ath-

letes. Thus, our results partially support this hypothesis. To further test this, future studies

should address this hypothesis using other force/power meters that have been proposed for

sprint [12] and slalom [14] kayaking. These studies can also compare the use of individual or

generalized set-ups (paddle, blade, and kayak), since the blade-shape (for instance) might result

in different efficiencies and paddling techniques [13]. An on-water analysis system to quantify

force and other characteristics of kayak athletes has been proposed by Aitken and Neal [29].

Using this system, Aitken and Neal provided data on the paddler’s average force and impulse

(for instance) based on force-time curves. Other systems based on force sensors attached to the

bottom of the blade [12] or accelerometers [13] and strain gauges [14] attached near the hand

position have also been proposed. These investigations have provided important information

regarding the blade/water interaction [12], paddling cadence [13], and paddle force/power [14].

However, the results provided by this study share unique characteristics, such as: a) the

force parameters provided by our system have been significantly correlated with aerobic [30]

and anaerobic [9] variables, and with the kayakers’ performances [9, 30]; b) in addition to the

comparison between the force parameters and paddle stroke results, we also compared the

results from the TCS with those from the video recording; c) the TCS and the analysis pro-

posed in this study was developed specifically for canoe slalom, which is also absent in the cur-

rent literature; d) the perspectives proposed in this study were conducted with a larger sample

that included the highest qualified athletes from Brazil; and e) the proposed system also enable

real-time force analyses, we also provided a function provided as a supplementary material

that enables it.

Among the natural obstacles encountered during races, the upstream gates are considered

the most challenging for slalom kayakers [31]. Hunter [31] has suggested that the paddling

technique used to negotiate upstream gates is similar between canoe and kayak classes. This

author also demonstrated that faster athletes are better able to negotiate upstream gates.

Although in these situations the resistance offered to the blade is low (considering the water

phase of the stroke), it remains challenging because the drag of the kayak hull is high. Thus,
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once the significant relationship between peak force with S.NumberPaddle and S.FrequencyPad-

dle has been demonstrated, training sessions for peak force improvement may possibly enhance

the athlete’s performance when negotiating upstream gates. Slalom kayakers must also over-

come other factors, such as a great number of downstream gates, rocks, and water waves.

These challenges require great force maintenance within a short period. In line with this, we

detected significant relationships between mean force and impulse with S.NumberPaddle and S.

FrequencyPaddle. These data would be useful during training sessions, helping to improve the

slalom kayaker’s performance. Furthermore, Zamparo et al., [32] have shown great aerobic

participation during canoe slalom races (i.e., 49%), corroborating with the force maintenance

improvement to achieve better results during canoe slalom races.

Despite recent reports from our group addressing various issues related to the canoe slalom

[9, 30, 33–34], no study has investigated the relevance of slalom kayaker’s paddle strokes on

total force development. To address this, here we describe a significant relationship between

the force parameters with both the number of paddle strokes and stroke frequency. These data

provide insights into race strategy and training approaches. Force development might be rele-

vant to negotiating gates and transposing natural obstacles within less time during canoe sla-

lom races, resulting in a better performance [5]. However, future studies should address

limitations with the present investigation. For example, we do not provide an analysis of the

force production during strokes made on the left or right side. Moreover, the results provided

in our investigation are intended to the K-1 class; an adaptation of the TCS is required to the

analysis of other classes, such as the C-1 (i.e., canoe single).

Overall, we conclude that the force signal from the 30-s all-out tethered test can be used as a

new direct method for recording slalom kayaker’s paddle stroke data. Furthermore, we have

shown that the number of paddle stroke and frequency performed during the all-out test are

related to the force parameters obtained from the same test. These significant relationships were

only detected when using the force signal method, suggesting that our new method (rather than

the video method) should be used by coaches to improve slalom kayaker’s performance.

Supporting information

S1 File. Datasheet with all data used in the manuscript. Folder “Paddle Stroke Analysis” con-

tains the data regarding the number and frequency of paddles performed during the 30-s all-

out tethered test. In addition, the data states the analysis from the video and signal methods.

Folder “Forces” states de absolute and relative peak force, mean force and impulse from the

30-s all-out tethered test.

(M)

S2 File. Matlab function. Matlab Function built to identify each oscillation objectively in the

force vector in a time series. Each force peak is defined as one paddle stroke.

(XLSX)
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