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Abstract

Many automatic classifiers were introduced to aid inference of phenotypical effects of unca-

tegorised nsSNVs (nonsynonymous Single Nucleotide Variations) in theoretical and medical

applications. Lately, several meta-estimators have been proposed that combine different

predictors, such as PolyPhen and SIFT, to integrate more information in a single score.

Although many advances have been made in feature design and machine learning algo-

rithms used, the shortage of high-quality reference data along with the bias towards inten-

sively studied in vitro models call for improved generalisation ability in order to further

increase classification accuracy and handle records with insufficient data. Since a meta-

estimator basically combines different scoring systems with highly complicated nonlinear

relationships, we investigated how deep learning (supervised and unsupervised), which is

particularly efficient at discovering hierarchies of features, can improve classification perfor-

mance. While it is believed that one should only use deep learning for high-dimensional

input spaces and other models (logistic regression, support vector machines, Bayesian clas-

sifiers, etc) for simpler inputs, we still believe that the ability of neural networks to discover

intricate structure in highly heterogenous datasets can aid a meta-estimator. We compare

the performance with various popular predictors, many of which are recommended by

the American College of Medical Genetics and Genomics (ACMG), as well as available

deep learning-based predictors. Thanks to hardware acceleration we were able to use a

computationally expensive genetic algorithm to stochastically optimise hyper-parameters

over many generations. Overfitting was hindered by noise injection and dropout, limiting

coadaptation of hidden units. Although we stress that this work was not conceived as a

tool comparison, but rather an exploration of the possibilities of deep learning application in

ensemble scores, our results show that even relatively simple modern neural networks can

significantly improve both prediction accuracy and coverage. We provide open-access to

our finest model via the web-site: http://score.generesearch.ru/services/badmut/.
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Introduction

Single amino-acid variation (caused by nonsynonymous single nucleotide substitutions—

nsSNVs) is a valuable source of information that can help us understand the fundamental fea-

tures of protein evolution and function as well as uncover causative variants behind inherent

health conditions and develop custom treatment strategies to maximise therapeutic efficiency.

The dramatic increase in our capacity to cheaply sequence human exomes (the part of the

genome comprised of exons) has brought enormous amounts of information on genetic varia-

tion in human populations, which clearly has great potential in both theoretical and medical

applications. The later fuels research towards the integration of personal genetic data into

medical practice. In fact, various companies are already pushing the technology into consumer

market, though the means to simplify and streamline the downstream analyses are still in

the infancy, and our ability to interpret variation in a phenotypically-sensible manner leaves

a lot to be desired. Untangling the connections between variation and phenotypic traits

remains one of the greatest challenges of functional genomics, because only a small fraction of

possible variants have been thoroughly investigated and manually reviewed with respect to

their fitness impact [1]. Thus, a lot of effort has been put into developing the means to infer

possible damage of uncategorised nsSNVs by employing machine-learning. As a result, over

the past decade many algorithms have been developed for predicting deleteriousness. In order

to make predictions these tools encode variants using multiple quantitative and qualitative fea-

tures, e.g. sequence homology [2], protein structure [3, 4] and evolutionary conservation [5,

6]. This diversity of scoring tools has led to the creation of dbNSFP [7–9], a regularly updated

specialised database that accumulates predictions of various scores alongside genomic features

for most of the possible variants in the human exome.

Meanwhile, the American College of Medical Genetics and Genomics (ACMG) published a

guideline for reporting on clinical exomes [10], listing FATHMM [11], MutationAssessor [12],

PANTHER [13], PhD-SNP [14], SIFT [15], SNPs&GO [16], MutationTaster [17], MutPred

[18], PolyPhen-2 [19], PROVEAN [20], Condel [12], CADD [21], GERP [22], PhyloP [23] and

several other scores as the most trustworthy. While the recommendations prove these scores

useful, the guidelines describe them as merely accessory means of annotation, because differ-

ences in feature sets, training data and machine-learning algorithms used by the scores lead

to inconsistent predictions (Fig 1), making the choice a matter of personal preference of each

analyst [24].

While several extensive comparison studies have been carried out [24–26], the differences

in benchmarking datasets, the number of tools and precision assessment methods further

complicate the generalisability of their conclusions. Therefore, it is still unclear which tools

to use for prioritising variants in exome-based studies of human diseases. To reduce bias,

gather more available information and simplify tool selection several meta-estimators have

been proposed, based on other scores, such as PolyPhen and Sift. It has been demonstrated

that combining individual predictors in ensembles can be both effective and not. For exam-

ple, KGGSeq (an ensemble of SIFT, PolyPhen-2, LRT, MutationTaster and PhyloP [27]), out-

performed all scores it integrated in terms of ROC curve AUC (area under the curve), while

CONDEL (another meta-estimator) failed to beat some its components [24]. Following the

trend, the curators of dbNSFP have developed their own ensemble scores (MetaLR and

MetaSVM), that outperform all widely used standalone scores and meta-scores [24]. Addi-

tionally, to overcome the shortage of reference data, crucial in purely supervised training,

some authors have proposed unsupervised and semi-supervised learning strategies, with

CADD being the most notable implementation of the idea, though it doesn’t peform well in

benchmarks [24].
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Missing predictions (missing feature values) pose another serious problem. When one or

more of the tools used by a meta-score fails to process a substitution (e.g. due to lacking some

information about it) the entry becomes incomplete (Table 1) and thus requires special han-

dling. Some tools handle missing values like an intrinsic property of the data [21], some try to

Fig 1. Prediction inconsistency. A heatmap of Spearman correlation between rank-transformed output values of different deleteriousness scoring

systems. 1000F—allele frequency according to the 1000 Genomes project. Greater absolute correlation means greater consistency.

https://doi.org/10.1371/journal.pone.0192829.g001

Table 1. The fraction of nsSNVs with no predictions made by popular deleteriousness scores and the MetaLR meta-score.

Dataset PolyPhen-2 SIFT FATHMM MutationTaster MetaLR

Exome� 0.09 0.1 0.14 0.02 0.08

Test I�� 0.02 0.03 0.06 0.01 0.004

Test II�� 0.01 0.03 0.04 0.003 0.006

�The fractions are estimated by querying a random subset of 1 � 106 SNVs from dbNSFP v3.2 [9].

��Our testing datasets I and II (described in the Materials and methods), comprising variations with experimental evidence of phenotype.

https://doi.org/10.1371/journal.pone.0192829.t001
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impute them (by basically adding another machine learning task) [24], others are restricted to

complete entries.

All these problems greatly emphasise the importance of better generalisation. Here we

explore how deep learning can address the issues. Deep learning (DL) allows computational

models learn hierarchies of representations with multiple levels of abstractions by combing

several layers of nonlinear transformations. Techniques, such as noise injection and dropout,

ultimately fight overfitting and allow adaptive regularisation [28]. Deep neural networks have

already been used in DANN [29] and Eigen [30] to improve on the CADD’s original unsuper-

vised approach, which incorporates hundreds of different features. While it is believed that

one should only use DL for high-dimensional input spaces and other models (logistic regres-

sion, support vector machines, Bayesian classifiers, etc) for simpler inputs, we still believe that

the ability of deep neural networks to discover intricate structure in highly heterogenous data-

sets can benefit a meta-estimator with relatively few input features, because connections and

interaction between different scoring systems can be highly complicated and nonlinear [29].

We want to stress that this work was not conceived as a tool comparison, but rather an explo-

ration of the possibilities of deep learning application in ensemble scores.

Materials and methods

Testing and training data

Our testing setup is based on the extensive comparative study performed by Dong et al. [24].

Since MetaLR and MetaSVM, introduced in the study, were shown to be state of the art in

meta-estimators, it was natural to include them here for the sake of comparison along with

other scores evaluated in that study. Thus we had to make sure that our training and testing

data did not give our models an unfair advantage, hence we used the testing datasets provided

by the authors. Briefly, the authors constructed their first testing dataset out of 120 deleterious

mutations (causing 49 different diseases) recently reported in Nature Genetics, and 124 neutral

mutations newly discovered from the CHARGE sequencing project [31]. To ensure the quality

of the deleterious mutations, they only left variants reported to cause Mendelian diseases with

experimental evidence. The quality of the neutral mutations was ensured by removing any

record with minor allele frequency < 1% in 2 thousands exomes from the ARIC study via the

CHARGE sequencing project [31]. Additionally the authors used a subset of VariBench pro-

tein tolerance dataset II [26]. VariBench, comprising high quality records with experimentally

verified effects, has become a standard dataset for performance evaluation. The dataset itself

contains 14611 positive and 19470 negative variants. The subset included 6279 deleterious

curated variants and 13240 common neutral variants (minor allele frequency > 1%).

UniProtKB/Swiss-Prot was the main source of annotated nsSNVs for our training dataset.

We downloaded all amino-acid natural variants (the HUMSAVAR archive from UniProt

knowledge base release 03.2016) and mapped UniProt protein IDs to RefSeq nucleotide IDs.

We then converted AA substitutions into nsSNVs. Initially there were 28 � 103 causative and

39 � 103 neutral AA polymorphisms. We then downloaded ClinVar variants mapped to loci

referenced in OMIM [32]. Based on a dataset of 200 manually annotated records we trained a

bag-of-words Naïve Bayesian classifier to automatically identify and remove SNVs associated

with any type of cancer or having nothing but in silico and/or GWAS-based evidence of

impact. This left us with around 120 � 103 variants. We further filtered them to remove any

possible splicing-altering substitutions using the annotations from SnpEff 4.1 [33]. Finally, we

removed all SNVs yielding amino acid substitutions found in the testing datasets. After all

these steps there were 96.5 � 103 variants left: 64.5 � 103 deleterious and 32 � 103 neutral. This

was our raw supervised training dataset. For our final supervised training collection we only
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left true positive records with experimental evidence. The dataset comprised around 19735

neutral and 14480 damaging nsSNVs S1 File. For our unsupervised training dataset we ran-

domly sampled 106 positions from the UCSC-annotated exonic regions. All data were collected

for the hg19 genome assembly.

Deep learning models

We constructed our classifiers using two basic architectures (Fig 2a): the deep multilayer per-

ceptron (MLP) and the stacked denoising autoencoder (sdAE). MLPs are well known and

widely used models. Although their basic architecture was introduced decades ago, their mod-

ern versions differ significantly in many implementation details. Stacked denoising autoenco-

ders are relatively novel models used for unsupervised and semi-supervised learning and data

compression. These networks are first trained as individual shallow denoising autoencoders

(Fig 2b) by iteratively stacking one on top of another, which is followed by final training (Fig

2c). The term “denoising” stands for their ability to reconstruct lousy input records by general-

ising on training datasets. Stacking several autoencoders on top of each other and training

each to reconstruct the output of the previous layer allows to learn a hierarchy of features in

the input space in an unsupervised manner. When labeled reference data are scarce, one can

combine unsupervised and supervised training to discover great generalisations from unla-

belled data and perform fine-tuning using the few available labeled records.

Implementation details

Here we will briefly discuss several fundamental implementation details: update functions,

regularisation, activation functions. Most neural networks are trained using various modifica-

tions of stochastic gradient descent (SGD). Here explored two SGD modifications: SGD with

Nesterov momentum [34] and adagrad [35]. To prevent overfitting we used dropout as a

simple and extremely effective regularisation tool [28, 36]. During training, dropout can be

Fig 2. Network types. Schematic representation of basic deep learning models used in this study. (a) A multilayer perceptron (MLP). (b) A shallow

denoising autoencoder (dAE). (c) Connecting dAEs into a stacked denoising autoencoder (sdAE); notice that each individual dAE learns to reconstruct

the latent representation from the previous one (data stream is represented by arrows). Colours encode layer functions (combinations are possible):

blue—input, light-red—latent, dark-red—dropout (noise), purple—output, hollow—discarded.

https://doi.org/10.1371/journal.pone.0192829.g002
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interpreted as sampling a part within the full network, and only updating the parameters of the

subsampled units during back-propagation. In our MLPs we applied dropout to all layers, but

the output; in sdAEs we only applied dropout to the input layer encouraging the networks to

denoise the data. We used sigmoidal and ReLU (rectified linear unit) nonlinearities. Briefly,

the standard sigmoid function is defined as sðxÞ ¼ 1

1þ exp ð� xÞ, hence it maps any real number

into (0,1) and saturates at both ends, producing unfeasible gradients [37]. More importantly,

repeated application of the sigmoid function (which basically happens in deep networks) leads

to the vanishing gradient effect (Fig 3a) hindering convergence. We also used the hyperbolic

tangent (tanh), which is considered a superior sigmoidal function, because it is zero-centered

and less prone to the vanishing gradient effect (Fig 3b). The standard ReLU activation function

is given by ρ(x) = max(0, x). It is idempotent (i.e. ρ˚ρ˚. . .˚ρ = ρ) and scaling invariant (i.e.

ρ(αx) = αρ(x)). These properties make it computationally cheap and immune to vanishing gra-

dients [38]. At the same time, it has been shown tricky to use the function in autoencoders,

due to knockout effect and overshooting [39], hence it is still more common to use sigmoidal

activations in these models.

Hyper-parameter optimisation and the training setup

So far we’ve mentioned various aspects of design and implementation, influencing perfor-

mance in many different ways [37]. These settings are called hyper-parameters: the number

of layers and units per each layer, the compression factor in encoders, learning rate, dropout

and noise levels, mini-batch size, momentum applied, nonlinearities. To select these we used

Fig 3. Nonlinearities. The sigmoid (a) and hyperbolic tangent (b) iteratively applied 3 times. Observe how repeated application of the sigmoid function

quickly makes the gradient vanish completely.

https://doi.org/10.1371/journal.pone.0192829.g003
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genetic algorithms (GA)—stochastic optimisation tools simulating natural selection over

many generations of mutation, recombination and selective pressure [40]. This strategy has

already been successfully applied to optimise hyper-parameters in other machine-learning

models [41]. We performed two independent GA runs: one for the pure MLP model and one

for the stacked denoising autoencoder. In both cases a population of 100 individuals had been

evolving for 100 generations and each model could chose whether to use the 7-way or 100-way

phyloP and phastCons conservation scores, the batch size (500-10000), adagrad or Nesterov

momentum (0.00-1.0; step size 0.05) update functions and the learning rate (0.005-1.0).

During the MLP GA run the number of training epochs was fixed at 1000. All models used

the hard ReLU activation function and Glorot uniform weight initialisation. Variable hyper-

parameters:

• the number of hidden layers: 1-4

• the number of units per hidden layer: 10-30

• dropout probability: 0.00-0.5 (stepsize 0.05)

Each stacked denoising autoencoder trained in two steps: individual shallow autoencoders

trained for 300 epochs prior stacking. Stacked autoencoders trained for additional 1000

epochs. We increased the number of training epochs due to the saturation and vanishing gra-

dient problems inherent to sigmoidal nonlinearities. Hyper-parameter search space:

• first-layer expansion factor: 1.0-1.5 (stepsize 0.05); represents the relative increase in the

number of units in the first hidden layer with respect to the input layer

• encoder compression level: 1.0-1.5 (stepsize 0.05)

• the number of hidden layers in the encoder (excluding the compressed latent layer): 1-3

(and the decoder by extension, due to symmetric design).

• activation function: sigmoid or hyperbolic tangent (in conjunction with appropriate weight

initialisation functions).

We carried out the process on a machine with 8 Nvidia Titan X (Maxwell) GPUs (Graphics

Processing Units) using model-based parallelism [42], i.e. each model trained on a separate

GPU with its own copy of the data, hence we could train up to 8 models simultaneously. To

estimate fitness we used 3-fold cross-validation scores (categorical crossentropy for MLPs,

and squared-root reconstruction error for sdAEs). Neural networks were implemented using

Theano and lasagne in Python 3.5. We used the genetic algorithm implementation provided

by package genetic, openly available in PyPI (the Python Package Index).

Data extraction and missing annotations

We selected the following scores and genomic features as input units: FATHMM, GERP++,

LRT, LRT Omega, MetaLR, MetaSVM, MutationAssessor, MutationTaster, PROVEAN, Poly-

phen2 (both HDIV and HVAR), SIFT, SiPhy log Odds, phastCons vertebrate (both 7-way and

100-way), phyloP vertebrate (both 7-way and 100-way) and the allele frequency (AF) in the

1000 Genomes Project dataset. Since all these scores had different output scales and thus

couldn’t be directly compared, we used the rank-transformed values, provided by dbNSFP [7],

for both training and comparison like demonstrated by Dong et al. [24]. Although this step

was only mandatory to train our autoencoders, other networks should have benefitted from

the normalised data as well. For each position in the training and testing datasets we extracted

these features from dbNSFP 3.1 and 3.2 [9] (we used the former to obtain values for the 7-way
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phyloP and phastCons, replaced by updated 100-way scores in the recent versions of dbNSFP).

We had no special way of handling missing data: missing values in the training and testing

datasets were simply replaced by zeros.

Performance estimations

To make comparisons between different scores possible we used rank-transformed [7]

outputs of CADD, DANN, Eigen, FATHMM, GERP++, LRT, MutationAssessor, MutationTa-

ster, PROVEAN, Polyphen-2 (both HDIV and HVAR), SIFT, SiPhy (29-way), phastCons

(100-way), phyloP (100-way). We interpreted these values as positive-class (causative) proba-

bilities and carried out two series of benchmarks. The first one comprised threshold-invariant

performance indicators: (1) the area under the receiver operating characteristic curve (ROC-

curve AUC) and (2) the area under the precision-recall curve (average precision). The second

one comprised cutoff-sensitive statistics: (1) the F1 score, (2) the Matthews correlation coeffi-

cient (MCC) and (3) the accuracy score. We optimised the cutoff value for each score individu-

ally to find the highest possible performance using empirical bootstrapping (1000 replicates) to

approximate the distributions of these statistics and estimate their 95% confidence intervals

(i.e. the 2.5 and 97.5 percentiles of the distributions). We benchmarked our classifiers (MLP

and sdAE) without removing variations with missing annotations (i.e. incomplete data) from

the dataset. In our interpretations we considered the second testing dataset more representa-

tive, because of its significantly greater size (*100 times more records).

Assessing generalisation

Since available testing data comprise a small subset of the exome, to extrapolate a classifier’s

performance from these datasets to the entire exome, it is important to evaluate how represen-

tative the datasets are and to examine the classifier’s ability to generalise. We used Gene Ontol-

ogy (GO) [43] terms to encode various protein properties and to analyse their distribution in

the exome and the datasets. Since raw GO annotation was extremely sparse and deep, we

mapped it onto the generic GO Slim annotation, reducing the GO term-space to *150 terms

and making it shallow. This allowed us to include all term levels. We carried out binomial tests

for each term to find the number of terms significantly enriched in either misclassified or cor-

rectly classified subsets of the datasets. Additionally, using the same procedure we tested term

enrichment in the false-positive (FP) and false-negative (FN) subsets of the misclassified varia-

tions. We adjusted p-values using the Benjamini-Hochberg procedure, also known as the false

discovery rate (FDR). For each predictor we used a probability cutoff-value maximising the F1

score. The FDR level was set to 5%.

Results and discussion

Training logs

We carried out two independent runs of the genetic algorithm to optimise the hyper-parame-

ters in our deep learning models. The MLP run took 3 days of calculations. We selected five

sets of parameters yielding the highest cross-validation scores and trained them for 50 � 103

epochs. We then picked the network with the highest ROC-curve AUC and average precision

(area under the precision-recall curve). The network had the following parameters:

• two latent layers: the first one had 13 hidden units, and the second one had 19

• dropout probability: 0.1

• batch size: 2000
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• learning rate: 0.01

• update function: Nesterov momentum (0.7)

• phyloP and phastCons version: 7-way

The sdAE run took 54 days of calculations. As with the MLPs, we took 5 best-scoring mod-

els, though this time we trained each one for 100 � 103 epochs. After benchmarking the models

on one million random nsSNVs from the exome (non-overlapping with the training dataset),

we picked one model with the lowest absolute-error of reconstruction. It had the following

parameters:

• three latent layers in the encoder

• expansion factor: 1.25

• compression factor: 1.3

• input-layer dropout (noise) probability: 0.3

• batch size: 5000

• learning rate: 0.05

• update function: Nesterov momentum (0.5)

• nonlinearity: hyperbolic tangent

• phyloP and phastCons version: 100-way

This model achieved median absolute reconstruction error of 0.02. We then removed the

decoding part of the model, added a softmax output layer with two units and trained the

model for 10 � 103 epochs to classify nsSNVs using the supervised training dataset. Training

parameters were not altered, except for the batch size, which was reduced to 2000. Surpris-

ingly, the resulting classifier performed poorly with average precision of 0.63 and ROC-curve

AUC of 0.82, while having extremely low training errors, which led us to conclude that overfit-

ting was the reason behind these results. To test this assumption, we tried to train the model

again (staring with the same unmodified sdAE) while freezing the weights in the encoder

and only updating the classifier’s softmax layer, which is basically similar to applying logistic

regression on the compressed latent representation of the input space. This significantly

increased both measures of performance. We used this final model in our benchmarks.

Performance

The first round of benchmarks comprised cutoff-invariant performance measures: the ROC

curve AUC and average accuracy score (the area under the precision-recall curve. The ROC

curve AUC tests supported the results published by Dong et al. [24] in their comparative study

(Table 2). The meta-estimators, introduced in that study (MetaLR and MetaSVM), outper-

formed most of the scores we used in the benchmark. Only our MLP classifier had a slight

edge over both these scores in terms of the ROC curve AUC. Though, MLP and MetaLR

showed identical performance on the test I, which was second only to MutationTater and

sdAE, the MLP outperformed all the other scores on the test II. At the same time the stacked

autoencoder outperformed all scores on the test I. Surprisingly enough, the deep learning

models that were developed to improve on the CADD’s unsupervised approach (DANN and

Eigen) performed worse than CADD itself. We also plotted the curves for better illustration

(Fig 4).
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Table 2. ROC curve AUC score with 95% confidence intervals.

Score Test I Test II

CADD 0.85 (0.79–0.90) 0.78 (0.78–0.79)

DANN 0.84 (0.79–0.89) 0.75 (0.74–0.75)

Eigen 0.86 (0.81–0.91) 0.67 (0.66–0.68)

FATHMM 0.84 (0.78–0.89) 0.91 (0.90–0.91)

GERP++ 0.79 (0.73–0.84) 0.68 (0.67–0.68)

LRT 0.85 (0.80–0.90) 0.73 (0.72–0.74)

MLP 0.90 (0.86–0.94) 0.94 (0.94–0.95)

MetaLR 0.90 (0.86–0.94) 0.93 (0.93–0.94)

MetaSVM 0.90 (0.86–0.94) 0.92 (0.92–0.93)

MutationAssessor 0.78 (0.71–0.83) 0.77 (0.77–0.78)

MutationTaster 0.91 (0.87–0.94) 0.76 (0.75–0.77)

PROVEAN 0.82 (0.77–0.88) 0.77 (0.77–0.78)

PolyPhen HDIV 0.79 (0.73–0.85) 0.77 (0.76–0.77)

PolyPhen HVAR 0.80 (0.74–0.86) 0.79 (0.78–0.79)

SIFT 0.77 (0.71–0.82) 0.78 (0.77–0.78)

SiPhy 29-way 0.82 (0.76–0.87) 0.70 (0.70–0.71)

phastCons 100-way 0.81 (0.76–0.86) 0.69 (0.69–0.70)

phyloP 100-way 0.89 (0.85–0.93) 0.75 (0.74–0.76)

sdAE 0.92 (0.88–0.95) 0.92 (0.92–0.93)

https://doi.org/10.1371/journal.pone.0192829.t002

Fig 4. ROC-curves. MLP, MetaLR, MetaSVM, sDAE and MutationTaster produced the largest area under the curve.

https://doi.org/10.1371/journal.pone.0192829.g004
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While ROC curve AUC results gave our MLP a slight edge over the other scores on the test

II, the average precision score deemed it even more superior (Table 3), though it was second to

sdAE on the test I. In general, most scores fared better on the testing dataset I in case of both

performance indicators.

The second round of benchmarks comprised three threshold-sensitive metrics: the

F1-score, MCC and the weighted accuracy score (Table 4). Since we have optimised each

score’s cutoff individually for each performance metric these results can be used a guideline

for cutoff selection. For the most part all three metrics yield similar performance ranking.

Once again, the MLP comes first with a slight edge over the MetaLR, MetaSVM and sdAE.

The latter three show almost identical performance.

Coverage and missing data

Coverage is another measure of performance: the inability of a score to predict the impact of a

subset of SNVs seriously limits its usefulness, hence a good score should have as much cover-

age as possible. Among the tools we examined, CADD, DANN, GERP++, MutationTaster,

phyloP, phastCons and SiPhy demonstrate almost complete coverage of the genome, yet fall

short in terms of prediction accuracy. At the same time, the high-performing scores demon-

strate significantly limited coverage (Table 1). We designed our scores with high-coverage in

mind from the beginning and ran a separate round of tests to evaluate how they perform when

other scores fail to predict due to incomplete annotations or other reasons. For each predictor

we found unprocessed SNVs in the testing dataset II. If there were more than 50 unpredicted

variations, we assessed their impact using our models and calculated the ROC curve AUC

scores (Table 5) and the average precision scores (Table 6). Quite surprisingly, our semi-super-

vised model (sdAE), explicitly designed and trained to reconstruct missing information, per-

formed downright poorly in the absence of predictions made by FATHMM, PROVEAN,

Table 3. Average precision score with 95% confidence intervals.

Score Test I Test II

CADD 0.79 (0.70–0.87) 0.60 (0.58–0.61)

DANN 0.84 (0.77–0.90) 0.55 (0.53–0.56)

Eigen 0.81 (0.73–0.89) 0.57 (0.56–0.58)

FATHMM 0.83 (0.75–0.90) 0.83 (0.82–0.84)

GERP++ 0.77 (0.69–0.85) 0.44 (0.43–0.45)

LRT 0.87 (0.82–0.92) 0.64 (0.63–0.65)

MLP 0.91 (0.82–0.94) 0.89 (0.88–0.91)

MetaLR 0.88 (0.81–0.94) 0.87 (0.87–0.89)

MetaSVM 0.91 (0.87–0.95) 0.87 (0.86–0.88)

MutationAssessor 0.78 (0.70–0.85) 0.67 (0.66–0.68)

MutationTaster 0.91 (0.87–0.95) 0.67 (0.67–0.68)

PROVEAN 0.76 (0.67–0.85) 0.61 (0.59–0.62)

PolyPhen HDIV 0.80 (0.73–0.86) 0.67 (0.66–0.68)

PolyPhen HVAR 0.77 (0.69–0.84) 0.66 (0.65–0.68)

SIFT 0.79 (0.72–0.85) 0.67 (0.66–0.68)

SiPhy 29-way 0.75 (0.65–0.84) 0.47 (0.45–0.48)

phastCons 100-way 0.86 (0.81–0.90) 0.66 (0.66–0.67)

phyloP 100-way 0.89 (0.83–0.94) 0.56 (0.54–0.57)

sdAE 0.92 (0.86–0.96) 0.87 (0.86–0.87)

https://doi.org/10.1371/journal.pone.0192829.t003
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MetaLR, MetaSVM and PolyPhen. At the same time, the MLP performs well in the absence of

most predictions: it is only sensitive to the absence of FATHMM and PROVEAN scores. Inter-

estingly enough, both the MLP and sdAE predict nsSNVs unprocessed by Eigen with nearly

absolute precision. These results show that the MLP not only provides technically extended

coverage of the exome but also makes high-quality predictions.

GO term enrichment

We measured generalisability in terms of the average prediction success rate across all terms

and the number of GO terms significantly enriched in either the subset of correctly classified

or misclassified variations (Table 7). Once again, the MLP outperformed other predictors,

yielding the highest average success rate. The five highest-scoring predictors (MLP, MetaLR,

Table 4. Maximum average values of threshold-sensitive performance measures, evaluated for test II. Numbers in parentheses represent corresponding cutoffs.

Score F1-score MCC Accuracy

CADD 0.64 (0.50) 0.43 (0.58) 0.74 (0.73)

DANN 0.60 (0.51) 0.35 (0.53) 0.71 (0.85)

Eigen 0.61 (0.55) 0.43 (0.66) 0.77 (0.80)

FATHMM 0.79 (0.83) 0.67 (0.87) 0.85 (0.88)

GERP++ 0.57 (0.38) 0.30 (0.38) 0.67 (0.99)

LRT 0.61 (0.49) 0.37 (0.51) 0.71 (0.68)

MLP 0.83 (0.68) 0.75 (0.69) 0.89 (0.70)

MetaLR 0.82 (0.83) 0.74 (0.83) 0.88 (0.88)

MetaSVM 0.81 (0.81) 0.72 (0.86) 0.88 (0.87)

MutationAssessor 0.64 (0.73) 0.47 (0.81) 0.78 (0.85)

MutationTaster 0.63 (0.45) 0.41 (0.47) 0.72 (0.80)

PROVEAN 0.63 (0.55) 0.42 (0.60) 0.74 (0.79)

PolyPhen HDIV 0.63 (0.55) 0.42 (0.74) 0.75 (0.88)

PolyPhen HVAR 0.64 (0.59) 0.44 (0.59) 0.75 (0.77)

SIFT 0.64 (0.58) 0.44 (0.66) 0.76 (0.72)

SiPhy 29-way 0.59 (0.44) 0.33 (0.46) 0.67 (0.78)

phastCons 100-way 0.59 (0.39) 0.33 (0.68) 0.67 (0.78)

phyloP 100-way 0.60 (0.51) 0.37 (0.62) 0.73 (0.73)

sdAE 0.81 (0.69) 0.72 (0.79) 0.88 (0.79)

https://doi.org/10.1371/journal.pone.0192829.t004

Table 5. MLP’s and sdAE’s ROC curve AUC with 95% confidence intervals evaluated on subsets of SNVs from the training dataset II that could not be processed by

other predictors.

Score Missing predictions MLP sdAE

Eigen 1175 0.97 (0.94–0.98) 0.95 (0.92–0.97)

FATHMM 898 0.80 (0.75–0.85) 0.34 (0.28–0.42)

LRT 1772 0.94 (0.93–0.95) 0.80 (0.77–0.84)

MetaLR 118 0.76 (0.68–0.85) 0.59 (0.49–0.70)

MetaSVM 118 0.76 (0.67–0.85) 0.59 (0.48–0.69)

MutationAssessor 843 0.90 (0.88–0.92) 0.72 (0.67–0.77)

PROVEAN 426 0.85 (0.81–0.90) 0.47 (0.39–0.55)

PolyPhen HDIV 286 0.85 (0.80–0.89) 0.53 (0.46–0.60)

PolyPhen HVAR 286 0.84 (0.80–0.89) 0.53 (0.45–0.61)

SIFT 514 0.89 (0.85–0.92) 0.59 (0.52–0.66)

https://doi.org/10.1371/journal.pone.0192829.t005
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sdAE, MetaSVM and FATHMM) show identical performance in terms of the number of sig-

nificantly enriched terms −139, none of which were enriched in the misclassified subset (FDR

5%).

Diving deeper into the misclassified subset, we examined term enrichment in its false-posi-

tive (FP) and false-negative (FN) sections (Table 8). Here the MLP proved to be the most bal-

anced classifier, that is it doesn’t strongly gravitate towards making neither FN nor FP errors.

Supervised vs. Unsupervised

Some researchers argue that unsupervised inference can help improve prediction quality,

which can be hindered by poor coverage of the variome with reliable information on

Table 6. MLP’s and sdAE’s average precision with 95% confidence intervals evaluated on subsets of SNVs from the training dataset II that could not be processed by

other predictors.

Score Number predictions MLP sdAE

Eigen 1175 1.00 (0.99–1.00) 0.99 (0.99–1.00)

FATHMM 898 0.52 (0.42–0.62) 0.18 (0.11–0.25)

LRT 1772 0.83 (0.79–0.87) 0.74 (0.69–0.78)

MetaLR 118 0.81 (0.70–0.90) 0.63 (0.51–0.75)

MetaSVM 118 0.81 (0.71–0.90) 0.63 (0.51–0.75)

MutationAssessor 843 0.83 (0.78–0.87) 0.72 (0.67–0.77)

PROVEAN 426 0.69 (0.59–0.78) 0.41 (0.31–0.50)

PolyPhen HDIV 286 0.82 (0.75–0.87) 0.60 (0.52–0.68)

PolyPhen HVAR 286 0.81 (0.74–0.87) 0.60 (0.52–0.68)

SIFT 514 0.79 (0.72–0.86) 0.59 (0.51–0.66)

https://doi.org/10.1371/journal.pone.0192829.t006

Table 7. Average classification success rate across GO terms and the number of significantly enriched terms. The

number of terms enriched in the misclassified subset is given in parentheses.

Score Average success rate Significantly enriched

MLP 0.864 139 (0)

MetaLR 0.857 139 (0)

sdAE 0.850 139 (0)

MetaSVM 0.849 139 (0)

FATHMM 0.828 139 (0)

MutationAssessor 0.725 136 (0)

PolyPhen HVAR 0.720 134 (0)

Eigen 0.720 134 (0)

PROVEAN 0.714 133 (1)

SIFT 0.713 134 (1)

PolyPhen HDIV 0.711 135 (0)

CADD 0.707 131 (1)

MutationTaster 0.681 127 (2)

phyloP 100-way 0.671 126 (2)

DANN 0.668 126 (1)

LRT 0.665 122 (3)

SiPhy 29-way 0.642 120 (6)

phastCons 100-way 0.631 115 (10)

GERP++ 0.615 111 (14)

https://doi.org/10.1371/journal.pone.0192829.t007
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phenotypic categorisation [21]. CADD is probably the most noticeable implementation of this

approach. Since multiple studies, including this one, have shown that CADD performs signifi-

cantly worse than most of its purely supervised rivals, it becomes unclear, whether there is any

actual benefit of unsupervised learning in case of nsSNV classification. Most importantly,

more complicated tools, such as DANN and Eigen, based on the combination of CADD’s

inference model and deep learning, actually performed worse than CADD itself on our tests.

Some may argue that this lack of precision is due to the fact that CADD, DANN and Eigen

were developed with more attention paid to the variation in noncoding regions. Yet, that

doesn’t explain why our own hybrid semi-supervised model, which was absolutely focused on

the exome, didn’t beat its purely supervised sibling (though it did outperform most of the

other scores we tested). We believe that a lot more research should be invested into unsuper-

vised learning to uncover its full potential (or the lack thereof).

Conclusion

Here we successfully explored the possibility to efficiently utilise deep learning models to dis-

criminate neutral and likely pathogenic nsSNVs. We tried to use two distinct architectures, one

of which made use of unsupervised learning, and optimised hyper-parameters using a genetic

algorithm. Although this work was not conceived as a tool comparison, but rather an explor-

atory study, our results proved that even relatively simple modern neural networks significantly

improve prediction accuracy of a deleteriousness prediction tool. Though our semi-supervised

model didn’t outperform its purely supervised sibling, it bested most of the scores we tested in

the study. Our supervised model showed superior average accuracy as compared to other scores,

especially other deep learning-based tools. We have created an open-access web-server so that

others could easily access our MLP classifier: http://score.generesearch.ru/services/badmut/.

Table 8. Average deviation of FP/FN rates from equilibrium (imbalance) across all GO terms in the misclassified subsection of the test dataset II and the number of

terms significantly enriched in either the FP or FN subsets of the misclassified variations.

Score Average imbalance Significantly enriched

MLP 0.130 70

FATHMM 0.131 81

PolyPhen HVAR 0.137 93

SIFT 0.138 87

sdAE 0.143 82

MetaLR 0.145 78

MetaSVM 0.147 85

PolyPhen HDIV 0.153 100

MutationAssessor 0.161 99

Eigen 0.169 104

PROVEAN 0.170 100

phyloP 100-way 0.183 113

LRT 0.200 116

CADD 0.213 122

DANN 0.223 123

SiPhy 29-way 0.251 128

MutationTaster 0.266 129

phastCons 100-way 0.291 135

GERP++ 0.310 136

https://doi.org/10.1371/journal.pone.0192829.t008
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Although this model proved to perform better than any other tool we compared it to in terms

of various performance indicators, effective coverage and generalisability, we believe a lot

more more should be done to uncover the real potential of unsupervised and semi-supervised

models.

Supporting information

S1 File. Supervised training dataset. The final supervised dataset used for training and fine-

tuning.

(GZ)

S2 File. Additional benchmarks. Multiple additional performance indicators calculated on a

range of binary cutoff thresholds.

(TGZ)

Author Contributions

Conceptualization: Ilia Korvigo, Andrey Afanasyev.

Data curation: Ilia Korvigo, Andrey Afanasyev, Nikolay Romashchenko.

Formal analysis: Ilia Korvigo.

Funding acquisition: Andrey Afanasyev, Mikhail Skoblov.

Investigation: Ilia Korvigo.

Methodology: Ilia Korvigo.

Project administration: Mikhail Skoblov.

Software: Ilia Korvigo, Nikolay Romashchenko.

Supervision: Mikhail Skoblov.

Validation: Ilia Korvigo, Nikolay Romashchenko.

Visualization: Nikolay Romashchenko.

Writing – original draft: Ilia Korvigo.

Writing – review & editing: Ilia Korvigo.

References
1. Ng SB, Nickerson DA, Bamshad MJ, Shendure J. Massively parallel sequencing and rare disease.

Human Molecular Genetics. 2010; 19(R2):R119–R124. https://doi.org/10.1093/hmg/ddq390 PMID:

20846941

2. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: Application to cancer

genomics. Nucleic Acids Research. 2011; 39(17):37–43. https://doi.org/10.1093/nar/gkr407

3. Ng PC, Henikoff S. Predicting the Effects of Amino Acid Substitutions on Protein Function. Annu Rev

Genom Hum Genet. 2006; 7(1):61–80. https://doi.org/10.1146/annurev.genom.7.080505.115630

4. Thusberg J, Vihinen M. Pathogenic or not? And if so, then how? Studying the effects of missense muta-

tions using bioinformatics methods. Human Mutation. 2009; 30(5):703–714. https://doi.org/10.1002/

humu.20938 PMID: 19267389

5. Cooper GM, Goode DL, Ng SB, Sidow A, Bamshad MJ, Shendure J, et al. Single-nucleotide evolution-

ary constraint scores highlight disease-causing mutations. Nature Methods. 2010; 7(4):250–251.

https://doi.org/10.1038/nmeth0410-250 PMID: 20354513

6. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mam-

malian phylogenies. Genome Research. 2010; 20(1):110–121. https://doi.org/10.1101/gr.097857.109

PMID: 19858363

Generalising better: Applying deep learning to integrate prediction scores for WES variation studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0192829 March 14, 2018 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192829.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192829.s002
https://doi.org/10.1093/hmg/ddq390
http://www.ncbi.nlm.nih.gov/pubmed/20846941
https://doi.org/10.1093/nar/gkr407
https://doi.org/10.1146/annurev.genom.7.080505.115630
https://doi.org/10.1002/humu.20938
https://doi.org/10.1002/humu.20938
http://www.ncbi.nlm.nih.gov/pubmed/19267389
https://doi.org/10.1038/nmeth0410-250
http://www.ncbi.nlm.nih.gov/pubmed/20354513
https://doi.org/10.1101/gr.097857.109
http://www.ncbi.nlm.nih.gov/pubmed/19858363
https://doi.org/10.1371/journal.pone.0192829


7. Liu X, Jian X, Boerwinkle E. dbNSFP: A lightweight database of human nonsynonymous SNPs and

their functional predictions. Human Mutation. 2011; 32(8):894–899. https://doi.org/10.1002/humu.

21517 PMID: 21520341

8. Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: A database of human non-synonymous SNVs and their func-

tional predictions and annotations. Human Mutation. 2013; 34(9):1–14. https://doi.org/10.1002/humu.

22376

9. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and

Annotations for Human Nonsynonymous and Splice-Site SNVs. Human Mutation. 2016; 37(3):235–

241. https://doi.org/10.1002/humu.22932 PMID: 26555599

10. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for

reporting of incidental findings in clinical exome and genome sequencing. Genetics in medicine: official

journal of the American College of Medical Genetics. 2013; 15(7):565–74. https://doi.org/10.1038/gim.

2013.73

11. Shihab Ha, Gough J, Cooper DN, Stenson PD, Barker GLa, Edwards KJ, et al. Predicting the Func-

tional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov

Models. Human Mutation. 2013; 34(1):57–65. https://doi.org/10.1002/humu.22225 PMID: 23033316
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