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Abstract

A magnificent repository of Late Pleistocene terrestrial megafauna fossils is contained in ice-

rich loess deposits of Alaska and Yukon, collectively eastern Beringia. The stable carbon

(δ13C) and nitrogen (δ15N) isotope compositions of bone collagen from these fossils are rou-

tinely used to determine paleodiet and reconstruct the paleoecosystem. This approach

requires consideration of changes in C- and N-isotope dynamics over time and their effects

on the terrestrial vegetation isotopic baseline. To test for such changes between the Late

Pleistocene and modern time, we compared δ13C and δ15N for vegetation and bone collagen

and structural carbonate of some modern, Yukon, arctic ground squirrels with vegetation and

bones from Late Pleistocene fossil arctic ground squirrel nests preserved in Yukon loess

deposits. The isotopic discrimination between arctic ground squirrel bone collagen and their

diet was measured using modern samples, as were isotopic changes during plant decompo-

sition; Over-wintering decomposition of typical vegetation following senescence resulted in a

minor change (~0–1 ‰) in δ13C of modern Yukon grasses. A major change (~2–10 ‰) in

δ15N was measured for decomposing Yukon grasses thinly covered by loess. As expected,

the collagen-diet C-isotope discrimination measured for modern samples confirms that mod-

ern vegetation δ13C is a suitable proxy for the Late Pleistocene vegetation in Yukon Territory,

after correction for the Suess effect. The N-isotope composition of vegetation from the fossil

arctic ground squirrel nests, however, is determined to be ~2.8 ‰ higher than modern grass-

lands in the region, after correction for decomposition effects. This result suggests a change

in N dynamics in this region between the Late Pleistocene and modern time.

1 Introduction

The terminal Pleistocene ~13,000 years ago was a time of dynamic changes in large mammal

communities [1], climate [2], ice sheet extent [3], and range and composition of vegetation [4],

all of which was accompanied by a large global rise in atmospheric CO2 concentration (pCO2)
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[5]. Given the strong feedback mechanisms among herbivores, plant nutrient contents and

ecosystem nutrient cycling [6], a comparable shift in nutrient dynamics likely accompanied

such major environmental changes. Faith [7] suggested that a mode transition in N cycling

was the main cause of megafauna extinction in North America after the terminal Pleistocene,

driven mainly by a change in the N content of plants. He argued that environmental changes

including rising atmospheric CO2 concentrations and possibly elevated temperature and pre-

cipitation amounts shifted the nutrient cycle from an accelerating to a decelerating mode. In

the accelerating mode, abundant, excess plant N was returned to the soil by herbivores in read-

ily bioavailable forms. By comparison, the decelerating mode was associated with lower plant

N contents–a feedback reflecting lower soil N contents arising in large part by reduced returns

of easily bioavailable nitrogen to the soil via herbivore excreta. Consequences of this shift

included lower plant and soil N contents, reduced rates of nutrient cycling through the food

web, reduced forage production, a lower biomass carrying capacity of the ecosystem, and ulti-

mately collapse of megafauna populations. A study of lake sediment δ15N from a wide range of

ecosystems also reported a gradual decrease in N availability of terrestrial ecosystems between

~15,000 to 7,000 years ago, which suggests a shift in the nature of terrestrial N cycling [8].

A change in N dynamics and availability should be traceable using the δ15N of plants [9]

and animals. Higher plant δ15N generally reflects higher N availability and a more open N

cycle [10]. This higher δ15N is passed on to the second trophic level (consumers) through the

food chain [11]. Several studies have reported significantly different δ15N for herbivores over

different Quaternary time periods (pre-, full- and post-Last Glacial Maximum (LGM)) in

Alaska [12] and Eurasia [13–18], and some related those differences to a possible shift in the

δ15N of herbivore diet in response to climate change. Considering these studies and empirical

evidence for the influence of environmental factors on terrestrial N dynamics [19–21], some

changes in N-isotope dynamics should be expected between the Late Pleistocene and modern

time. If this prediction is accurate, then a suitably calibrated N-isotope baseline for vegetation

should be utilized for Late Pleistocene ecosystems when comparing the δ15N of fossil bone col-

lagen with modern counterparts [22].

In this study, we combine the stable carbon- and nitrogen-isotope compositions of modern

[9] and fossil plants and animals to test for changes in N-isotope dynamics in Yukon Territory,

northwest North America, between the Late Pleistocene and present time. Our study was

focused in the Yukon, including portions that were not glaciated during the Pleistocene. This

unglaciated region, known as Beringia, was an important terrestrial biotic refugium. It was

home to a large community of flora and megafauna, and was a migration route for animals

and people between Asia and North America during fully glacial times [23, 24]. At the end of

the Pleistocene, significant changes in soil, plant and animal communities greatly affected the

face of Beringia [4, 25–28].

We measured the stable carbon- and nitrogen-isotope compositions of modern Yukon arc-

tic ground squirrel (Urocitellus parryii) bone collagen and structural carbonate, and compared

these results to isotopic data for modern Yukon plants collected earlier by Tahmasebi et al. [9].

From this comparison, we have established the C- and N-isotope discrimination between arc-

tic ground squirrel bone collagen and diet. We also determined the post-senescence, over-win-

ter changes in δ13C and δ15N of six species of the most common Beringian plants. We then

compared these results with those for an archive of Late Pleistocene flora contained in perma-

frost-preserved nests of ancient arctic ground squirrels (Urocitellus parryi). This allowed us to

determine the effects of decomposition on the isotopic composition of fossil plants recovered

from fossil nests. We used the δ13C and δ15N of these plant macrofossils and fossil bones to

establish the differences between modern and Late Pleistocene C- and N-isotope baselines for

vegetation in this portion of eastern Beringia.

Change in Yukon 15N vegetation baseline between Late Pleistocene and modern time
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1.1 Terrestrial N cycling and plant δ15N

A higher rate of N loss processes (denitrification and volatilization) relative to internal N

cycling (nitrification, plant uptake, mineralization and immobilization) produces a more open

N cycle [29, 30]. The increased N supply for N loss reactions, and associated large isotopic frac-

tionations, leaves the soil system enriched in 15N [31–33]. Higher plant δ15N reflects higher N

availability and a more open N cycle in terrestrial ecosystems [8, 10], and provides an index of

N availability [20]. The main differences between more and less open N cycles are illustrated

in Supporting Information S1 Fig [9].

1.2 Plant and soil δ13C

Plant δ13C is a function of photosynthetic pathway (C3, C4, CAM) and environmental factors

including CO2 source, pCO2, water availability, latitude, altitude and irradiation [34, 35]. Gen-

erally, plant δ13C is affected by changing the δ13C of source CO2 or by modifying the ratio of

intercellular to ambient pCO2 (Ci/Ca) [36]. Wooller et al.’s [37] study of modern grasses and

sedges from Alaska and Yukon Territory reported higher δ13C for plants from dry habitats

than wet habitats. Plants respond to water stress through stomatal closure, which results in

reduced discrimination again 13C [34].

A decrease in stomatal density and plant δ13C during the deglacial period of the Late Pleis-

tocene (~15,000–12,000 years ago), when pCO2 increased from 190 to 280 ppm, has been

reported for fossil limber pine needles from western USA rat middens [38]. This effect may

have been further amplified since the Industrial Revolution (~ AD 1850) by an additional

increase in pCO2 and decrease in δ13Catm resulting from anthropogenic activities (known as

the Suess effect) [39]. During the LGM δ13Catm was −6.4 ‰ but has decreased steadily since

the Industrial Revolution to −8.6 ‰ in AD 2013 [40].

Vegetation following different photosynthesis pathways imparts different δ13C signals to

organic carbon (OC) transferred to sediments and soils [41], and this signal can be used to

track vegetation changes [42, 43]. Decomposition, however, can cause changes in original OC-

δ13C, as discussed below.

1.3 Bone δ15N and δ13C

Bone collagen is one of the most common tissues analyzed in trophic ecology and paleodietary

reconstruction. The most widely observed isotopic discriminations between collagen and diet

range from +3 to +6 ‰ for C (Δ13CCol-diet) [44, 45] and +2 to +5 ‰ for N (Δ15NCol-diet) [46–

48]. The 13C-enrichment (+9 to +11 ‰) reported for rodents from diet to bioapatite structural

carbonate [49, 50] can also be used for dietary reconstruction. The C-isotope spacing between

structural carbonate and collagen (Δ13CSc-Col) decreases with increasing trophic level [51] with

a mean Δ13CSc-Col of +6 to +7 ‰ for herbivores, +5 ‰ for omnivores and +4 ‰ for carnivores

[45]. This change may reflect different macromolecular compositions of diet among animals

and/or different digestive physiologies of animals at different trophic levels [52].

1.4 Changes in δ15N and δ13C during plant decomposition

Several studies have reported 13C- and 15N-enrichment of decomposed plants, resulting in soil

and sediment organic matter (OM) with higher δ13C and δ15N than fresh plant inputs (e.g.

[53–56]). Possible causes include (i) kinetic isotopic fractionation during microbial respiration

for C [57] and microbial metabolism for N, which results in contribution of 13C- and 15N-

enriched microbial biomass to residual OM, and (ii) release of 13C-depleted CO2 during

decomposition [57–59].

Change in Yukon 15N vegetation baseline between Late Pleistocene and modern time
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Microorganisms typically have higher δ13C (by 1–3 ‰) than fresh plants [58, 60, 61]. A key

role for microbes in plant decomposition is supported by a general decrease in C/N for OM,

approaching that of microbes [62], and an increased abundance of microbially derived com-

pounds [63] with increasing soil depth. Enrichment in 15N of decomposed OM also has been

explained by the higher δ15N of microbial products relative to fresh plant tissues; a metabo-

lism-related positive trophic shift in δ15N (from 1.5 to 6 ‰) has been reported for soil micro-

organisms [58, 61]. Along with changes in isotopic composition, a decrease in total mass and

C/N, and an increase in N content of plant detritus and soil OM, have been observed in most

studies of decomposition under both aerobic and anaerobic conditions [64–67].

The permafrost-preserved ancient arctic ground squirrel nests, which are the focus of this

study, are a mixture of plant remains, fungal hyphae, fecal pellets, seeds, hairs, insects and fau-

nal remains [68]. Because of their originally high content of fresh OC, the nests can be consid-

ered as hot spots for microbial activity. Plant decomposition may occur on the land surface

prior to gathering by squirrels, after collection and during storage in the active nest [69], and

following burial and incorporation into the permafrost. Plant decomposition was likely very

limited once in the permafrost zone, but probably not halted completely, given the possibility

of sub-zero adapted microbes [70].

1.5 Study area

The Klondike area of west-central Yukon Territory, Canada, is part of the unglaciated interior

regions of Alaska and Yukon that comprise eastern Beringia. Placer gold mining in the Klondike

area has exposed perennially frozen ice and organic-rich loess deposits that contain a wealth of

information about Pleistocene ecosystems [71, 72]. The majority of loess and colluviated loess was

deposited within valley bottom after 27ka BP followed by an accumulation of peaty organic mate-

rial in the early Holocene [73]. The loess was likely derived from a combination of the floodplains

of the Yukon and Klondike Rivers and local creek sources during Late Pleistocene dry periods

[73]. Paleosols showing evidence of mild chemical weathering are preserved within these frozen

sediments [74]. The loess deposits generally overlay gold-bearing valley bottom gravels. The loess

deposits are rich in Pleistocene vertebrate remains, dominated by megaherbivores such as steppe

bison (Bison priscus), woolly mammoth (Mammuthus primigenius) and horse (Equus spp.) [71].

Permafrost-preserved nests of ice age arctic ground squirrels from the loess deposits provide

detailed floristic data on the paleoenvironment during cold and dry phases of Late Pleistocene gla-

cial periods [68, 75, 76]. For the current study, we examined ancient arctic ground squirrel nests

collected from placer gold mines at Quartz Creek (QC), Independence Creek (IC), Sulphur Creek

(SC) and Eureka Creek (EC) (Fig 1). A few samples were also obtained from Glacier Creek (GC)

in the Sixty Mile River area and Little Blanche Creek (LB) (Fig 1).

2 Materials and methods

2.1 Sampling

Thirty-six (36) fossil arctic ground squirrel nests were collected, 24 from two main sites QC

and IC in summer 2013, and 12 from these and other sites prior to 2013 and maintained in fro-

zen condition in the collections of the Yukon Palaeontology Program, Department of Tourism

and Culture (Table 1). Eight loess samples were collected in summer 2013 at sites QC and IC.

Sample collection and field work did not involve any endangered or protected species. The

fossil bones collected were fully consumed by the isotopic analyses. Remaining fossil plant

material is being utilized in related a biomarker investigation. Unused loess is stored at the

University of Western Ontario. It will be returned to Yukon Territory in accordance with our

research permit once all investigations are completed.

Change in Yukon 15N vegetation baseline between Late Pleistocene and modern time
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Fig 1. Sample locations. GC = Glacier Creek; LB = Little Blanche Creek. Adapted after Kotler and Burn [77].

https://doi.org/10.1371/journal.pone.0192713.g001

Table 1. General data for sampling sites.

Site Site Latitude Longitude Year of # Nest # Loess ka BPa

ID Location Sampling Samples Samples

QC Quartz Creek 63.7513 −139.1252 2012/2013 11 7 >49.9

IC Independence Creek 63.9831 −139.0212 2013 16 1 >41.2 to 22.52

LB Little Blanche Creek 63.8312 −139.0872 2009 1 - >40.3

EC Eureka Creek 63.6300 −138.8251 2011 2 - 26.53

GC Glacier Creekb 64.0368 −140.8195 2013 1 - 16.58

SC Sulphur Creekc 63.6480 −138.6710 2011 5 - 21.18

a Site dates are based on the oldest and youngest radiocarbon dates obtained at each location (details in S1 Table).
b Sixty Mile River area.
c Dan Klipper/Rod Smith Placer mine.

https://doi.org/10.1371/journal.pone.0192713.t001
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At all sites, placer gold mining provided a series of cuts (25–500 m length) that presented

frozen sediments, from which fossil nests and loess were collected at different depths. Some

sites (QC, EC and SC; Fig 1) contain marker horizons in the form of the Dawson tephra (ca.

25.3 ka BP, [78]) and the Sheep Creek tephra (ca. 80 ka BP, [74, 79]).

Most fossil nests were completely frozen at the time of sampling (labeled ‘F’). Samples or

portions of samples that had thawed were labeled ‘T’. In some cases, parts of a single nest were

frozen, but had thawed recently where exposed by the mining cut. Frozen and thawed portions

were analyzed separately. An average composition was reported, if no significant isotopic dif-

ferences were observed between the ‘F’ and ‘T’ portions. All nests were kept frozen until pre-

pared for analyses, at which time they were freeze-dried.

Distinctive macrofossils were collected from the freeze-dried nests, including seeds, leaves,

stems, rodent bones, insects and hair. Plant macrofossils were identified to the closest possible

taxonomic resolution by comparison with Zazula et al. [68, 75, 80]. Radiocarbon dates of plant

tissues (leaf, stem) and/or bone samples from 10 nests plus two wood samples from the QC

and IC sites were obtained (S1 Table) from the NSF-Accelerator Mass Spectrometry facility at

the University of Arizona, Tucson, Arizona, USA.

Tahmasebi et al. [9] described collection and analysis of modern plants from east of Kluane

Lake and the Whitehorse area of Yukon Territory (Fig 1). Modern ground squirrel bones were

also collected from these areas (3 bones from Kluane Lake in 2013; 11 individuals from Erik

Nielsen Whitehorse International Airport in 2014).

Microscopic examination of plant tissues was performed using a Leica S8APO-MDG41 dis-

secting microscope. Some samples were also mounted on an Al-stub, coated with Au-Pd alloy,

and examined using a Hitachi S3400N scanning electron microscope operated at 25.0 kV.

2.2 Decomposition experiment

Above-ground portions of six modern plant species (Poa glauca, Elymus trachycaulus, Artemi-
sia frigida, Calamagrostis purpurascens, Festuca altaica, Elymus spicatus) were collected from

loess-fed grasslands east of Kluane Lake. These species were among the most common plants

in eastern Beringia during the Late Pleistocene [68, 81–84]. Six wooden boxes were prepared

and divided in half using a layer of polystyrene. The bottom of each box was covered with loess

(2 cm) from site QC. Air-dried tissues of each plant species were then cut into ~2–3 cm-long

pieces, and a layer (2 cm) placed on top of the loess, one species per box. The plants in half of

each box were then covered with 2 cm of loess (‘buried condition’) to simulate underground

nest conditions, while the other half of each box remained uncovered (‘not buried’ condition).

The boxes were placed outside in London, ON, Canada from October 21, 2013 to Septem-

ber 2, 2014. The plant tissues sampled at the start of the experiment (day 1), and then after 164,

253 and 317 days. Monthly mean temperature and total precipitation data for this period were

obtained from Environment Canada for the weather station closest (~8 km) to the site of the

decomposition experiment (S2 Table). The day-164 sampling (April 2, 2014) followed a very

cold winter; samplings at days-253 and -317 occurred during summer (June 30 and September

2, 2014). To test for reproducibility, three aliquots of plant tissue were taken from different

locations in each ‘not buried’ and each ‘buried’ portion of each box during each sampling. The

samples were washed with distilled water (DW), dried at 90˚C, ground and stored in glass vials

prior to analysis.

2.3 Sample preparation

Visibly well-preserved fossil plant materials were sampled from each nest and soaked in DW

three times, each time for 1–2 minutes, to disperse attached sediment. The samples were then

Change in Yukon 15N vegetation baseline between Late Pleistocene and modern time
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washed with DW, dried overnight at 90˚C, ground using a Wig-L-Bug1 (Crescent), and stored

in small sealed glass vials while awaiting analysis. A similar preparation was used for modern

plant samples [9].

Collagen was extracted from bone following Metcalfe et al. [85]. Bone bioapatite structural

carbonate was assessed for post-mortem alteration using the Crystallinity Index (CI) and car-

bonate/phosphate ratio (C/P) obtained by Fourier Transform Infrared Spectroscopy (FTIR),

following Webb et al. [86]. Precision was ± 0.11 for CI and ± 0.08 for C/P. Secondary carbon-

ate was not detected in the FTIR spectra of any sample, and therefore no treatment for second-

ary carbonate removal was performed prior to isotopic analysis.

About 0.5–1 mg of crushed bone was reacted with ortho-phosphoric acid (H3PO4) under

vacuum at 90˚C for 25 minutes using a Micromass MultiPrep automated sampling device. The

CO2 released was automatically transferred to a VG Optima isotope ratio mass spectrometer

(IRMS), operated in dual-inlet mode, for measurement of δ13C, following the protocol of Met-

calfe et al. [87] without any pretreatment for removing OM.

The preparation and analysis of loess for grain size, OM content, pH and mineralogy fol-

lowed methods described by Tahmasebi et al. [9]. Carbonate removal from the loess was per-

formed using acid fumigation [88].

2.4 OC and TN abundances and stable isotope analyses

Abundances of OC and total nitrogen (TN) in fossil plants and loess (after carbonate removal),

and their carbon- and nitrogen-isotope compositions, were determined using an Elemental

Analyzer (EA) (Costech Analytical Technologies, Valencia, CA, USA) coupled to a Thermo

Scientific DeltaPLUS XL IRMS (Thermo Scientific, Bremen, Germany). The average C and N

contents for the keratin standard was 47.74 ± 0.97 wt. % (n = 58) and 14.26 ± 0.44% (n = 113),

respectively, which compare well to their expected values of 48.22 ± 1.07 wt. % and 14.85 ±
0.43 wt. %. The average N content for NIST 1547 was 2.72 ± 0.07 wt. % (n = 50), which com-

pares well with its accepted value of 2.94 wt. %. Sample reproducibility for C was ± 0.43 wt. %

(23 replicates) and for N was ± 0.02 wt. % (30 replicates).

All stable isotope results are presented using δ-notation [89], and related to VPDB for car-

bon and AIR for nitrogen using two-point calibrations. Plant and collagen C- and N-isotope

compositions were calibrated using USGS40 and USGS41 [90]. Using this calibration, the

average δ13C and δ15N obtained for an internal keratin standard were −24.04 ± 0.07 ‰ (n =

75) and +6.42 ± 0.12 ‰ (n = 113), respectively, which compare well with their accepted values

of –24.05 ± 0.15 ‰ and +6.36 ± 0.22 ‰, respectively. The average δ13C obtained for IAEA-

CH-6 was −10.50 ± 0.09 ‰ (n = 26), which compares well with its accepted value of −10.45 ±
0.03 ‰. Sample reproducibility was ± 0.15 ‰ for δ13C (26 replicates) and ± 0.08 ‰ for δ15N

(32 replicates).

Structural carbonate C-isotope compositions (δ13CSc) were calibrated to VPDB using NBS

19 and LSVEC [91]. Using this calibration, the average δ13C obtained for internal calcite stan-

dards WS-1 and Suprapur were +0.69 ± 0.11 ‰ (n = 3) and −35.78 ± 0.01 ‰ (n = 2), respec-

tively, which compare well with their accepted values of +0.76 ‰ and −35.55 ‰, respectively.

2.5 Statistical analysis

Changes in δ13C and δ15N of plant detritus during the decomposition experiment were tested

using repeated measures ANOVA (general linear model) and applying the Greenhouse-Geis-

ser correction. When the time effect on δ13C and δ15N was significant, the Bonferroni post hoc
test was used to perform Pairwise Comparisons to determine at what interval the significant

difference occurred. Possible correlations between decomposed plant δ15N and C/N or C

Change in Yukon 15N vegetation baseline between Late Pleistocene and modern time
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content were assessed using Pearson’s rank correlation coefficient (R). All statistical analyses

were performed in SPSS 20.

3 Results

3.1 Loess

Loess δ15N ranges from +1.3 ‰ in QC-4 to +4.8 ‰ in IC-9 and QC-5; variation in δ13C is

smaller (−26.1 to −25.4 ‰) (Table 2). Physical and chemical properties of the loess are given in

Table A in S1 Text.

3.2 Plants

3.2.1 Fossil plant botanical composition. Plant macrofossils recovered from the nests are

dominated by grass florets (Alopecurus sp., Deschampsia caespitose and Carex spp.) and the

dried fruits of forbs (Taraxacum sp., Draba sp., Ranunculus sp., Lepidium densiflorum and

Plantago cf. canescens) (Figs 2 and 3). These observations are consistent with previous descrip-

tions of Late Pleistocene Beringia as a grass- and forb-dominated ecosystem [68, 83, 84, 92].

3.2.2 Plant C and N contents, stable isotope compositions and dating. The δ13C of the

fossil plant samples ranges from −27.7 to −24.1 ‰ (avg. −26.1 ‰); values of δ15N exhibit

much larger variation (+1.0 to +13.6 ‰; avg. +5.5 ‰) (Table 3). The N and C contents of all

samples range from 1.0 to 2.8 wt. % and 21.2 to 39.5 wt. %, respectively, and have an average

atomic C/N of 24.0 ± 6.0 (Table 3). Dates obtained for 10 selected samples from fossil nests (S1

Table) range from >49.9ka BP to 16.58ka BP. An age range for each sampling site was esti-

mated based upon the oldest and youngest radiocarbon date obtained at each site (Table 1).

Average δ13C and δ15N of all modern plant parts reported by Tahmasebi et al. [9] vary as

follows: (i) Kluane Lake, δ13C = −27.1 ± 1.2 ‰ (n = 207), and δ15N = −0.1 ± 2.2 ‰ (n = 207);

Whitehorse area, δ13C = −27.8 ± 1.2 ‰ (n = 115), and δ15N = +0.2 ± 2.2 ‰ (n = 115).

3.3 Bone isotopic compositions

Fossil bones recovered from the fossil nests consisted mostly of Arctic ground squirrels (IC-3,

IC-19, IC-9-2, IC-14) and lemmings (GZ-1, GZ-3-1, IC-9-1, QC-4). Two bone samples, which

differed in size and morphology, were selected from each of nests GZ-3 and IC-9. Specimen

GZ-3-2 most probably belongs to a megaherbivore (unknown species), and was not included

in isotopic averages for the rodents.

Bone collagen N contents (N >10 wt. %), atomic C/N (3.2 to 3.6) and extraction yields

(>2%) (Table 4) indicate excellent collagen preservation [93]. Fossil rodent bone δ13CCol and

δ15NCol range from −21.9 to −19.9 ‰ (avg. −21.3 ‰), and +3.9 to +5.6 ‰ (avg. +4.6 ‰),

Table 2. Isotopic composition of loess TN and OC.

Sample ID δ15N (‰, AIR) δ13C (‰, VPDB)

QC-2 +4.6 −25.8

QC-3 +3.4 −25.7

QC-4 +1.3 −26.1

QC-5 +4.8 −25.6

QC-6 +4.7 −25.4

QC-7 +4.3 −25.4

QC-8 +4.5 −25.4

IC-9 +4.8 −25.4

https://doi.org/10.1371/journal.pone.0192713.t002
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respectively (Table 4). Modern bone δ13CCol and δ15NCol are lower, ranging from −24.2 to

−21.4 ‰ (avg. −23.2 ‰), and +1.1 to +3.2 ‰ (avg. +2.1 ‰), respectively (Table 4). The aver-

age Δ13CCol-Bulk plant and Δ15NCol-Bulk plant for the modern bone collagen samples are +4.7 ‰

and +1.9 ‰, respectively, based on the average δ13C and δ15N obtained for the modern plants

from each site (Whitehorse and Kluane Lake; see Tahmesabi et al. [9]).

Mean FTIR-CI values of modern and fossil bone bioapatite are 2.5 ± 0.1 (n = 14) and 2.6 ±
0.2 (n = 8), respectively (S3 Table), typical of unaltered material [94]. The mean C/P of both

modern and fossil bones is 0.7 ± 0.1 (S3 Table), which is only slightly higher than well-pre-

served bone (~0.5) [95]. No secondary calcite or francolite was observed in the FTIR spectra.

Hence, the δ13CSc results are considered to reflect in vivo conditions. The δ13CSc of fossil bone

ranges from −14.5 to −12.0 ‰ (avg. −13.5 ‰), and the Δ13CSc-Col varies from +6.9 to +8.7 ‰

(avg. +7.8 ‰) (Table 4). For the modern bone samples, the δ13CSc varies considerably between

the two study areas, ranging from −9.6 to −8.8 ‰ (avg. −9.1 ‰) at Kluane Lake vs. −18.9 to

−16.9 ‰ (avg. −18.0 ‰) at Whitehorse (Table 4). The Δ13CSc-Col at Kluane Lake varies from

11.6 to 13.8 ‰ (avg. +12.7 ‰) vs. +5.0 to +6.2 ‰ (avg. +5.6 ‰) at Whitehorse.

Fig 2. Typical plant macrofossils recovered from fossil nests. (a) Deschampsia cespitose floret; (b) Deschampsia
cespitosa floret with stem; (c) Carex albonigra floret and seed; (d) Alopecurus sp. floret; (e) Draba sp. Silique; (f)

Ranunculus eschscholtzii-sulphureus type achene.

https://doi.org/10.1371/journal.pone.0192713.g002
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3.4 Modern plant decomposition

3.4.1 Isotopic data

Figs 4A and 4B and 5A and 5B illustrate the change in average plant litter δ13C (δ13Clitter) and

δ15N (δ15Nlitter), respectively, over 317 days, for ‘buried’ and ‘not buried’ samples, respectively

Fig 3. Typical plant macrofossils recovered from fossil nests. (a) Carex floret; (b) Campylium stellatum stem with leaves; (c)

Conioselinum cnidii folium carpel; (d) Asteracea achenese, pappus; (e) Lepidium densiflorum; (f) Phlox hoodii capsule; (g) Taraxacum
ceratophorum achene; (h) Pedicularis sp. achene; (i) Silene cf. taymirensis capsule with seeds inside; (j) Polemonium capsule; (k)

Ranunculuc pensylvanicus-macounii type achene; (l) Plantago cf. canescens capsule.

https://doi.org/10.1371/journal.pone.0192713.g003
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Table 3. C and N contents and isotopic compositions for fossil plants.

Nest ID δ13C δ15N C N Atomic C/N

(‰) (wt. %)

QC-1-T� −26.6 +4.6 29.5 1.7 20.8

QC-2-F −24.1 +2.1 31.4 1.4 25.8

QC-3-F −26.2 +1.1 28.1 1.6 20.4

QC-3-T −26.1 +2.4 33.5 1.8 21.8

QC-4-T −26.1 +1.9 31.4 1.6 22.4

QC-5-F −26.1 +1.8 32.2 2.0 19.0

QC-5-T −27.7 +2.1 32.1 2.0 18.5

QC-7-F −26.2 +2.6 38.7 1.1 39.6

QC-8-F −25.6 +7.5 36.0 1.8 22.9

QC-9-F −25.6 +9.3 32.3 2.8 13.4

QC-GZ-2-3 −26.1 +6.6 39.5 1.3 36.2

QC-GZ-5-9 −26.4 +3.9 37.9 1.4 32.3

QC-GZ-1 −25.7 +3.3 29.8 1.3 26.9

IC-1-F −26.7 +10.3 31.5 1.9 19.8

IC-1-T −25.6 +9.0 39.2 2.2 20.4

IC-2-F −26.6 +6.2 30.8 1.6 22.2

IC-3-F −26.4 +10.6 36.2 2.1 20.2

IC-4-F −26.9 +1.2 28.6 1.6 21.3

IC-5-F −26.5 +9.2 35.8 1.8 23.7

IC-6-F −27.6 +10.0 30.2 1.4 26.1

IC-7-F −25.7 +4.6 38.1 1.4 31.1

IC-7-T −25.3 +4.3 25.4 1.6 18.9

IC-8-F −25.9 +6.3 36.0 1.6 25.6

IC-8-T −26.8 +8.5 33.5 1.7 22.7

IC-9-F −27.0 +2.4 34.9 1.8 22.6

IC-9-T −26.3 +1.9 36.1 1.7 24.2

IC-10-F −26.0 +2.7 33.6 1.7 23.8

IC-11-F −26.4 +4.2 32.8 1.4 28.3

IC-12-F −26.3 +5.2 34.0 1.7 23.7

IC-13-T −25.2 +3.4 36.5 1.8 24.1

IC-14-F −26.2 +4.4 36.0 1.7 24.2

IC-14-T −26.1 +3.6 30.8 1.6 23.1

IC-15-T −25.9 +2.1 25.8 1.5 19.8

IC-19-T −26.2 +6.3 35.8 1.7 24.6

LB-GZ-1 −26.3 +7.1 31.4 2.0 18.5

GC-GZ-3 −25.7 +7.4 21.2 2.1 11.8

EC-GZ-6 −25.6 +7.5 36.6 1.7 24.8

EC-GZ-2 −26.8 +4.8 29.0 1.9 18.1

SC-GZ-8 −24.9 +5.8 29.3 1.7 20.7

SC-GZ-7 −26.5 +1.0 38.7 1.0 44.3

SC-GZ-4 −26.2 +5.2 30.1 1.3 27.8

SC-GZ-2 −24.7 +8.5 38.9 1.7 27.3

SC-GZ-10 −26.0 +13.6 33.4 1.5 26.3

�T: Thawed at the time of sampling; F: Frozen at the time of sampling.

https://doi.org/10.1371/journal.pone.0192713.t003
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(See Table A in S1 File for all data). Table 5 summarizes the repeated measure ANOVA results

for the time effect on δ13Clitter and δ15Nlitter during this experiment. For samples showing a sig-

nificant time effect on their isotopic compositions, the Benferroni post hoc test results are sum-

marized in Supporting Information (Table A for δ13C and Table B for δ15N in S2 File).

C. purpurascens is the only species showing a significant shift in δ13C (from −27.5 ‰ to

−25.5 ‰ for the ‘buried’ sample), particularly in the first 164 days (Table A in S2 File). A much

larger change is observed in δ15Nlitter for the buried samples, ranging from an increase of ~2.4

‰ for P. glauca to an increase of ~10.0 ‰ for F. altaica (Fig 5A). This change is statistically sig-

nificant for all species except E. spicatus (Table 5). For all samples, most of the 15N-enrichment

occurred in the first 164 days. For ‘not buried’ samples, only P. glauca shows a significant

change in δ15N, which is characterized by a progressive decrease in 15N (Table 5; Table B in S2

File).

3.4.2 C and N contents, atomic C/N, and SEM. All data are listed in Supporting Informa-

tion Tables A, B and C in S1 File. Atomic C/N of the starting materials ranges from 36.9 to

105.2 (Fig 6A and 6B), with P. glauca and A. frigida having the lowest ratio (<50), mainly

Table 4. Bone δ13CCol, δ
13CSc, δ

15NCol, CCol and NCol.

ID δ13CCol δ13CSc Δ13CSc-Col δ15NCol C N C/N Collagen

(‰ VPDB) (‰, AIR) (wt. %) (atomic) Yield (%)

Fossil bone

QC-4 −21.4 −13.1 +8.3 +4.8 37.6 13.2 3.3 8.5

IC-3 −21.4 −14.5 +6.9 +5.1 32.8 11.5 3.3 4.5

IC-9-1 −21.7 −14.3 +7.4 +4.0 42.4 14.7 3.4 5.1

IC-9-2 −21.5 −14.0 +7.6 +4.2 39.6 13.8 3.4 6.5

IC-14 −21.2 −12.5 +8.7 +3.9 28.7 9.3� 3.6 2.3

IC-19 −21.2 −13.2 +8.0 +4.6 43.8 15.9 3.2 15.3

LB-GZ-1 −21.9 −14.5 +7.4 +4.5 43.6 15.2 3.4 8.6

GC-GZ-3-1 −19.9 −12.0 +7.9 +5.6 42.4 15.0 3.3 9.1

GC-GZ-3-2 −19.5 - - +5.3 32.5 11.4 3.3 4.4

Modern

M-1-female1 −23.8 −18.3 +5.4 +1.3 48.3 16.8 3.4 15.4

M-2-male1 −24.2 −18.7 +5.6 +2.8 41.7 14.7 3.3 16.5

M-3-male1 −23.8 −17.7 +6.1 +2.8 47.9 16.7 3.4 15.7

M-5-male1 −23.9 −17.6 +6.2 +2.1 41.0 14.6 3.3 17.2

M-6-male1 −22.7 −16.9 +5.9 +2.3 42.2 14.7 3.4 16.4

M-7-male1 −23.5 −17.6 +6.0 +1.1 46.4 15.9 3.4 14.6

M-8-female1 −23.7 −18.3 +5.4 +1.9 47.5 16.5 3.4 15.3

M-9-male1 −23.4 −17.7 +5.7 +3.2 40.5 14.4 3.3 14.3

M-10-male1 −23.3 −18.3 +5.0 +2.4 41.1 14.6 3.3 16.7

M-11-male1 −23.5 −17.9 +5.6 +1.8 39.9 14.1 3.3 16.9

M-12-male1 −23.9 −18.9 +5.0 +2.0 42.2 15.0 3.3 15.3

M-142 −21.7 −9.6 +11.6 +1.8 43.9 15.6 3.3 7.0

M-152 −22.7 −8.9 +13.8 +1.8 41.8 14.3 3.4 12.9

M-162 −21.4 −8.8 +12.6 +1.9 36.2 12.8 3.3 8.9

1 Sampling site: Whitehorse.
2 Sampling site: East of Kluane Lake.

� Only 0.06 mg of the sample was available for analysis because of the small size of the bone fragment.

https://doi.org/10.1371/journal.pone.0192713.t004
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because of their higher N contents relative to other species. During the burial experiment, the

atomic C/N of all species decreased, except for A. frigida (Fig 6A). P. glauca and E. spicatus
show the smallest (16.3) and largest (77.7) changes, respectively. For ‘not buried’ samples,

there is no consistent pattern of change in atomic C/N (Fig 6B). ‘Buried’ plant detritus has

higher visible abundances of fungal hyphae than ‘not buried’ equivalents (Fig 7).

4 Discussion

4.1 Modern plant decomposition experiment

In general, the δ13Clitter does not show a clear time-dependent pattern during decomposition,

either for ‘buried’ or ‘not buried’ samples. C. purpurascens is the only species showing a signifi-

cant change (13C-enrichment), which occurs in the first 164 days of the ‘buried’ treatment.

The large increase in δ15Nlitter (2.5–10 ‰; Fig 5A) observed here for ‘buried’ vs. ‘not buried’

samples (Fig 5B), coupled with the decrease in C/N (16–78; Fig 6A) and the abundance of fun-

gal hyphae on the surfaces of the former (Fig 7), suggests a link with microbially mediated

decomposition of the litter. Greater decomposition of ‘buried’ vs. ‘not buried’ plant detritus

can be explained by a buffering role for soil in balancing pH, water and oxygen availability, all

Fig 4. Values of δ13Clitter vs. time during decomposition: (a) ‘buried’ and (b) ‘not buried’.

https://doi.org/10.1371/journal.pone.0192713.g004
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of which would favour decomposers [96]. In particular, soil water content undergoes greater

fluctuation at the soil surface because of the former’s direct exposure to wind, light and rain.

The appearance of earthworms in the ‘buried’ plant detritus at sampling days 253 and 317 is

a potential complication. Earthworms are rare in Yukon Territory at present, and their impor-

tance in Beringia over the time span considered here is unknown. Relative to other detriti-

vores, earthworms can accelerate OM decomposition rates [97–99]. Earthworms are also

known to lower SOM C/N via digestion driven by their gut microbial community [100]. The

abundant fungal hyphae observed in our experiment, however, suggest that bacterial commu-

nities related to earthworm arrival had not become dominant relative to fungal decomposers,

and hence our analogy to an earthworm-free system remains valid. We note also that most

change in C/N of the ‘buried’ plant detritus occurred prior to earthworm arrival.

Most 15N-enrichment of ‘buried’ samples occurred during the first 164 days (Fig 5A), when

the most labile plant material would have been in greatest abundance. The samples also

received the most precipitation during this time and were insulated from the coldest surface

temperatures by loess and snow cover, which are both conditions that favour decomposition.

Dried P. glauca and A. frigida, which had much lower initial C/N than other species exam-

ined, showed much less change in C/N during decomposition, and in ‘buried’ treatment they

showed only minor variation in δ13Clitter or δ15Nlitter. ‘Not buried’ samples behaved similarly,

Fig 5. Values of δ15Nlitter vs. time during decomposition: (a) ‘buried’ and (b) ‘not buried’.

https://doi.org/10.1371/journal.pone.0192713.g005
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Table 5. Repeated measure ANOVA test results for time effects on δ13Clitter and δ15Nlitter.

Plant ID Treatments δ13C (‰, VPDB) δ15N (‰, AIR)

p F(X,Y) p F(X,Y)

E. trachycaulus B 0.210 F(1.69,3.38) = 2.54 0.042 F(1.53,3.07) = 10.94

NB 0.241 F(1.22,0.52) = 2.48 0.256 F(1.29,2.57) = 2.26

C. purpurascens B 0.021 F(1.53,3.06) = 17.92 0.008 F(1.67,3.34) = 29.95

NB 0.052 F(1.10,1.93) = 14.94 0.795 F(1.32,2.64) = 0.14

P. glauca B 0.148 F(1.08,2.16) = 4.95 0.034 F(1.98,3.96) = 8.96

NB 0.131 F(1.25,2.50) = 5.04 0.004 F(1.87,3.74) = 34.91

F. altaica B 0.351 F(1.20,2.40) = 1.44 0.012 F(1.98,3.96) = 16.46

NB 0.316 F(1.00,2.01) = 1.76 0.327 F(1.00,2.01) = 1.65

A. frigida B 0.230 F(1.37,2.73) = 2.52 0.050 F(1.03,2.07) = 17.53

NB 0.480 F(1.97,3.95) = 0.89 0.227 F(1.43,2.86) = 2.51

E. spicatus B 0.842 F(1.12,2.23) = 0.07 0.079 F(1.06,2.11) = 10.38

NB 0.589 F(1.06,2.12) = 0.43 0.371 F(1.44,2.88) = 1.30

B: Buried

NB: Not Buried

Values in boldface are statistically significant (p� 0.05).

https://doi.org/10.1371/journal.pone.0192713.t005

Fig 6. Atomic C/N vs. time during decomposition: (a) ‘buried’ and (b) ‘not buried’.

https://doi.org/10.1371/journal.pone.0192713.g006
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except for a significant lowering of δ15Nlitter for P. glauca. Why P. glauca and A. frigida did not

show greater 15N enrichment during early decomposition may be related to litter quality [101],

which can affect microbially mediated decomposition. Artemisia contains essential oils, anti-

herbivory alkaloids and anti-fungal secondary metabolites, which inhibit bacterial and fungal

processes [102, 103].

Fig 8 presents a model for 13C-enrichment of ‘buried’ C. purpurascens and 15N-enrichment

of most species examined. Leaching early in decomposition [104] enriches the system in 15N

by removal of low-15N compounds [105]. Microbial respiration releases 13C-depleted CO2,

leaving microbial products enriched in 13C and causing a decrease in atomic C/N. The nega-

tive correlation between δ15N and both atomic C/N and C (wt. %) for all six species over 317

days (Fig 9) is similar to that between microbial 15N-enrichment and soil-soluble C/N reported

by Dijkstra et al. [106]. They suggested that early stages of plant decomposition are character-

ized by microbial assimilation of N, while N dissimilation is more prevalent in later stages.

Once labile C-compounds are consumed during early decomposition, microbes then consume

more N-rich compounds, dissimilating portions of organic N into NH4
+. After some NH4

+ is

Fig 7. SEM images of F. altaica: (1) before decomposition, (2) after 317 days of decomposition without a covering of

loess (‘not buried’), and (3) after 317 days of decomposition under a thin covering of loess (‘buried’). (Yellow arrows

point to fungal hypha).

https://doi.org/10.1371/journal.pone.0192713.g007
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Fig 8. Processes causing 13C- and 15N-enrichment of ‘buried’ decomposing plants: (1) leaching of 15N-depleted compounds [104, 105]; (2) C

mineralization and release of 13C-depleted CO2, and (3) microbial N metabolism (release of 15N-depleted NH3; enrichment of microbes in 15N

[106]).

https://doi.org/10.1371/journal.pone.0192713.g008
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assimilated, the remainder is released as NH3 (Fig 8). N-isotope fractionation during these

processes leads to 15N-enrichment of microbes and release of 15N-depleted NH3 [31]. While

the putative effect of earthworm gut contents on δ15Nlitter is unknown, their nutrient-rich casts

most probably contribute N, adding further complexity to the simple system described above.

Based on the pattern of change in C/N, which can be explained mostly by C loss (Fig 8), signifi-

cant change in bulk N content of the decomposed plant tissues plus microbial biomass is

unlikely. A few patterns remain unexplained, such as the decrease in δ15N of ‘not buried’

P. glauca as decomposition progressed. This experiment may not have reached steady state by

the end of 317 days.

We suggest that plant tissues underwent similar isotopic alteration following incorporation

into Pleistocene arctic ground squirrel nests. Therefore, consideration of decomposition

isotopic effect in interpreting isotopic data from fossil plants is necessary. Decomposition

of senesced plants at the ground surface, however, likely had little effect on plant isotopic

compositions.

Fig 9. Bivariate plot of (a) δ15N vs. atomic C/N, and (b) δ15N vs. C (wt. %) of decomposed plant debris.

https://doi.org/10.1371/journal.pone.0192713.g009
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4.2 Loess

The loess samples are dominated by silt (Table A in S1 Text), characteristic of other Klondike

loess and associated paleosols [73, 74], and their mineralogy (quartz, feldspar, calcite) (Table B

in S1 Text) is typical of Quaternary loess worldwide [107]. The OM content (5–20 wt. %) and

high abundance of fine and very fine roots in all loess samples suggest a base-rich environment

during the Late Pleistocene and that below-ground plant parts were a major source of OM

[74]. As also noted by Sanborn et al. [74], the presence of ground squirrel nests and the lack of

peat layers (OC>17 wt. %) indicate well-drained conditions in the past. The average loess

δ13C of −25.6 ‰ is typical of pre-Industrial Revolution C3 vegetation. Most loess samples have

a high and tight range of δ15N (+3.4 to +4.8 ‰). The one outlier (QC-4; δ15N = +1.3 ‰) repre-

sents a dark layer between two lighter loess layers, and has the highest OM (20.4 wt. %) and

OC (9.5 wt. %) contents of the samples analyzed (Table A in S1 Text). These features may indi-

cate a very cold period during which decomposition was limited.

4.3 Plant macrofossils

The δ13C of plant macrofossils (−27.7 to −24.1 ‰) from the Pleistocene ground squirrel nests

indicates C3 vegetation and is consistent (after Suess effect correction) with earlier results for

modern [9, 37] and Late Pleistocene fossil plants from eastern Beringia [92, 108]. The positive

δ15N (majority >+2 ‰) of the arctic ground squirrel nests is higher on average than reported

for modern plants [9] and Late Pleistocene plant macrofossils (avg. −2.8 ‰) [92] from eastern

Beringia. The N contents of the squirrel nest plants lie in the range known for modern subarc-

tic plants [9, 37]. The C contents are lower than reported for modern plants [9, 37], but similar

to Late Pleistocene fossil plants from eastern Beringia [37]. These results point to possible

changes in the original isotopic and elemental compositions of the fossil plants comprising the

arctic ground squirrel nests.

4.4 Fossil and modern bone collagen and bioapatite structural carbonate

The average δ13CCol of fossil bones (−21.3 ± 0.7 ‰) is similar to the range reported by Boche-

rens et al. [109] for four post-LGM ground squirrels (−21.0 to −20.3 ‰) from Switzerland,

which date to 14–12 ka BP. Assuming Δ13CCol-diet of +3 to +4 ‰ [110] and Δ13CSc-diet of +9.9

‰ [49], the average δ13CCol (−21.3 ± 0.7 ‰) and δ13CSc (−13.5 ± 1.0 ‰) of these fossil bones

suggest an entirely C3 diet. This result is consistent with previous paleovegetation reconstruc-

tions for eastern Beringia [37, 92].

The average δ13CCol of the modern ground squirrel bones (−23.2 ± 0.8 ‰) also compares

well with results for the fossil bones (after Suess effect correction (~+2.2 ‰)). The average

δ13CSc for these samples, however, differs between localities. At Whitehorse, the average δ13CSc

(−18.0 ± 0.6 ‰) indicates an entirely C3 diet, whereas the average δ13CSc (−9.1 ± 0.4 ‰) at Klu-

ane Lake suggests a mixed diet of C3 plants and more 13C-rich vegetation. The Kluane Lake

δ13CSc can be explained if protein (represented by collagen) was derived mainly from the C3

portion of the diet, whereas whole diet (represented by structural carbonate), which includes

carbohydrates and lipids, came from a C4 source or 13C-rich macrophytes. The high Δ13CSc-Col

of Kluane Lake ground squirrels (+12.7 ± 1.1 ‰) is similar to that of captive rats raised on a

mixed diet of C3-proteins and C4-carbohydrates and lipids [49, 50]. A significant presence of

C4 plants in subarctic regions is not expected [111], although C4 plants (e.g. Muhlenbergia
richardsonis) are known from the Kluane Lake area (Consortia of Pacific Northwest Herbaria:

B. A. Bennett Herbarium). Wooller et al. [37] also reported a few C4 grasses from Alaska and

Yukon with δ13C ranging from −14 to −12 ‰. Consumption of high-13C macrophytes is also

possible given the study area’s proximity to Kluane Lake at its junction with the Slims River.
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There, very shallow water provides an ephemeral home for submergent macrophytes, which

are exposed on river/delta flats during seasonal dry conditions. Consumption of high-13C mac-

rophytes or C4 plants that likely have low protein content (as reported for M. richardsonis by

Dittberner and Olsen [112]), could increase consumer’s δ13CSc, without significantly changing

δ13CCol.

The δ15NCol of the fossil bones (+3.9 to +5.6 ‰) is much higher than reported by Bocherens

et al. [109] (+1.7 to +2.5 ‰) for the post-LGM ground squirrels from Switzerland. Much of

this greater enrichment in 15N is unlikely to be related to significant consumption at higher

trophic levels, given the largely herbivorous nature of arctic ground squirrels, a condition also

implied by the Beringian samples’ Δ13CSc-Col (+6.9 to +8.7 ‰) [45]. That said, minor con-

sumption of insects, small invertebrates, and other carrion cannot be ruled out. The implica-

tions of this difference in N-isotope composition are discussed next.

4.5 Late Pleistocene Beringia and modern comparisons

There is no exact modern analogue for Late Pleistocene Beringia [4, 27]. Some portions of

west-central Yukon, however, such as the eastern shoreline of Kluane Lake, may be broadly

comparable in climatic conditions (windy, arid, low temperature), sediment and soils (contin-

uous loess deposition, high pH, high OM) and vegetation (an Artemisia-Festuca grassland)

[73, 81] [9, 68, 83, 84]. Local factors including elevation, topography, strength of loess deposi-

tion, drainage, aspect, slope and water content, which are superimposed upon the regional pat-

terns, have determined the ecological mosaics at both modern Kluane Lake and ancient

eastern Beringia [80, 81]. The south-central Whitehorse valley, located farther to the east from

Kluane Lake, has similar continental, cold and dry climate and grassland vegetation.

4.6 Modern and ancient C and N isotope baselines

The higher average δ13C and δ15N of fossil plants and bone collagen relative to their modern

equivalents (Fig 10) could point to a change in N- and C-isotope food web baselines in this

ecosystem between the Late Pleistocene and present time. The lower average δ13C of modern

plants (by ~1.4 ‰) and modern arctic ground squirrel bone collagen (by ~2.0 ‰) relative to

their ancient counterparts can be largely explained by the ~2.2 ‰ decrease in δ13Catm arising

from the Suess effect. The difference between modern and ancient plant δ13C, however, is ~0.8

‰ smaller than predicted from the change in δ13Catm. One possible explanation is that low-

level microbial processes further modified the δ13C of ancient vegetation during its residence

in permafrost.

The fossil plants and fossil bone collagen also have higher average δ15N than their modern

counterparts (Fig 10). The difference for plants (~5.5 ‰), however, is twice as large as for

bones (+2.5 ‰). Part of the higher plant δ15N could indicate a different rate of N dynamics in

Beringia during the Late Pleistocene than at present time. The much larger size of this differ-

ence between fossil and modern plants compared to fossil and modern bone collagen, how-

ever, suggests that fossil plant δ15N was also affected by other factors.

Three lines of evidence suggest that microbially mediated decomposition modified the orig-

inal N-isotope composition of fossil plants. First, the fossil plants have higher N contents,

lower C contents, and significantly lower atomic C/N than the modern plants (Fig 11), consis-

tent with the results of the decomposition experiment. Second, SEM images of plant macrofos-

sils indicate plant tissue alteration and establishment of fungal hyphae and bacteria (Fig 12).

Third, if ground squirrels/lemmings ate similar plant material to that stored in their nests,

then the δ-values for their diet should match those measured for these plants, assuming mod-

ern values for Δ13CCol-bulk plant (4.7 ‰) and Δ15NCol-bulk plant (1.9 ‰).
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For δ13C, the match is good, except for one sample (GZ-3) (Fig 13). For δ15N, only two

nests (IC-9 and QC-4) have measured δ15N close to predicted values (Fig 14).

The fossil plant isotopic compositions were corrected for the effects of decomposition using

the isotopic discrimination factors measured for modern bone collagen and plants (Δ13CCol-

bulk plant and Δ15NCol-bulk plant). These discrimination factors were applied to the C- and N-iso-

tope compositions of fossil bones collected from the same nests. Following this correction, the

calculated average δ13C of the fossil plants is still higher than that of the modern plants (~1.5

‰) (Fig 15), which can be explained for the most part by the Suess effect. The calculated aver-

age δ15N of the fossil plants is ~2.8 ‰ higher than modern plants from the region (Fig 15).

Fig 10. Average δ15N vs. δ13C of fossil and modern samples.

https://doi.org/10.1371/journal.pone.0192713.g010

Fig 11. Average N vs. C contents of fossil and modern plants.

https://doi.org/10.1371/journal.pone.0192713.g011
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This difference, we suggest, indicates that the food web δ15N baseline was higher in the Late

Pleistocene than at present, which is consistent with a more open N cycle.

While plant tissues and bone collagen of the Late Pleistocene samples have higher δ15N

than their modern equivalents, a similar pattern is not observed for loess. The average δ15N

(~+4.1 ± 1.2 ‰; n = 8) of the Late Pleistocene loess is similar to that of modern equivalents

(~+4.9 ± 1.6 ‰; n = 14) sampled from various depths at Kluane Lake [9]. Our data are

Fig 12. SEM images of plant macrofossils: (a, b) typical decomposed surface of fossil stems, and (c, d) fungal hypha

(yellow arrows) and bacteria cells (red arrows) on fossil stem surfaces.

https://doi.org/10.1371/journal.pone.0192713.g012

Fig 13. Measured δ13C vs. predicted δ13C for fossil plants using fossil bone δ13C and modern Δ13CCol-Bulk plant =

4.7 ‰.

https://doi.org/10.1371/journal.pone.0192713.g013
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insufficient to explain this similarity. Perhaps bulk sediment δ15N is not representative of bio-

available N [31]. Also, it is unknown if the ancient loess samples analyzed in this study had

experienced weak pedogenesis. Position within a soil profile can exert a strong control on soil

δ15N (e.g. [31, 33, 113]).

Another intriguing consideration is the role of biological soil crusts (BSC) in the N cycle in

such grassland ecosystems [114, 115]. The abundance of lichen-dominated BSC in the Kluane

Lake area, for example, has been suggested as the most likely source of new N addition to the

soil [114]. BSE likely plays a very significant role in regulating the productivity of these grass-

lands at present. At Kluane Lake, for example, the N content of BSC is ~8-times higher than the

underlying mineral soil [114]. As also reported by Marsh et al. [114], the BSC δ15N in the Klu-

ane Lake area is significantly lower than the underlying mineral soil: +3.1±1.5 ‰ for the mineral

soil versus +2.2±1.7 ‰ for bulk BSC in one set measurements, and –0.2±0.6 ‰ for upper BSC

Fig 14. Measured δ15N vs. predicted δ15N for fossil plants using fossil bone δ15N and modern Δ15NCol-Bulk plant =

1.9 ‰.

https://doi.org/10.1371/journal.pone.0192713.g014

Fig 15. Values of δ15N vs. δ13C of plant macrofossils after correction for the isotopic effects of decomposition

(squares). The mean (filled circle) and range (whiskers) of δ15N and δ13C for modern plants from the region [9] are

shown in black.

https://doi.org/10.1371/journal.pone.0192713.g015
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and +1.6±0.8 ‰ for lower BSC in a second set of measurements. The lower BSC δ15N signals

atmospheric N fixation as the prevailing process responsible for this N. What remains to be

learned in future research, however, is whether BSC was important during Beringian times.

The significant and continuous environmental changes that accompanied disappearance of

large mammals at the terminal Pleistocene throughout the Holocene, together with rising

atmospheric pCO2 that followed, could have led to a gradual shift in N dynamics in eastern

Beringia. More isotopic data from fossil samples with a continuous chronology spanning Late

Pleistocene to modern time in this region is required to further verify the results and interpre-

tations presented here, and clarify the main triggers of the proposed N-isotope shift.

5 Conclusions

Comparison of δ15N and δ13C of fossil terrestrial plants and rodent bone collagen from Late

Pleistocene, eastern Beringian localities in Yukon Territory with modern equivalents indicate

a change in the C- and N-isotope food web baseline. The plant δ13C change is explained mostly

by the Suess effect on modern samples. Higher δ15N of the plant macrofossils relative to mod-

ern equivalents reflect: (i) microbially mediated decomposition of fossil plants, and (ii) a differ-

ent N dynamic in the Late Pleistocene than at present time in these parts of Yukon Territory.

Eastern Beringia was an important end-member of the now-vanished Mammoth Steppe.

Increasingly, changes in the size, position and extent of overlap among the isotopic niches of the

assemblage of Mammoth Steppe megaherbivores, as defined by δ13CCol and δ15NCol, are the tools

of choice for inferring ecological changes over time in this now vanished megacontinental biome.

Such analyses are then used to infer the climatic, anthropogenic or other processes that led to the

Mammoth Steppe’s fragmentation and ultimate collapse–with attendant lessons for ecosystem

destabilization during the current period of climate warming. Recognizing and then defining food

web baseline shifts in δ15N and δ13C are a fundamental prerequisite to any such explanations of

collagen stable isotopic data for Late Pleistocene megaherbivores from this region.

Supporting information

S1 Table. Radiocarbon dates for selected materials recovered from fossil nests.

(DOCX)

S2 Table. Weather data for London, ON, Canada (decomposition experiment).

(DOCX)

S3 Table. FTIRCI and C/P for fossil and modern bone bioapatite.

(DOCX)

S1 Fig. Asimplified model for the “openness” of the N cycle in ecosystems with high (a)

and low (b) N availability (from Tahmasebi et al. [9]).

(a): (a) N mineralization: Conversion of organic N to NH4
+ (ε = 0–5 ‰); (b) Microbial assimi-

lation: incorporation of NH4
+ into microbial biomass (ε = 14–20 ‰); (c) NH3 volatilization:

conversion of NH4
+

(aq) to NH3(g) (ε = 40–60 ‰); (d) Nitrification: conversion of NH4
+ to

NO3
- (ε = 15–35 ‰); (e) Plant uptake and assimilation of NH4

+ (ε = 9–18 ‰); (f) Plant uptake

and assimilation of NO3
- (ε = 0–19 ‰); (g) NO3

- leaching (ε = 0–1 ‰); (h) Denitrification:

conversion of NO3
- to N2O, N2 and NO2 (ε = 28–33 ‰).(b): (a) N mineralization: Conversion

of organic N to NH4
+ (ε = 0–5 ‰); (b) Microbial assimilation: incorporation of NH4

+ into

microbial biomass (ε = 14–20 ‰); (c) Nitrification: conversion of NH4
+ to NO3

- (ε = 15–35

‰); (d) Plant uptake and assimilation of NH4
+ (ε = 9–18 ‰); (e) Plant uptake and assimilation

of NO3
- (ε = 0–19 ‰). Values of ε are from Robinson [29] and Houlton and Bai [105]).

(TIF)

Change in Yukon 15N vegetation baseline between Late Pleistocene and modern time

PLOS ONE | https://doi.org/10.1371/journal.pone.0192713 February 15, 2018 24 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192713.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192713.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192713.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192713.s004
https://doi.org/10.1371/journal.pone.0192713


S1 Text. Loess chemical and physical properties. Table A: Loess characteristics.

Table B: Loess mineralogy based on XRD.

(DOCX)

S1 File. Table A: δ13C and δ15N for replicate analyses from the decomposition experiment.

Table B: C and N contents for replicate analyses from the decomposition experiment.

Table C: Atomic C/N of plant detritus during decomposition.

(DOCX)

S2 File. Table A: Benferroni post hoc test for differences in average δ13Clitter between Day 1

and Days 164, 253 and 317 for samples showing significant time effect.

Table B: Benferroni post hoc test for differences in average δ15Nlitter between Day 1 and Days

164, 253 and 317 for samples showing significant time effect.

(DOCX)

Acknowledgments

We thank Kim Law, Li Huang and Tessa Plint of Laboratory for Stable Isotope Science at Uni-

versity of Western Ontario for technical assistance and Tessa Plint, Rachel Schwartz-Narbonne

and Matthew Longstaffe for assistance with sampling. Modern bone samples were provided by

Meghan Larivee from Animal Health Laboratory, Environment Yukon. Fossil nests were col-

lected with the permission of the Yukon government paleontology program and Yukon First

Nations (License No. 13-52S&E). Greg Hodgins and staff at the NSF Arizona AMS Laboratory

performed the radiocarbon dating. Funding was provided by a Natural Sciences and Engineer-

ing Research Council of Canada (NSERC) Discovery Grant (FJL), an Ontario Graduate Schol-

arship (FT), the Canada Foundation for Innovation (FJL) and the Ontario Research Fund

(FJL). Additional research time was provided through the Canada Research Chairs program

(FJL). We also thank Paul Sanborn and Marina Suarez, and the PLOS ONE editorial team, for

thoughtful suggestions for improvement of an earlier version of this manuscript. This is Labo-

ratory for Stable Isotope Science Contribution # 343.

Author Contributions

Conceptualization: Fred J. Longstaffe.

Data curation: Fred J. Longstaffe.

Formal analysis: Farnoush Tahmasebi.

Funding acquisition: Fred J. Longstaffe.

Investigation: Farnoush Tahmasebi.

Methodology: Farnoush Tahmasebi.

Project administration: Farnoush Tahmasebi, Fred J. Longstaffe.

Resources: Fred J. Longstaffe, Grant Zazula.

Supervision: Fred J. Longstaffe.

Writing – original draft: Farnoush Tahmasebi.

Writing – review & editing: Farnoush Tahmasebi, Fred J. Longstaffe.

Change in Yukon 15N vegetation baseline between Late Pleistocene and modern time

PLOS ONE | https://doi.org/10.1371/journal.pone.0192713 February 15, 2018 25 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192713.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192713.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192713.s007
https://doi.org/10.1371/journal.pone.0192713


References
1. Koch PL, Barnosky AD. Late Quaternary extinctions: State of the debate. Annu Rev Ecol Evol S.

2006; 37: 215–50.

2. Fritz M, Herzschuh U, Wetterich S, Lantuit H, De Pascale GP, Pollard WH, et al. Late glacial and Holo-

cene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Terri-

tory, Canada). Quatern Res. 2012; 78: 549–60.

3. Stuart AJ. Mammalian extinction in the late Pleistocene of Northern Eurasia and North America. Biol

Rev. 1991; 66: 453–562. PMID: 1801948

4. Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS. Pleistocene megafaunal collapse, novel

plant communities, and enhanced fire regimes in North America. Science. 2009; 326: 1100–3. https://

doi.org/10.1126/science.1179504 PMID: 19965426

5. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, et al. Climate and atmospheric history

of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999; 399: 429–36.

6. Pastor J, Cohen Y, Hobbs NT. The roles of large herbivores in ecosystem nutrient cycles. In: Kjell D,

Bergström R, Duncan P, Pastor J, editors. Large herbivore ecology, ecosystem dynamics and conser-

vation editors. Cambridge University Press, Cambridge; 2006. pp. 298–324.

7. Faith JT. Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North

America. Quat Sci Rev. 2011; 30: 1675–80.

8. McLauchlan KK, Williams JJ, Craine JM, Jeffers ES. Changes in global nitrogen cycling during the

Holocene epoch. Nature. 2013; 495: 352–5. https://doi.org/10.1038/nature11916 PMID: 23518563

9. Tahmasebi F, Longstaffe FJ, Zazula G, Bennett B. Nitrogen and carbon isotopic dynamics of subarctic

soils and plants in southern Yukon Territory and its implications for paleoecological and paleodietary

studies. PLoS ONE. 2017; 12: e0183016. https://doi.org/10.1371/journal.pone.0183016 PMID:

28813532

10. Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ. Long-term change in the nitrogen cycle

of tropical forests. Science. 2011; 334: 664–6. https://doi.org/10.1126/science.1211979 PMID:

22053047

11. DeNiro M, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim

Cosmochim Acta. 1981; 45: 341–51.

12. Fox-Dobbs K, Leonard JA, Koch PL. Pleistocene megafauna from eastern Beringia: Paleoecological

and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon rec-

ords. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2008; 261: 30–46.

13. Drucker DG, Bocherens H, Billiou D. Evidence for shifting environmental conditions in Southwestern

France from 33 000 to 15 000 years ago derived from carbon-13 and nitrogen-15 natural abundances

in collagen of large herbivores. Earth Planet Sci Lett. 2003; 216: 163–73.

14. Drucker DG, Bridault A, Iacumin P, Bocherens H. Bone stable isotopic signatures (15N,18O) as tracers

of temperature variation during the Late-glacial and early Holocene: case study on red deer Cervus

elaphus from Rochedane (Jura, France). Geol J. 2009; 44: 593–604.

15. Iacumin P, Nikolaev V, Ramigni M. C and N stable isotope measurements on Eurasian fossil mam-

mals, 40 000 to 10 000 years BP: Herbivore physiologies and palaeoenvironmental reconstruction.

Palaeogeogr, Palaeoclimatol, Palaeoecol. 2000; 163: 33–47.

16. Richards MP, Hedges REM. Variations in bone collagen δ13C and δ15N values of fauna from North-

west Europe over the last 40 000 years. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2003; 193: 261–7.

17. Stevens RE, Hedges REM. Carbon and nitrogen stable isotope analysis of northwest European horse

bone and tooth collagen, 40,000BP–present: Palaeoclimatic interpretations. Quat Sci Rev. 2004; 23:

977–91.
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