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Abstract

Cell surface expression of α4β7, α4β1 and αEβ7 integrins play a key role in T cell distribu-

tion. Understanding the contribution of integrins to the density and ratios of CD4+: CD4negT

cell at the portals of entry for HIV is of fundamental importance for the advance of more

effective HIV prevention strategies. We therefore set out to characterize and compare the

expression of α4β7, α4β1 and αEβ7 integrins on systemic, cervical and rectal CD4+ and

CD4negT cells isolated from a cohort of healthy Kenyan women at low risk for sexually trans-

mitted infections (STI) (n = 45). Here we show that blood and cervix were enriched in

α4+β1+CD4+T cells and α4+β7hiCD4+T cells, whereas the rectum had an equal frequency

of α4+β7hiCD4+T cells and αE+β7hiCD4+T cells. Most cervical and rectal αE+β7hiCD4+T

cells expressed CCR5 as well as CD69. Interestingly, αEβ7 was the predominant integrin

expressed by CD4negT cells in both mucosal sites, outnumbering αE+β7hiCD4+T cells

approximately 2-fold in the cervix and 7-fold in the rectum. The majority of αE+β7hiCD4negT

cells expressed CD69 at the mucosa. Taken together, our results show unique tissue-spe-

cific patterns of integrin expression. These results can help in guiding vaccine design and

also the use of therapeutically targeting integrin adhesion as a means to preventing HIV.

Introduction

Most HIV transmission globally occurs through sexual intercourse. Scrutinizing the events

associated with the influx of activated CCR5+CD4+T cells into the genital and gut mucosa and

the maintenance of a pool of HIV-specific effector memory CD8+T cells at the portal of entry

to HIV can inform HIV vaccine and therapy design. Integrins are αβ heterodimeric, trans-

membrane proteins that among other functions, direct cell trafficking and retention at various

anatomical sites [1]. Among the 24 αβ integrin pairs identified to date, three of them are
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especially important for T cell localization: α4β7, αEβ7 and α4β1. α4β7 integrin binds predomi-

nantly to MAdCAM-1 (mucosal addressin cell adhesion molecule-1), a molecule expressed on

endothelial cells of the gastrointestinal and genital tract, and it is well known as a gut-homing

marker [2]. αEβ7 binds to E-cadherin and plays a role on T cell retention in epithelial tissues

such as skin and gut [3, 4]. α4β1 integrin, also named VLA-4 (very late antigen-4), is expressed

on monocytes and lymphocytes, but in contrast to the first two integrins is also expressed on

many other cell types. α4β1 binds to VCAM-1 (vascular cell adhesion protein-1) and can direct

cell migration to a diverse set of sites, including the genital tract, gut, lungs and brain.

Studies have demonstrated that CD4+T cells expressing α4β7 and α4β1 are more susceptible

to HIV infection. CD4+T cells harboring α4β7 were preferentially targeted during HIV/SIV

infection [5, 6]. High expression of α4β7 in memory CD4+T cells has been shown to correlate

with increased susceptibility to rectal SIV infection and are associated with higher viral loads

in macaques [7, 8]. Increased availability of α4β7+CD4+T cells in the vaginal tissue has been

associated with an increased risk of SHIV acquisition [9]. In humans, the frequency of

α4β7+CD4+T cells in peripheral blood has been shown to be associated with increased rates of

HIV infection and HIV clinical outcomes [10]. Additionally, α4β1-expressing CD4+T cells iso-

lated from cervix were shown to be preferentially infected with HIV R5-pseudovirus in an in
vitro assay [11].

The association of enhanced HIV susceptibility with α4β7+CD4+T cells availability encour-

aged the investigation of targeting α4β7 with humanized anti-α4β7 monoclonal antibodies

(mAbs) on SIV/HIV infection. Anti-α4β7 mAbs have been used in humans to treat ulcerative

colitis and Crohn’s disease [12, 13]. Administration of anti-α4β7 mAb in a non-human pri-

mate (NHP) model challenged with SIVmac251 intravaginally had a significant impact on

decreasing SIV acquisition and delaying disease progression [14]. More recently Byrareddy

et al (2016) showed that a regimen of anti-retroviral therapy (ART) combined with anti-α4β7

mAb was able to suppress viral load in rhesus macaques infected with SIVmac239 with no viral

rebound observed even after both therapies were stopped [15]. The mechanisms by which

anti-α4β7 mAb have conferred protection remains elusive.

Conversely, there is growing evidence that the formation and maintenance of a pool of tis-

sue resident memory T (TRM) cells can play a pivotal role in mounting rapid recall responses

[16, 17] and generation of an antiviral state [18, 19]. Despite the absence of definitive markers

of TRM cells, there is an agreement about the importance of CD103 (αE) expression in this

population. Although most of the studies discuss TRM as CD8+T cells, CD4+T cells also persist

at the tissue as TRM cells [20, 21]. The role of αEβ7 as an adhesion molecule in this context has

been under-explored and invites further investigation especially in humans.

In this study, we characterized the frequency of CD4+ and CD4negT cells expressing

αE+β7hi, α4+β7hi, α4intβ7int and α4+β1+ in blood, cervix and rectum of healthy Kenyan women

and also their co-expression with the early activation marker CD69. The frequency of integrin

expressing-CD4+T cells co-expressing CCR5 in these sites were also a focus of analysis.

Our work reveals that cervical and rectal αE+β7hiCD4+T cells displayed the highest expres-

sion of CCR5 and CD69 when compared to CD4+T cells expressing the other integrins or

compared to α4-β7-CD4+T cells. Analysis of integrin expressions on CD4negT cells revealed

that αEβ7 is particularly important for the distribution of this cell type in mucosal sites poten-

tially serving as a key integrin that determines and maintains a protective frontline pool of

cells at the site of infection. We have defined and detailed the compartmentalization of integrin

expression on T cell subsets in directly relevant human tissue i.e. the sites of HIV entry and

believe this work will facilitate the development of optimized vaccines and therapeutics that

take into account the diversities of mucosal tissues involved in HIV susceptibility and protec-

tion against infection.

αEβ7, α4β7 and α4β1 integrin contributions to T cell distribution in blood, cervix and rectal tissues
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Material and methods

Clinical specimens

Baseline samples collected from women enrolled at KAVI-VZV-001 trial (n = 45) were

included in this study. The participants enrolled at the study aged 26 (21.5–30.5) years

(median, IQR), were seronegative for HIV-1 and HIV-2 and determined non-pregnant. Writ-

ten informed consent was obtained for all subjects participating in the trial. This study was

approved by KNH/UON ERC (Reference Number KNH-ERC/A/352), University of Toronto

REB (Protocol Number 31043) and by Kenyan Pharmacy and Poisons Board (Reference Num-

ber PPB/ECCT/15/01/02/2015). This study was conducted and the data generated recorded

and reported in accordance with the ICH Guidelines for Good Clinical Practice, regulatory

requirements and the Declaration of Helsinki.

Isolation of Peripheral Blood Mononuclear Cells (PBMCs), cervical cells,

and rectal cells

BD Vacultainer1 sodium heparin tubes, cytobrushes (Digene1, Qiagen), and Sarrat dispos-

able forceps (STE1500, Stericom) were used for the collection of blood, cervical cells and rectal

cells respectively as previously described [22]. PBMCs were isolated by gradient using Histopa-

que1- 1077 Hybri-Max (Sigma-Aldrich). Cervical cells were mechanically isolated from the

cytobrushes and rectal cells were isolated from 9 punch-biopsies using 2 cycles of digestion

with collagenase type II (Sigma) under agitation at 37˚C. All samples were analyzed fresh.

Multicolor flow cytometric analysis

PBMCs, cervical cells and rectal cells were stained with pre-determined concentrations of anti-

bodies directed against CD3 (clone SK7) (eBioscience), CD4 (clone SK3) (BD Horizon), CCR5

(clone 2D7) (BD Horizon), CD69 (clone FN50) (BD Pharmingen), CD49d (clone 9F10)

(eBioscience), and β7 (clone FIB504) (BD Pharmingen). Dead cells were marked using LIVE/

DEAD Far Red Cell Stain Kit (Invitrogen). Some samples were also stained with antibodies

against CD103 (clone Ber-ACT8) (BioLegend). An LSRII flow cytometer driven by the DiVa

software package (BD Biosciences) was used to acquire the samples. Analysis was performed

on FlowJo v10.1 software (FlowJo, LLC, USA).

Statistical analysis

Spearman’s correlation (rs) and Friedman test followed by Wilcoxon Signed Rank test were

used to compare the variables.

P-values were adjusted for multiple-comparisons using a step-down procedure. Statistical

analysis were performed using IBM1SPSS1Statistics. Graphs were generated using Prism 6

(GraphPad, USA) software. A P-value of<0.05 was considered to be statistically significant,

throughout the manuscript �P< 0.05 ��P< 0.01 ���P< 0.001 ����P< 0.0001 and relevant sta-

tistical tests are specified in each figure legend.

Results

Anti-α4 and anti-β7 co-staining allows for the identification of αEβ7

integrin populations within T cells

Peripheral blood, cervical cytobrushes and rectal biopsies were collected from healthy Kenyan

women enrolled in the KAVI-VZV 001 study (ClinicalTrials.gov Identifier: NCT02514018)

[22]. CD4+T cells and CD4negT cells isolated from these tissues were analyzed for their

αEβ7, α4β7 and α4β1 integrin contributions to T cell distribution in blood, cervix and rectal tissues
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expression of α4 and β7 integrins. Our gating strategy for this analysis is shown in Fig 1A.

Mucosal T cells, especially rectal T cells, showed two distinct β7hi populations based on their

level of α4 expression (Fig 1A). As the β7 chain can pair with α4 or αE, we tested these two dis-

tinct β7hi populations as well as the α4intβ7int and α4+β7- populations for the expression of αE

(CD103) (S1 Fig). Blood, cervical and rectal samples isolated from ten volunteers were stained

with anti-αE (anti-CD103) antibody. We observed that both α4-/lowβ7hiCD4+T cells and α4-/

lowβ7hiCD4negT cells were positive for αE in the three tissues analyzed (Fig 1C). We also

observed that a subset of α4+β7hiT cells and of α4intβ7intT cells co-expressed αE (Fig 1C) in

Fig 1. Anti-α4 and anti- β7 co-staining as means to the identification of αE+β7hi T cell population. (A) Representative flow cytometry plots for

the identification of α4-/negβ7hi, α4+β7hi, α4intβ7int and α4+β7-T cell populations in blood, cervix and rectum; (B) Frequency of α4-/lowβ7hi,

α4intβ7int and α4+β7hi on CD4+ and CD4negT cells expressing αE. Data from 10 female subjects presented as median and interquartile range (IQR).

https://doi.org/10.1371/journal.pone.0192482.g001

αEβ7, α4β7 and α4β1 integrin contributions to T cell distribution in blood, cervix and rectal tissues
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agreement with previous reports [23, 24]. We also analyzed the expression of αE in the popula-

tion expressing intermediate levels of α4 and β7 by dividing it into two subsets, I and II (Panel

B in S1 Fig). Subset I, comprising the cells expressing higher levels of β7, exhibited increased

expression of αE compared to subset II (Panel C in S1 Fig). We also observed a strong positive

correlation between the mean fluorescence intensity (MFI), a measure of integrin density/cell,

for αE and β7 on CD4+T cells in blood (rs = 0.74), cervix (rs = 0.79) and rectum (rs = 0.84), as

well as on CD4negT cells in blood (rs = 0.83) and rectum (rs = 0.96) (S2 Fig).

As it has been shown that α4+β7-CD4+T cells express β1 [11], by staining cells with antibod-

ies against α4 and β7 we could confidently identify three important integrins involved in

migration and retention of T cell populations: α4β7, αEβ7 and α4β1.

β7hi has previously been used for the identification of α4β7+ in blood CD4+T cells [25] and

has been shown to be a predictor of HIV outcome in humans [10]. Using our gating strategy

for identification, we next determined the density of β7 in the three integrin-expressing T cells

that carried β7 in its heterodimeric forms: αE+β7hi, α4+β7hi, and α4intβ7int. We observed that

the density of β7 was higher in α4+β7hiCD4+T cells isolated from blood and cervix and in

αE+β7hiCD4+T cells isolated from rectum than in the other integrin-expressing CD4+T cells

(S3 Fig). With the exception of blood, in which α4+β7hi and αE+β7hi showed equivalent β7 den-

sities, a similar profile was observed in CD4negT cells (S3 Fig). As shown in S3 Fig, α4intβ7int

population exhibited lower α4 and αE densities when compared to α4+β7hi and αE+β7hi, respec-

tively (S3 Fig). The densities of β7, α4, and αE were also analyzed on α4 and/or αE expressing T

cells (S4 Fig). We observed that α4+αE+ T cells showed higher β7 density when compared to

cells carrying only α4 or αE (S4 Fig). In blood, T cells co-expressing α4 and αE were shown to

have a higher density of α4 when compared to cells carrying only one of the integrins (S4 Fig).

The same trend was observed in blood for the density of αE (S4 Fig). In contrast, mucosal T

cells co-expressing α4 and αE showed lower α4 MFI then α4+αE- T cells. Interestingly, αE MFI

in α4+αE+ T cells were equivalent to α4-αE+ T cells in both cervix and blood and was signifi-

cantly higher in rectal α4+αE+ T cells (S4 Fig).

The highest levels of CCR5 and CD69 expressions are observed in the

αE+β7hiCD4+T cells at the mucosa

Representative flow cytometry plots for the identification of αβ subsets within CD4+T cells

populations as well as CCR5+ and CD69+CD4+ T cell populations in blood, cervix and rectum

are shown in Fig 2A. We observed that systemic and cervical CD4+T cells predominantly

expressed α4+β1+ (17.5% and 17.1% of total CD4+T cells, respectively) followed by α4+β7hi

(8.0% in blood and 3.4% in cervix) (Fig 2B). As expected, CD4+T cells expressing αE+β7hi were

very rare (0.05%) in blood. Interestingly, we observed that αE+β7hiCD4+T cells in cervix were

present at comparable level to the α4+β7hiCD4+T cell population. Similarly, in the rectum, the

frequency of α4+β7hiCD4+T cells and αE+β7hiCD4+T cells were equivalent (approximately

5%), although in this tissue α4+β1+CD4+T cells were shown to be significantly less frequent

(Fig 2B). Approximately 30% of blood and rectal CD4+T cells displayed intermediate expres-

sion of α4 and β7 (α4intβ7int) (Fig 2B), a population that in these tissues were shown to mini-

mally co-express αE (< 1%). The frequency of α4intβ7intCD4+T cell population in cervix was

7.9%, from which approximately 10% are expected to co-express αE (Figs 1B and 2B). It is

worth noting that approximately one-quarter of the CD4+Tcells in blood, cervix and rectum

were negative for these three integrins (Fig 2B).

We next sought to compare the frequency of integrin-expressing CD4+T cells harboring

the HIV co-receptor CCR5. We observed that overall αE+β7hi, α4+β7hi, α4intβ7int and

α4+β1+CD4+T cells at the mucosa often co-expressed CCR5, with strikingly more than 90% of

αEβ7, α4β7 and α4β1 integrin contributions to T cell distribution in blood, cervix and rectal tissues
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αE+β7hiCD4+T cells in both cervix and rectum expressing CCR5 (Fig 2C). The frequency of

α4+β7hiCD4+T cells and α4+β1+CD4+T cells expressing CCR5 at the rectal tissue was 64% and

53%, respectively (Fig 2C). At the mucosal sites, the frequency of CCR5-expressing α4intβ7int

CD4+T cells was similar to the ones observed for α4+β7hiCD4+T cells (Fig 2C). With exception

Fig 2. Integrin-expressing CD4+T cells isolated from blood, cervix and rectum and their co-expression with CCR5 and CD69. (A)

Representative flow cytometry plots for the identification of α4-β7-, αE+β7hi, α4+β7hi, α4intβ7int α4+β1+, CCR5+ and CD69+ on CD4+T cell

populations in blood, cervix and rectum; (B) α4-β7-CD4+T cells (black), αE+β7hi (blue), α4+β7hi (red), α4intβ7int (green) and α4+β1+ (gray)

expression on CD4+T cells isolated from blood, cervix and rectum. (C) Frequency of CCR5-expressing cells on α4-β7-CD4+T cells (black),

αE+β7hiCD4+T cells (blue), α4+β7hiCD4+T cells (red), α4intβ7int CD4+T cells (green) and α4+β1hiCD4+T cells (gray). (D) Frequency of

CD69-expressing cells on α4-β7-CD4+T cells (black), αE+β7hiCD4+T cells (blue), α4+β7hiCD4+T cells (red), α4intβ7int CD4+T cells (green)

and α4+β1+CD4+T cells (gray). Data from 45 female subjects presented as median (IQR). �P< 0.05 ��P< 0.01 ���P< 0.001 ����P< 0.0001,

as calculated by Friedman Test, followed by Wilcoxon signed rank-test, and adjusted for multiple comparisons using step-down procedure.

https://doi.org/10.1371/journal.pone.0192482.g002

αEβ7, α4β7 and α4β1 integrin contributions to T cell distribution in blood, cervix and rectal tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0192482 February 8, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0192482.g002
https://doi.org/10.1371/journal.pone.0192482


of blood α4intβ7int CD4+T cells, integrin-expressing CD4+T cells showed higher CCR5 co-

expression than α4-β1-CD4+T cells in the three tissues studied, yet the CCR5 expression on

α4-β1-CD4+T cells was surprisingly high in cervix when compared to the other tissues (Fig

2C). Next, we analyzed the expression of CD69 on integrin-expressing CD4+T cells isolated

from blood, cervix and rectum. Although CD69 expression has been used as a marker of early

cell activation, more recently it has been shown to exercise functions related to tissue residence

even in the absence of cell activation [26]. CD69 can physically interact to the Sphingosine-

1-Phosphate Receptor-1 (S1P1) leading to its degradation, and prolonging T cell retention in

the tissue, potentially assisting in TRM formation [27, 28]. Mucosal αE+β7hiCD4+T cells pre-

sented the highest levels of CD69 expression when compared to the other integrin subtypes

and to the α4-β7-CD4+T cell population (Fig 2D).

CD4negT cells in both cervix and rectum abundantly express αEβ7

Here we examined the expression of αEβ7, α4β7 and α4β1 integrins on CD4negT cells from blood,

cervix and rectal tissue as well as their co-expression with CD69 (representative flow cytometry

plots for their identification are shown in Fig 3A). As observed in Fig 3B, αE+β7hi was predomi-

nantly expressed on both cervical and rectal CD4negT cells (8.8% and 52.1%, respectively) and

practically absent in blood CD4negT cells (Fig 3B). The frequency of CD4negT cells expressing

α4+β7hi or α4+β1+ was comparable in blood (17.3% and 19.3%, respectively). In cervix the fre-

quency of α4+β7hiCD4negT cells, α4+β1+CD4negT cells and αE+β7hiCD4negT cells were all very

similar (Fig 3B), with predominance of α4intβ7int in this tissue. Rectal CD4negT cells exhibited a

unique integrin expression profile, with approximately 50% of the cells harboring αE+β7hi.

Although in a significantly lower level than αE+β7hi, CD4negT cells expressing α4intβ7int, α4+β7hi

and α4+β1+ were also detected in rectum (10.3%, 2.0% and 0.7%, respectively) (Fig 3B).

When we analyzed the level of CD69 expression on αE+β7hiCD4negT cells, we observed that

43.8% of cervical αE+β7hiCD4negT cells and 76% of rectal αE+β7hiCD4negT cells expressed

CD69, indicating that most of these cells have a low migratory capability (Fig 3C) potentially

been identified as TRM cells. CD69 expression was also high in α4+β7hiCD4negT cells isolated

from both cervix and rectum (27.6% and 48.5% respectively), indicating reduced circulatory

potential (Fig 3C).

The frequency of CD4+T cells expressing α4+β7hi correlated across blood,

cervix and rectum

We further evaluated whether the frequency of integrin-expressing T cells in one tissue could

be used as predictor of their expression in another tissue. Among all the integrin subsets stud-

ied here (α4-β7-, αE+β7hi, α4+β7hi, α4intβ7int, and α4+β1+) in CD4+ and in CD4negT cells, only

α4+β7hi CD4+T cells correlated across the three tissues after adjusting for multiple compari-

sons (Fig 4). There was also a positive correlation between the frequencies of α4+β7hi CD4negT

cells in blood and cervix (rs = 0.41) and in rectum and blood (rs = 0.39); as well as between the

frequencies of αE+β7hi T cells in blood and cervix (rs = 0.34), αE+β7hi CD4negT cells in blood

and rectum (rs = 0.32), and α4+β1+ CD4negT cells in blood and cervix (rs = 0.35), however

these correlations showed not to be significant after adjusting for multiple comparisons.

Integrin contributions for the CD4neg:CD4+ T cell ratio in blood, cervix

and rectum

The presence of large numbers of effector CD8+T cells in proximity to target cells could poten-

tially prevent or control infection locally. Unfortunately there is still a lack of information

αEβ7, α4β7 and α4β1 integrin contributions to T cell distribution in blood, cervix and rectal tissues
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about the importance of integrins for both CD4+ and CD8+T cells positioned at the mucosa,

especially at the human genital mucosa. We therefore set out to explore the CD4neg:CD4+ ratio

of all CD3+cells expressing each of the three integrins studied here. Unlike α4-β7-, α4+β1+, and

α4+β7hi, αE+β7hi was predominantly expressed on mucosal CD4negT cells, with a CD4neg:

CD4+ ratio of 2.1 in cervix and 7.1 in the rectum (Fig 5A) (p<0.0001). At the cervix, α4intβ7int

was also shown to be expressed more in CD4negT cells, with a CD4neg:CD4+ ratio of 1.6 (Fig

5A). The contribution of α4+β1+, α4+β7hi, and αE+β7hi to integrin-expressing T cell densities

in blood, cervix, and rectum are shown in Fig 5B. Circulating CD4+T cells expressed predomi-

nantly α4+β1+ integrin while circulating CD4negT cells equally expressed α4+β7hi or α4+β1+.

The integrin expression on both CD4+ and CD4negT cells in the cervix was more heteroge-

neous than in the other tissues analyzed, with a predominance of α4+β1+CD4+T cells and

αE+β7hiCD4negT cells in this tissue. Conversely, the rectal tissue showed an unparalleled T cell

Fig 3. Integrin-expressing CD4negT cells isolated from blood, cervix and rectum and their co-expression with CD69. (A) Representative flow cytometry

plots for the identification of α4-β7-, αE+β7hi, α4+β7hi, α4intβ7int, α4+β1+, and CD69+ on CD4negT cell populations in blood, cervix and rectum; (B) αE+β7hi

(blue), α4+β7hi (red), α4intβ7int (green) and α4+β1+ (gray) expression on CD4negT cells isolated from blood, cervix and rectum. (C) Frequency of

CD69-expressing cells on α4-β7-CD4negT cells (black), αE+β7hiCD4negT cells (blue), α4+β7hiCD4negT cells (red), α4intβ7intCD4negT cells (green) and

α4+β1+CD4negT cells (gray). Data from 45 female subjects presented as median (IQR). �P< 0.05 ��P< 0.01 ���P< 0.001 ����P< 0.0001, as calculated by

Friedman Test, followed by Wilcoxon signed rank-test, and adjusted for multiple comparisons using step-down procedure.

https://doi.org/10.1371/journal.pone.0192482.g003
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composition based on the integrin expression. CD4+T cells expressing high levels of αE+β7hi

or α4+β7hi were equally frequent in the rectum, while, CD4negT cells in rectum frequently

expressed αE+β7hi, with a minimal presence of α4+β7hi or α4+β1+CD4negT cells (Fig 5B).

Fig 4. Correlations of integrin-expressing cells between tissues. Graphs display Spearman’s correlation (rs), and both unadjusted and adjusted p values

(n = 10). P values adjusted for multiple comparisons are marked with asterisks (p�).

https://doi.org/10.1371/journal.pone.0192482.g004
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Discussion

The distribution of T cells in mucosal tissues directly impacts on protection against pathogens

as well as disease outcome. The availability of activated CCR5+CD4+ T cells is known to

increase susceptibility to HIV infection [29, 30]. In addition, CD4+T cell depletion in HIV

infected individuals leads to a pronounced impairment of their gut-associated lymphoid tissue

(GALT) function which is not reversed even after viral suppression with ART [31–34]. There-

fore, understanding the distinct integrin expression that mediated cell migration and retention

may assist in targeting HIV at the mucosa and restore gut immunity.

In this study we comprehensively assessed the frequency of CD4+ and CD4negT cells

expressing the integrins αEβ7, α4β7 and α4β1 in blood and in two major sites for HIV infec-

tion, cervix and rectum. Importantly, all of these findings are based on the ex vivo determina-

tions of these integrins on HIV susceptible CD4+T cells and other T cell populations at the

sites of HIV entry, significantly enhancing the importance of our findings to establish new

strategies aimed at the treatment and prevention of HIV infection.

Here we demonstrated that it is correct to identify the α4-/lowβ7hi population as αE+β7hi,

encouraging its analysis even when the number of markers that can be included in the flow

cytometric panels and the costs of reagents may pose a challenge. Additionally, this

Fig 5. Integrin-expressing CD4+ and CD4negT cell densities in the blood, cervix and rectum. (A) CD4neg:CD4+ ratio of all CD3+cells expressing α4-β7-, αE+β7hi,

α4+β7hi, α4intβ7int or α4+β1+ in blood, cervix and rectum. (B) The densities of αE+β7hi, α4+β7hi and α4+β1+T cells in this pie charts were drawn based on integrin-

expressing T cells in each tissue and does not account for the total density of T cells in each site. Data from 45 female subjects presented as median (IQR). �P< 0.05
��P< 0.01 ���P< 0.001 ����P< 0.0001, as calculated by Friedman Test, followed by Wilcoxon signed rank-test, and adjusted for multiple comparisons using step-

down procedure.

https://doi.org/10.1371/journal.pone.0192482.g005
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observation proves that it is incorrect to identify all β7hi populations as α4+β7hi for cells iso-

lated from mucosal tissues.

Admittedly the complexities, cost and potential invasiveness associated with mucosal sam-

pling and analyses have confined most HIV clinical trials to base their conclusions on parame-

ters from peripheral blood. However, as we have shown, blood phenotypic analysis is not

always reflective of cell phenotypes at the critically relevant mucosal sites of initial viral chal-

lenge, infection and multiplication. Here, we demonstrated that CD4+ and CD4negT cells dif-

ferentially exhibit various integrin-populations depending on their location. It has been shown

that the frequency of α4+β7hi in blood positively correlated with the frequency of these cells in

cervix [10]. Here we also observed a positive correlation between α4+β7hi on CD4+T cells

between these tissues and were able to demonstrate that the frequency of this population also

correlated between blood and rectum, and between cervix and rectum (Fig 4). For all the other

αβ subsets studied here, no significant correlation was observed across the three tissues after

adjusting for multiple comparisons.

It has previously been shown that in black men who have sex with men (MSM), a popula-

tion with higher HIV incidence rates, exhibited significantly higher density of the β7 integrin

on blood CD4+T cells than MSM of other race/ethnicities [35]. In a recent study, Sivro et al

(2018) demonstrated that in blood the frequency of β7hi CD4+T cells prior to infection, but

not β7int or β7neg, was correlated with set point viral load post-infection [10]. In our study

we showed that the density of β7 was higher in α4+β7hiCD4+T cells isolated from blood and

cervix and in αE+β7hiCD4+T cells isolated from rectum (S3 Fig). Additionally, a subset of T

cells double positive for α4 and αE also displayed higher β7 density when compared to cells

carrying only α4 or αE (S4 Fig), implicating this population to be a facilitator of HIV infection.

Overall the majority of mucosal CD4+T cells expressing integrins, especially αEβ7hiCD4+T

cells, were CCR5 positive, constituting potential targets to HIV infection (Fig 2C). The level of

CCR5 expression in mucosal CD4+T cells expressing αEβ7, α4β7 or α4β1 warrants the investi-

gation of targeting integrin-mediated migration or retention to reduce the availability of HIV

target cells at the mucosa.

Therapeutically targeting integrin adhesion has already been used against autoimmune dis-

eases such as inflammatory bowel disease (IBD), ulcerative colitis (UC) and multiple sclerosis

(MS) and most recently gastrointestinal (GI) graft versus host disease [12, 13, 36]. Humanized

monoclonal antibodies directed against the α4 subunit (Natalizumab) and against the α4β7

integrin (Vedolizumab) are among the therapies used in patients suffering with IBD, UC or

MS. Vedolizumab has been the mAb of choice to block α4β7. Etrolizumab, a mAb that binds

to β7 integrin subunit, can block α4β7-MAdCAM-1 and αEβ7-E-cadherin interactions and is

being currently tested for the treatment of IBD and UC in clinical trials [37, 38].

The utilization of anti-α4β7 mAbs in NHP studies of HIV/SIV prevention and cure has

shown promising results [14, 15, 39]. In Byrareddy et al (2016) animals treated with combined

ART and anti-α4β7 mAb were able to sustain viral control for more than 2 years even after both

therapies were withdrawn [15]. Although the mechanisms associated with this protection are

unclear, the animals were able to restore TH17, TH22 and CD4+TEM cells and displayed reduced

plasma biomarkers associated with gut damage and inflammation [15]. Given the broad range

of GI diseases where Vedolizumab has shown efficacy, there has been speculation that the rela-

tive protection in the viral controllers was mediated by reduced gut damage in the earliest phase

of infection and thus preserving a functional immunological micro-environment.

The high levels of CD69 expression on αE+β7hi T cells may indicate that these cells are tis-

sue resident. Vaccine candidates that can promote and maintain specialized effector cells in

the mucosa may offer a chance against challenging infectious agents, such as HIV [40–42]. It is

conceivable to consider that pre-polarizing the mucosal immune response towards CD8+TRM
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cells could have a protective effect against HIV. When therapeutically targeting integrin

expression to modulate cell migration and retention it is important to consider that integrin

expression by cells is dynamic, and targeting integrins such as α4β7 can potentially lead to a

compensatory use of alternative integrins, such as αEβ7 and α4β1[24, 43]. Hence, understand-

ing the regulatory mechanisms for integrins’ expression, the risk-benefits associated with anti-

integrin blockade, and the contribution of each integrin for the migration and retention of a

healthy CD8+:CD4+T cell ratio in the mucosa will help advancing towards better therapeutic

and preventive strategies against infections such as HIV.

Supporting information

S1 Fig. Characterization of αE expression in distinct populations identified using anti-α4

and anti-β7 co-staining.

(TIF)

S2 Fig. Correlations between αE, β7 and α4 mean fluorescence intensities (MFI) in T cells

isolated from blood, cervix and rectum.

(TIF)

S3 Fig. Density of β7, α4 and αE in integrin-expressing T cell subsets.

(TIF)

S4 Fig. Density of β7, α4 and αE in α4 and/or αE- expressing T cells.

(TIF)
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