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Abstract

The presence of large densities of the piston-pumping polychaete Lanice conchilega can

have important consequences for the functioning of marine sediments. It is considered both

an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeo-

chemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concen-

trations) and physical properties (grain size) of marine sediments, which could affect

functional properties of sediment-inhabiting microbial communities. Here we investigated

whether density-dependent effects of L. conchilega affected horizontal (m-scale) and verti-

cal (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene

in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal

ecosystems as the last step completing the denitrification pathway. We showed that both

vertical and horizontal composition and richness of nosZ gene were indeed significantly

affected when large densities of the bio-irrigator were present. This could be directly related

to allogenic ecosystem engineering effects on the environment, reflected in increased oxy-

gen penetration depth and oxygen concentrations in the upper cm of the sediment in high

densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of

nosZ observed in patches with high L. conchilega densities (3,185–3,440 ind. m-2) at deeper

sediment layers could suggest a downward transport of NO3
− to deeper layers resulting

from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation

activity on denitrifying organisms in L. conchilega reefs.
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Introduction

Denitrification is a key process in the biogeochemical cycling of nitrogen. It is a primary loss

mechanism for nitrogen in the nitrogen budget of coastal ecosystems [1]. It is a four-step respi-

ratory process, in which nitrate (NO3
−) is reduced sequentially to nitrite (NO2

−), nitric oxide

(NO), nitrous oxide (N2O), and nitrogen gas (N2), and is mediated by a taxonomically diverse

group of microorganisms, mainly bacteria [2]. Denitrification counteracts eutrophication by

removing N2, but it can contribute to global warming and ozone depletion due to the release

of NO and N2O [3–5].

The distribution of denitrifying organisms and denitrification rates in marine ecosystems is

affected by different environmental factors including organic matter content, concentration

gradients of dissolved inorganic nitrogen (DIN: NO3
−, NO2

− and NH4
+) and the availability of

oxygen [6,7]. Stratification and vertical distribution of denitrifying organisms also results from

the vertical distribution of these environmental factors in the sediment [7,8].

Denitrifiers are facultative anaerobes and denitrification is often coupled with nitrification

across oxic/anoxic interfaces in the sediment [9]. With increasing sediment depth, oxygen

concentrations decrease and denitrifying communities shift from facultative anaerobes to

strict anaerobes [8]. However, maximum denitrification rates do not necessarily occur at the

lowest O2 concentration in deep layers [8,10, 11] due to low/absent NO3
− and NO2

− concen-

trations. The NOx
− concentration may therefore act together with O2 to control denitrification

rates and the diversity and structure of the denitrifying community [8,10,12]. In addition, the

effects of species-specific adaptation and variations in substrate threshold among denitrifying

organisms need to be considered as well. For example, while oxygen has an inhibitory effect on

the denitrification enzymes of Agrobacterium tumefaciens [13], Pseudomonas stutzeri is able to

denitrify under aerobic conditions [14].

In general, microbial community patterns in marine ecosystems can vary from large (km or

m) [15, 16, 17] to small scales (cm or less) [12,17,18]. In large scales the different patterns are

due to the wide range of environmental conditions including changes in median grain size

and organic matter concentration [15,16,17]. At small scales vertically in the sediment, micro-

bial variations can be related to the different factors such as sediment types [12,19], the steep-

ness of redox gradients [17], substrate availability [20] as well as activity and sediment mixing

effects of larger fauna [17,21]. The boundary between oxic and anoxic conditions, for example,

along the vertical gradient within the sediment migrates on spatial scales of micrometers to

centimeters and on time scales of seconds to hours [22]. Denitrifiers have the ability to adapt

to oscillations of oxygen concentrations during the rapid transition from oxic to anoxic condi-

tions [23,24]. Such oxygen oscillations and different oxygen regimes have effects on the struc-

ture of the denitrifying community [25].

Functional diversity and abundance of larger organisms affect the biogeochemical cycles

and variations in composition and diversity of microbial communities [16], creating small-

scale heterogeneity in the sediment as microniches [20,26]. Building and irrigating of burrows

by bioturbating organisms like worms, for example, can provide a unique environment for

micro-organisms inhabiting the burrow wall [27,28] or enhance total microbial metabolism in

adjacent surrounding sediments [29]. However, the impact of bioturbation depends on indi-

vidual functional effects of burrowing organisms [20,28,30].

Lanice conchilega is a tube-building worm (Polychaeta) that glues sediment grains together

to form tubes reaching 10–30 cm vertically into the sediment [31,32] and extending 2–3 cm

into the water [33]. It is present throughout the North Sea and can be found in dense aggrega-

tions [34] (over 3000 ind. m-2 [35]), referred to as biogenic reefs [36]. This polychaete is widely

distributed in soft bottom environments and acts as a bio-engineer both in intertidal and
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subtidal areas [37,38]. L. conchilega manifests both autogenic and allogenic ecosystem engi-

neering properties via, respectively, its own physical structures and by transforming living/

non-living materials from one physical state to another [39]. The autogenic engineering effect

provides new habitat for associated species by increasing bed stability [36] and trapping

organic matter from the water column [40]. It substantially affects the structure and abun-

dance of associated communities and food-web properties [40–42]. The allogenic engineering

capacity of L. conchilega is reflected in its piston-pumping activity [31] causing water and sol-

ute exchanges between tubes and the overlying water (bio-irrigation). This stimulates nutrient

fluxes, mineralisation and denitrification processes in coastal sediments (as deduced from lab

experiments) and seems to be density-dependent [43]. However, the effect of L. conchilega on

the microbial communities mediating these processes remains unexplored.

The capacity for denitrification can be deduced from functional genes involved in denitrifi-

cation pathways, which reflect the distribution and function of denitrifying organisms in the

environment [1]. The detection of a gene in the environment (DNA-based methods), however,

does not imply that the corresponding activity is present [44,45]. Instead, the expression of

genes (RNA-based methods) and the detection of enzymes (protein-based methods) allow

investigation of the direct link between the composition and density of the transcribed denitri-

fication genes and rate of denitrification [44].

In this study, we investigated the expression of the nosZ gene encoding the enzyme which

catalyses the final step of denitrification (conversion of N2O to N2 gas; [2]). Microbial taxa pos-

sess divergent nosZ clusters (typical and atypical nosZ) with genes that are related yet evolu-

tionarily distinct from each other [4]. Typical nosZ genes, which occur more commonly in

bacteria with a complete denitrification pathway (co-occurrence of denitrifying genes; [4,46]),

play the major role in N2O reduction in coastal ecosystems [25]. Atypical nosZ, in contrast,

seems to occur frequently in non-denitrifying organisms that do not possess any other denitri-

fication genes and is potentially important in terrestrial environments [4,46].

Here, we investigated how distribution, diversity and composition of the typical nosZ gene,

as well as the biogeochemical environment (oscillation in oxygen concentration, sediment

grain size and chlorophyll a) are affected by the bio-irrigation activity of L. conchilega vertically

at small (cm) scales along the sediment depth profiles and also at larger horizontal scales (m)

at different natural L. conchilega densities within the reef. The observed diversity patterns in

nosZ were then statistically linked to environmental variables to objectively assess the link

between faunal-mediated heterogeneity and typical nosZ gene diversity.

To our knowledge, the current study is novel as most of the previous studies were limited to

the bioturbation and bioirrigation impact of larger organisms on the rate of denitrification

[47–51] and only a few studies have investigated this effect on the denitrifying functional genes

[52–54] and still the active community investigation was neglected. As such, the current study

can improve our understanding of the effects of bio-irrigation on diversity of nosZ gene in the

active denitrifying community in marine sediments at small spatial scales.

Materials and methods

Study site and sampling

Sampling was done in October 2014 at the intertidal zone of the sandy seashore of Boulogne-

sur-Mer, along the northern part of the English Channel (50˚ 44.01’ N, 01˚ 35.15’ E; Northern

France; Fig 1). Sediments of the L. conchilega reef were collected by core (Plexiglas, 78.5 cm2

surface area; height: 25 cm) from a limited area of the western reef zone (about 4000 m2)

located higher on the beach and exposed at every low tide [38]. No specific permits for
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sampling and ethics requirements were needed since our research was approved by the FWO-

research proposal (G.0033.11).

Sediment samples were collected from L. conchilega patches in an area of almost 100 m2

within the reef. Tidal height and sediment composition were similar for all samples. Three rep-

licate cores were taken from three different areas of the patches: (i) an area with an average

density of L. conchilega individuals (based on counts of fringed tubes, [55]) of 25–27 tubes per

core surface (3185–3440 ind. m-2) (hereafter referred to “high L. conchilega treatment” or

“H”), (ii) an area with lower L. conchilega densities (5 tubes per core surface; 637 ind. m-2)

Fig 1. Sampling location (Western reef zone) at Boulogne-sur-Mer in France (the location of the L. conchilega reefs was obtained from Rabaut et al. [38]).

https://doi.org/10.1371/journal.pone.0192391.g001
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located on the edge of the patches (“low L. conchilega treatment” or “L”), and (iii) sediments

without L. conchilega between the reef patches (“control treatment” or “C”).

We used intact sediment cores from the reef. However, L. conchilega aggregations have

been shown to support a high diversity and abundance of macrofauna in comparison with the

adjacent sediments without L. conchilega [41]. Therefore, differences observed in the nosZ
community might also result from activities of the associated community which is different

from the control situation. In our sampling site, the amphipods from the genus Urothoe and

the polychaetes Eumida sanguinea, Pygospio elegans, Heteromastus filiformis and Capitella sp.

were the dominant macrofaunal species after L. conchilega [41]. Some of these species, i.e. the

surficial modifier Urothoe and the fixed tube builder Pygospio elegans, are small (max 1.5 cm;

[32,56,57]) and cannot affect the ecosystem as strongly as the bio-irrigator L. conchilega, mak-

ing up 20–25% of total macrofaunal density in the sampling month [41]. Visual inspection did

not show abundance of other large organisms in our sampling cores while Heteromastus filifor-
mis and Capitella sp. show limited movements in the sediment [57]. Eumida sanguinea is a bio-

diffuser [57] but there is no record of the functional importance of this species for N-cycle

processes. In addition, considering the high ability of L. conchilega to build reef structures

[36,37], the effects on the denitrifying community in our study are therefore considered to

result mainly from the presence and activity of L. conchilega.

The intact sediment cores (3 treatments × 3 replicates) were transported to the lab and sub-

merged, uncapped without creating suspension of the sediment in tanks containing continu-

ously aerated seawater at an in situ temperature-controlled room (17 ˚C in October). Every

core was aerated separately by a stream of fine bubbles in the overlying water. In order to cre-

ate water circulation inside the cores, Teflon-coated magnets were inserted at appropriate dis-

tance from the sediment surface and rotated by a central magnet in the tanks at a speed below

the resuspension limit.

Within two days after sampling, vertical profiles of sediment oxygen concentration were

measured (three profiles per core) in the ambient sediment at 1 to 2 cm distance from tubes,

using Unisense oxygen microsensors (type ox100) in vertical increments of 250 μm. Bio-irriga-

tion activities of L. conchilega individuals were assessed as well, by logging changes of sedimen-

tary oxygen concentrations every second for 30–35 min at 1.5 mm sediment depth, at 1 cm

distance from the tube, using the same Unisense microsensors.

At the end (three days after sampling), the upper sediment layers were sliced in 0.5 cm inter-

vals (0–0.5 [d1], 0.5–1 [d2], 1–1.5 cm [d3]) to investigate microbial communities in the oxic

and anoxic zones based on the measured oxygen profiles. This is the smallest possible scale

without disturbing the sediment in the adjacent layers. A fourth layer (2.5–3 cm [d4]) was col-

lected as well because L. conchilega was reported to ventilate its tube up to 2.4 cm tube length

[31]. All sediment slices were homogenized before collecting subsamples for further analyses.

The sediment was subsampled by taking 3 to 5 mL using a cut-off syringe for the analysis of

labile organic matter (chl-a), % clay and silt content and median grain size (MGS). Around 4 g

of sediment (wet weight) was subsampled using sterilised tools for microbial analyses and

stored in sterile 15-mL falcon tubes. Microbial and chl-a samples were immediately frozen at

-80 ˚C, whereas the samples for grain size were dried at 60 ˚C before analysis.

Chl-a was determined by HPLC (Gilson, Middleton, Wisconsin, USA) analysis according

to [58] and sediment granulometry by laser diffraction (Malvern Instruments, Malvern, UK).

RNA extraction and nosZ sequencing

RNA was extracted from 4 g homogenised sediment (wet weight) from each depth layer (36

samples = 3 treatments × 3 replicates × 4 layers) using the RNA Power Soil Total RNA
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isolation kit (MO BIO Laboratories). Integrity and purity of RNA extractions were checked

following [16]. The DNA-free RNA samples were reverse transcribed into cDNA using

Omniscript Reverse Transcriptase Kit (Qiagen) according to the instructions of the manufac-

turer and using 10 μM of Random Hexamer primers (Applied Biosystems) and 5 μL RNA tem-

plate per total volume of a reaction (20 μL).

RT-PCR amplification of nosZ gene fragments (267 bp) was performed in three technical

replicates for each sample using specific primer sets (nosZ-2F: 5’-CGCRACGGCAASAAGGTS
MSSGT-3’ / nosZ-2R: 5’-CAKRTGCAKSGCRTGGCA GAA-3’) [3] for the typical nosZ gene

cluster [4,46]. The forward primer contained the 5’ Illumina adaptor, forward primer pad and

linker and the nosZ-2F primer. The reverse primer consisted of the reverse complement of the

3’ Illumina adapter, 12-bp multiplex identifiers (MIDs), the reverse primer pad and linker and

the nosZ-2R primer. MIDs in the reverse primer were used to identify the different samples

(see S1 Table for adaptor, MID, pad, linker and primer sequences for the forward and reverse

data; [59]). A control (no template) was also included to ensure that no contamination

occurred in the laboratory.

Amplifications were performed in volumes of 25 μL containing 5 μL of target cDNA, 5 μL

of 5xKAPA HiFi Buffer (containing 2 mM MgCl2 at 1x; Kapa Biosystems, Boston, Massachu-

setts, United States), 0.4 μg/μL BSA, 0.2 mM dNTPs, 0.4 μM of each primer, and 1.5 U KAPA

HiFi HotStart DNA Polymerase (1 U/μL) (Kapa Biosystems). The ‘touchdown’ PCR condi-

tions were as follows: after an initial denaturation step at 95 ˚C for 5 min, 20 cycles were per-

formed consisting of three steps: denaturation (98 ˚C, 20 sec), annealing (70 ˚C, 1 min,

decreasing 0.5 ˚C cycle-1 to 60 ˚C) and extension (72 ˚C, 1 min) followed by 15 additional

cycles in which the annealing temperature was 60 ˚C [60]. The final elongation step was per-

formed at 72 ˚C for 10 min.

PCR amplicons of the three technical replicates of each sample were combined, purified

using E-Gel (Invitrogen, Life technologies) and measured with a Qubit fluorometer (Life Tech-

nologies). Samples were then pooled in equimolar amounts and loaded on a Bioanalyzer 2100

(Agilent Technologies) to check the presence of the single peak. Purified pooled libraries were

submitted to Genomics Core (Center for Human Genetics UZ—K.U. Leuven) for 150×2-cycle

paired-end sequencing on an Illumina Miseq platform.

Sequence analyses

Demultiplexing of the data was carried out by Genomics Core using the Illumina standard

procedure by applying the bcl2fastq tool of Illumina which allows for 1 mismatch between

the barcodes. Raw demultiplexed Illumina fastq files were then quality-filtered and merged

using Pear v0.9.5 (Paired-End read mergeR; [61]). Reads shorter than 100 bp or longer than

400 bp and low-quality reads (scores <25) were removed from the output. Any reads con-

taining uncalled bases and singletons were also discarded. The final file was checked for qual-

ity control with Fastqc v0.11.3 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

[62].

We eliminated potential chimeras using the USEARCH package [63,64]. Non-target reads

(non-nosZ reads) were filtered out using FrameBot included in the Fungene pipeline (http://

fungene.cme.msu.edu/). We retrieved a reference set of nosZ protein sequences of 163 differ-

ent species with high scores (>919) and 98% coverage with a hidden Markov model (HMM)

from Fungene. FrameBot compared each member of these reference sequences to the query

nucleotide sequence in both forward and reverse directions. In addition, FrameBot corrected

insertion and deletion errors, and translated DNA sequences to frameshift-corrected protein

sequences [64,65].
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nosZ diversity was determined at the amino acid level. Therefore, a complete identity

threshold (100%) of amino acid sequences was applied in USEARCH. These units (unique AA

nosZ sequences) were considered to be operational taxonomic units (OTUs).

Prior to further analysis, OTUs with<0.005% relative abundance in all samples, which

together accounted for less than 2% of the total reads and mostly represented singletons and

doubletons, were discarded [66,67].

Maximum likelihood phylogeny of unique nosZ AA sequences was inferred using RAxML

v8.2.6 on the CIPRES Science Gateway [68], under a JTT+I+G model as determined using the

lowest AIC criterion in ProtTest version 2.4 [69]. Node confidence was determined using

200 bootstrap replicates. In order to construct a phylogeny with reference sequences, we per-

formed protein BLAST searches against the NCBI non-redundant protein database (http://

blast.ncbi.nlm.nih.gov/Blast.cgi) of 25 OTU representatives selected randomly across the phy-

logenetic tree (S2 Fig). For each blastp search, the best 100 blast hits were retained. To reduce

the size of the tree, identical sequences were removed as well as sequences differing in 1 or 2

AA positions. A final alignment of 208 nosZ sequences from the database was used to construct

a ML tree using RAxML as described above.

Data analyses

Environmental data analyses. We used permutational multivariate ANOVA (PERMA-

NOVA; Primer v6.1.10., Primer-E Ltd., Plymouth, United Kingdom with the PERMANOVA +

add-on package; [70]) to perform a two-way fixed factor model design with “treatment” and

“depth” as factors. “Replicate” was nested as a random factor in “treatment” [71]. We investi-

gated whether significant differences in environmental factors (MGS, % silt+clay [mud] con-

tent and chl-a concentration) among treatments and at different depths were observed. To test

for the differences in maximum oxygen penetration depth (max OPD) and oxygen profiles

(both depth and time profiles) between levels of L. conchilega density, PERMANOVA with a

one-way fixed factor model design (“Treatment” as a factor) was performed. Prior to the PER-

MANOVA analyses for oxygen profiles, a multivariate data matrix was constructed in which

each depth horizon (for depth profiles) and each second (for time profiles) was considered a

“variable” [72]. Pairwise tests were performed for significant terms using Monte Carlo p-values

when the number of possible permutations was restricted [70].

Euclidean distance was used to calculate the resemblance matrices in PERMANOVA for

the univariate environmental data [70] and also for the multivariate data matrix corresponding

to oxygen depth and time profiles [72]. Homogeneity of multivariate dispersion (‘variance’)

was tested with PERMDISP for any of the significant terms in PERMANOVA to verify any dis-

persion effects on the significant results from the PERMANOVA tests. For oxygen depth pro-

files, SIMPER analysis was used to determine which depth was responsible for the identified

differences.

Microbial community analyses and diversity estimates. To correct for technical bias

related to read number variations among the samples, the data was normalised [73]. All sam-

ples were normalised by taking the proportions of each OTU, multiplying it with the mini-

mum sample size (1022 reads) and rounding to the nearest integer [74,75].

To calculate alpha diversity and to assess how the sampled community of nosZ genes

reflects a “true” diversity per sample [76], we made random sub-samples of the non-normal-

ised data matrix to the minimum number of reads (1022) in R version 3.3.1. This was repeated

1000 times and the average diversity (richness, Shannon-Wiener [log e] and inverse Simpson)

of each sample was calculated from the estimated diversity of each trial.
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Rarefaction curves were also calculated in R for the number of observed OTUs vs. the total

number of reads to investigate the variation of OTU numbers in our samples. Generalised

UniFrac distances (α = 0.5) [77] were calculated on the composition of nosZ from normalised

data with the GUniFrac package in R [78]. PERMANOVA was conducted on these UniFrac

distances using the Adonis package in R. PERMDISP and pairwise difference tests were also

performed in R.

Euclidean distance was used to calculate the resemblance matrices in PERMANOVA

(Primer v6.1.10) for the diversity indices (estimated as average values).

PERMANOVA was performed as a two-way fixed factor model design (“treatment” and

“depth” as factors while “replicate” was nested in “treatment”) to test significant differences

among factors in composition and diversity indices of nosZ.

Principal coordinates analysis (PCoA) plots were generated using the Ade4 package in R to

visualize variation in composition of nosZ among treatments and depths.

In addition, we investigated whether differences among factors were caused by differences

in non-abundant OTUs (<1% relative abundance), by constructing a dataset with abundant

OTUs (defined as OTUs with>1% relative abundance in at least one treatment-depth combi-

nation). This resulted in a second dataset with 21 abundant OTUs out of the total 502 OTUs

and with 439624 reads. Statistical analyses on the dataset with the abundant OTUs were per-

formed as described above.

Multivariate data corresponding to nosZ sequences were reduced to binary data (OTUs

were counted as present or absent) in Excel [79]. Jaccard similarity index and Venn diagrams

were calculated and drawn based on the number of shared and unique OTUs among treat-

ments per depth layer [79,80].

Multiple linear regressions

Multiple linear regressions were performed to identify the variables contributing significantly

to the observed variations in the diversity indices of nosZ (richness, Shannon diversity and

Inverse Simpson as response variables) in our study. Multivariate data related to oxygen pro-

files, both depth and time profiles, were also included in the regression analyses but as two uni-

variate variables: mean values of oxygen concentration per depth layer (“OX”) and coefficient

of oxygen variations over time (“CV”), respectively. To avoid multi-collinearity among inde-

pendent variables, the regression analyses were performed after removing highly correlated

variables based on (i) the correlation coefficient (lrl� 0.85) among numerical independent

variables, and (ii) graphical exploratory techniques (boxplots) displaying the distribution of

each numerical variable at different depths and treatments (categorical independent variables).

No collinearity was observed among numerical variables while “depth” and “treatment” were

collinear with chl-a and max OPD, respectively. Six explanatory variables were ultimately

entered into the models: chl-a concentration, MGS, % silt+clay [mud] content, CV, max OPD

and OX. All assumptions [81] were checked after model selection. An initial linear regression

analysis showed violation of homogeneity of residuals in all models. We therefore applied lin-

ear regression with generalised least-squares (GLS) using restricted maximum-likelihood

(REML) estimation. This incorporates variance–covariates to model the variance structure. To

find the optimal random structure, the full linear regression model was compared to the GLS

models of specific variance structures using lowest Akaike information criteria (AIC). This

procedure resulted in the use of a variance structure that allowed for different variances per

stratum for “max OPD” (varIdent function, R package nlme). The optimal fixed components

in the final model were obtained by applying a backward selection using the likelihood ratio
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test obtained by ML estimation. A graphical model validation was applied to check for homo-

geneity and normality in the final models [82].

Results

Sediment environmental factors

The granulometric variables, including MGS and mud content (%), were not significantly

influenced by interactive and single effects of treatments (high, low and no (= control) L. con-
chilega) and depths (PERMANOVA, p> 0.05). chl-a concentration was significantly affected

by depth (PERMANOVA, pseudo-F = 12.455, p = 0.000). Highest chl-a concentrations were

observed at the top layer (0–0.5 cm) (pairwise test, all 0.001< p< 0.01) followed by the second

layer which was significantly higher than the deepest layer (2.5–3 cm) (pairwise test, p = 0.014;

Table 1).

Oxygen depth profiles (Fig 2) were significantly affected by the treatment effect (PERMA-

NOVA, pseudo-F = 5.33, p = 0.006) (S2 Table). Pair-wise tests (S2 Table) revealed significant

differences in vertical oxygen distribution between control and both L. conchilega treatments

(p = 0.002 and p = 0.039 for high and low L. conchilega density, respectively). There were no

significant differences between both L. conchilega treatments. SIMPER analysis showed that

the difference in oxygen profiles between the control treatment and high L. conchilega treat-

ment was attributed to 1–4 mm sediment depth whereas this difference was between 1–3.25

mm for the control and low L. conchilega treatments.

Oxygen concentrations over time (over a period of 30–35 min) measured at 1 cm distance

from the tube and at 1.5 mm sediment depth remained high in the high L. conchilega (93–

235 μmol L-1) and in the low L. conchilega treatment (60–203 μmol L-1). The lowest values

were observed in the control treatment (80–157 μmol L-1) (Fig 3). However, oxygen time pro-

files were not significantly affected by treatment (p> 0.05; S2 Table).

Maximum OPD was significantly affected by treatment (pseudo-F = 12.19; p = 0.000) and

pair-wise tests showed a significantly higher max OPD in the high L. conchilega density treat-

ment (5.17 ± 0.44 mm; mean ± se) compared to the low (3.69 ± 0.17 mm; p(MC) = 0.008) and

control (3.30 ± 0.12 mm; p(MC) = 0.001) treatments (S2 Table; Fig 2).

PERMDISP analyses showed some heterogeneity of multivariate dispersion (F = 3.16,

p = 0.028) in the analysis of maximum OPD but this was not the case for the analysis of the

entire oxygen depth profiles (p> 0.05).

Composition of nosZ and diversity indices

In total, 545,742 nosZ reads were assigned to 502 OTUs. The current sampling effort was suffi-

cient in most samples to reflect the variation of the observed OTUs (Fig A in S1 Fig). Only

Table 1. Variations of sedimentary environmental factors in three L. conchilega treatments and four depths.

Chlorophyll a (μg g-1) MGS (μm) Mud content (%)
High Low Control High Low Control High Low Control

Depth (cm)

0–0.5 2.01±0.28A 1.55±0.06A 1.80±0.20A 238.12±6.35A 227.14±2.96A 243.23±6.22A 1.55±1.55A 0.20±0.20A 0.00±0.00A

0.5–1 1.34.±0.19B 0.79±0.23B 1.50±0.06B 250.97±4.14A 228.81±4.96A 245.96±5.62A 2.17±2.17A 0.28±0.28A 0.15±0.15A

1–1.5 0.65±0.15BC 1.04±0.55BC 1.29±0.12BC 239.25±6.43A 232.76±6.11A 242.12±3.36A 0.00±0.00A 0.00±0.00A 1.46±1.11A

2.5–3 0.59±0.51C 0.56±0.13 C 1.02±0.49 C 235.31±8.97A 238.03±7.71A 234.62±1.39A 2.94±2.94A 0.00±0.00A 1.31±1.31A

Treatments: high and low L. conchilega densities and control; depths: 0–0.5, 0.5–1, 1–1.5 and 2.5–3 cm. Capital letters stand for significant vertical differences (A > B >

C) across treatments (p > 0.05). MGS: Median grain size

https://doi.org/10.1371/journal.pone.0192391.t001
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Fig 2. Oxygen depth profiles in the overlying water and sediment. Control (A), low (B) and high L. conchilega (C)

treatments. Nine profiles were measured per treatment (shown with different symbols and colours per core replicate).

The zero depth in the profiles represents the sediment–water interface.

https://doi.org/10.1371/journal.pone.0192391.g002
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Fig 3. Time variations of oxygen concentration as a measure for bio-irrigation activities of L. conchilega. Measured

in 30–35 min at 1.5 mm depth in control (A), low (B) and high L. conchilega (C) treatments. Three profiles were

measured per treatment. “CV” indicates coefficient of oxygen variations over time.

https://doi.org/10.1371/journal.pone.0192391.g003
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samples of the Hd4 treatment in all three replicates (H1d4, H2d4 and H3d4) did not reach an

asymptotic rarefaction curve. Instead, read numbers of the high L. conchilega treatment

decreased with increasing depth (lowest read numbers in Hd4; see S3 Table). This pattern was

consistent across replicate samples, suggesting that the low read numbers are not a technical

artifact but probably a reflection of the lower read numbers of OTU in this treatment.

Only 21 of 502 OTUs were found to be abundant (>1% relative abundance in at least one

treatment-depth combination). Of these abundant OTUs, the two dominant OTUs 1 and 2

combined constituted 50–77% of the community where OTU 1 alone accounted for 44–71%

of the relative abundance in different samples (Fig 4).

Numbers of reads and total numbers of OTUs per sample as well as the numbers of abun-

dant OTUs (>1% relative abundance) in treatment-depth combinations are provided in S3

Table.

The results of the protein blast indicate that among the abundant OTUs, OTUs 1, 2, 4 and

10 were most closely (>97% AA identity) related to nosZ sequences from Pseudomonas stutzeri
constituting 76% of the community. The other abundant OTUs were less than 95% similar to

protein sequences available in sequence databases. In addition, a blast search was performed of

all 502 nosZ OTUs against NCBI’s non-redundant protein database (nr) with an e-value

threshold of 1E-20 and taking into account only the first blast hit for each OTU. These results

showed that 380 OTUs (which corresponds to 93.3% of all reads) were most closely related to

Pseudomonas stutzeri.
The maximum likelihood tree of nosZ sequences retrieved from our samples showed con-

siderable phylogenetic diversity (S2 Fig). No clear phylogenetic signal could be observed with

respect to treatment, i.e. samples from the three treatments (control, low and high L. conchi-
lega) contained sequences from across the phylogenetic tree (S2 Fig). Phylogenetic analysis of

Fig 4. Distribution of abundant and non-abundant OTUs at different depths and treatments. Abundant OTUs were defined as OTUs with>1% relative

abundance in at least one treatment-depth combination (values are averages of replicates) and non-abundant OTUs defined as OTUs with<1%. “H” indicates high

L. conchilega treatment. “L”: low L. conchilega treatment, “C”: control treatment, “d1”: 0–0.5 cm depth, “d2”: 0.5–1 cm, “d3”: 1–1.5 cm, “d4”: 2.5–3 cm.

https://doi.org/10.1371/journal.pone.0192391.g004
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representative OTUs together with related sequences derived from blastp searches showed that

there were three major clusters belonging to the Alpha, Beta and Gamma classes of the Proteo-

bacteria and abundant as well as non-abundant OTUs are dispersed among these clusters

(S3 Fig).

PERMANOVA based on Generalized Unifrac distance showed that the composition of

nosZ gene with and without including non-abundant OTUs was significantly affected by the

single effect of treatment and depth, regardless of the dataset used (Table 2).

Pairwise tests (S4 Table) indicated that the composition of nosZ in the treatment with high

density of L. conchilega was significantly different from the control treatment (p = 0.036).

However, no difference in nosZ gene composition was observed between the low and high L.

conchilega treatments, and also between low L. conchilega and control treatments (p> 0.05).

In the vertical depth distribution, pairwise tests revealed that the composition of nosZ at the

top layer (0–0.5 cm) was significantly different from the other layers (all pairwise test p< 0.05;

S4 Table).

The highly significant PERMDISP results in both analyses with all OTUs (factor “treat-

ment”: F = 10.07, p = 0.000; factor “depth”: F = 8.95, p = 0.000) and only abundant OTUs (fac-

tor “treatment”: F = 10.93, p = 0.000; factor “depth”: F = 7.56, p = 0.000) indicated a dispersion

effect as well. Visualization by PCoA plot (Fig 5 and S4 Fig) showed that dispersion increased

with increasing L. conchilega densities and with increasing depth in the sediment.

The Venn diagram and Jaccard similarity index (Fig 6) indicated the highest similarity in

OTUs among treatments at the top layer (0–0.5 cm) with more than 91% similarity. With

increasing depth, the number of shared OTUs was generally reduced between the high L. con-
chilega density and the two other treatments, reaching the lowest similarity (<50%) at the

deepest sediment layer (2.5–3 cm). However, 231 out of 247 (93.5%) and 234 out of 247

(94.7%) of OTUs in Hd4 were shared with Cd4 and Ld4, respectively (Fig 6). Among different

depths per treatment, the lowest value (47%) of the Jaccard similarity index was observed

when comparing the top layer (0–0.5 cm) and the 2.5–3 cm layer of the high L. conchilega
treatment (Table 3).

PERMANOVA did not show any significant effect on Shannon diversity and inverse Simp-

son for the factors “depth”, “treatment” or the interaction (all p> 0.05) although higher values

were observed in the high L. conchilega treatment at highest depth (S5 Table; Fig 7). On the

other hand, OTU richness was affected by the interaction effect “treatment × depth” (PERMA-

NOVA, pseudo-F = 5.45, p = 0.043; S5 Table). Pairwise tests (S6 Table; Fig 7) did not reveal

significant differences in OTU richness among treatments at the top layer (0–0.5 cm) (p(MC) >

0.05). In deeper sediment layers (2.5–3 cm), lower values were detected in the high L. conchi-
lega treatment (pairwise tests, p(MC) = 0.015 and p(MC) = 0.016 compared with the control and

Table 2. Results from PERMANOVA analysis main tests for differences in composition of nosZ gene.

factor dfterm Pseudo-F P value
All OTUs treatment 2 2.82 0.026

depth 3 2.68 0.012

Abundant (> 1%) OTUs treatment 2 3.35 0.025

depth 3 2.59 0.046

Treatments: high and low L. conchilega densities and control; depths: 0–0.5, 0.5–1, 1–1.5 and 2.5–3 cm. Analyses were carried out based on Generalized UniFrac

distances (α = 0.5) on the data sets using all OTUs or only abundant OTUs with relative abundance>1%. Single factor results are shown while the interaction

treatment × depth is not significant.

https://doi.org/10.1371/journal.pone.0192391.t002
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Fig 5. PCoA based on generalized UniFrac distances on the normalised data including all OTUs. A: per treatment;

B: per depth. Each point represents a sample. Three treatments (High: high L. conchilega treatment, Low: low L.

conchilega treatment, Control) and four depth layers (0–0.5, 0.5–1, 1–1.5 and 2.5–3 cm) are shown.

https://doi.org/10.1371/journal.pone.0192391.g005
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low L. conchilega treatments). In addition, richness was significantly lower in the high L. con-
chilega compared to the control at the depth 0.5–1 cm (pairwise test, p(MC) = 0.026).

We generally found a decreasing trend in OTU richness in the high L. conchilega treatment

with increasing depth (Fig 7). These changes were significant between the top (0–0.5 cm) and

deepest (2.5–3 cm) layer (pairwise test, p(MC) = 0.022; S6 Table).

Statistical modeling to link abiotic sediment characteristics with the

diversity indices of nosZ gene in L. conchilega reefs

Maximum oxygen penetration depth (max OPD; collinear with “treatment”) was an important

variable incorporated in all diversity models. However, it was not significant in the model for

the inverse Simpson index (p> 0.05). We found significant negative relation (β = -8.10x10-3,

p< 0.01) between max OPD and OTU richness; and a positive relation between this variable

and Shannon diversity (β = 1.96 × 10−4, p< 0.01) (Table 4). The average oxygen concentrations

Fig 6. Venn diagrams of the numbers of unique and shared OTUs and Jaccard similarity index (Ja). Treatments: high L. conchilega treatment (H), low L.

conchilega treatment (L), Control (C); depth: 0–0.5 (d1), 0.5–1 (d2), 1–1.5 (d3) and 2.5–3 cm (d4).

https://doi.org/10.1371/journal.pone.0192391.g006

Table 3. Jaccard similarity index in each treatment between the top layer (0–0.5 cm) and other depth layers.

High L. conchilega Jaccard Low L. conchilega Jaccard Control Jaccard

Hd1-Hd2 0.67 Ld1-Ld2 0.89 Cd1-Cd2 0.91

Hd1-Hd3 0.82 Ld1-Ld3 0.81 Cd1-Cd3 0.93

Hd1-Hd4 0.47 Ld1-Ld4 0.89 Cd1-Cd4 0.92

Treatments: high L. conchilega treatment (H), low L. conchilega treatment (L), Control (C). Depths: 0–0.5 (d1), 0.5–1 (d2), 1–1.5 (d3) and 2.5–3 cm (d4)

https://doi.org/10.1371/journal.pone.0192391.t003

Bio-irrigation by Lanice conchilega affects denitrifiers

PLOS ONE | https://doi.org/10.1371/journal.pone.0192391 February 6, 2018 15 / 25

https://doi.org/10.1371/journal.pone.0192391.g006
https://doi.org/10.1371/journal.pone.0192391.t003
https://doi.org/10.1371/journal.pone.0192391


Fig 7. Vertical distribution of diversity indices (richness, Shannon diversity and inverse Simpson) of nosZ gene. Obtained from 1000 sub-

samples of the data matrix to the minimum number of reads at three treatments (high L. conchilega, low L. conchilega and control treatments)

and four depth layers (0–0.5 [d1], 0.5–1 [d2], 1–1.5 [d3] and 2.5–3 [d4] cm). The solid horizontal line shows the median. Box is drawn between

the quartiles (the middle 50% of the data). Dotted lines extend to the minimum and maximum values.

https://doi.org/10.1371/journal.pone.0192391.g007
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per depth layer (OX) and % mud content were further important explanatory variables in the

model of Shannon diversity. Shannon diversity was negatively related with both OX (β =

-3.19 × 10−3) and % mud content (β = -0.06). Apart from max OPD, chl-a concentration con-

tributed significantly (β = 7.24, p< 0.001) to the model of richness.

Discussion

In the current study, we investigated the denitrifying community in L. conchilega aggregations

at the intertidal zone by focusing on expression of the gene encoding nitrous-oxide reductase

(nosZ), the enzyme catalysing the final step of denitrification. We investigated typical nosZ
genes, which play the major role in N2O reduction in coastal ecosystems [25]. The denitrifiers

with a complete pathway were identified as the dominant community [25].

In comparison with previous studies on functional genes for denitrification (nirS, nirK and

nosZ) in marine sediments [12,18,83,84], our results show a diverse active nosZ community

(502 OTUs) in the L. conchilega reef (area of L. conchilega aggregations plus zones without L.

conchilega as a control). This is what can be expected in intertidal sediments where regular

oxygen oscillations support a high genetic potential for denitrification [25].

The highest phylogenetic diversity was found in the Alphaproteobacteria and a high per-

centage of the sequences were closely related to Pseudomonas stutzeri (class Gammaproteobac-

teria). This is in agreement with previous studies in shelf sediments [25,85] and shallow coastal

sediments [12,86,87]. In addition, the high relative abundance of Gammaproteobacteria-

related phylotypes in our RNA-derived libraries suggests high levels of metabolic activity

within this group [86].

Horizontal and vertical patterns of the active nosZ community in L.

conchilega aggregations

Our study revealed differences in the composition of nosZ at both horizontal (m) and vertical

(cm) scales between high L. conchilega and control treatments, and between top oxic (0–0.5

cm) and deeper layers. These differences in composition were mainly due to changes in the rel-

ative contributions of abundant OTUs to the community. The same pattern was also observed

in the nosZ community structure in the high L. conchilega treatment at a depth of 2.5–3 cm

(Fig 6). Statistical modelling of diversity measures suggested that biogeochemical heterogene-

ity (oxygen concentrations and oxygen penetration depth) created by the activity of high L.

conchilega aggregations is the driving factor behind the observed differences, next to chl-a and

mud content (%) (Table 4). This suggests a structuring effect of L. conchilega on the expression

of nosZ genes in our study site. However, MGS and % mud were not affected by treatment nor

depth, and chl-a was only affected by depth in the sediment. This is in agreement with the pre-

vious study in the same sampling location in Boulogne-sur-Mer and at the same sampling

Table 4. The average values of diversity indices of nosZ gene as a function of environmental variables.

Model formula

Richness S = 154.40��� − 8.10 e-03 max OPD�� + 7.24 Chl-a ���

Shannon diversity H’ = 1.45��� − 0.06 Mud� + 1.96e-04 max OPD�� − 3.19e-03 OX �

Inverse Simpson 1/λ = 1.47��� + 2.1e-04 max OPD

Richness (S), Shannon diversity (H’), inverse Simpson (1/λ), maximum oxygen penetration depth (max OPD),

average of oxygen concentrations per depth layer (OX), % mud content (Mud) and chlorophyll a (Chl-a);

Significance levels are indicated with �(p < 0.05), ��(p < 0.01), or ���(p < 0.001).

https://doi.org/10.1371/journal.pone.0192391.t004
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month in October [41]. However, temporal fluctuations in L. conchilega population density

can significantly affect environmental properties [88]. Therefore, autogenic effects of L. conchi-
lega on the denitrifying communities cannot be completely excluded. In our case study, how-

ever, there was a mainly allogenic effect of L. conchilega on the environment.

Allogenic effect of L. conchilega
Lanice conchilega bio-irrigates its tube through piston-pumping activity for 1.5 min generally

every 4 min, thereby transporting about 3 mmol O2 m-2 d-1 into the sediment [31]. Lanice con-
chilega introduces oxygen-rich water in layers where oxygen is absent [31]. This intermittent

ventilation results in temporal changes in oxygen concentrations in the upper layers of the sed-

iment [31] and a deeper OPD especially close to the L. conchilega tubes [31,43]. Our results

reveal a density-dependent effect of L. conchilega bio-irrigation on the OPD (Fig 2) as well as a

significantly higher oxygen content at the top sediment layer (mainly 1–4 mm) in high and

low L. conchilega treatments compared to the control sediment (Fig 2). In addition, the peri-

odic piston-pumping activity resulted in oxygen variations over time. The oscillations were

generally higher in both L. conchilega treatments compared to the control treatment (Fig 3),

although there is no statistically significant difference. This could be caused by the fact that for

some measurements, variations in oxygen concentration (the values of CV) were comparable

with those in the control treatment. This can be explained by merging pulses from piston

pumping activity of adjacent animals or by merging individual pulses in one animal resulting

from a high frequency of occurrence of this pumping activity [31].

Generally low richness and high diversity (Shannon and inverse Simpson) of nosZ was

observed in the high L. conchilega treatment compared with the control treatment at depth

with most prominent differences at the deepest sediment layer (2.5–3 cm). At this depth, a sig-

nificant difference between the high and low L. conchilega treatments was also observed. In a

vertical sediment depth profile, nitrate coexists with oxygen in the top layer. In the deeper lay-

ers where oxygen is low or absent, the nitrate concentration is an important factor determining

similarity or difference in anaerobic denitrifying communities [89,90]. As anoxic conditions

continue at depth, nitrate concentrations decrease [8] while denitrification progresses. This

trend coincides with the decrease in diversity of denitrifying organisms and the rate of their

activity with increasing sediment depth [8,91,92]. The differences observed in diversity indices

of nosZ between treatments at depth may thus be explained by the different availability of

NO3
− between treatments in the low oxygen or anaerobic deeper layers. The higher availability

of NO3
− in the high L. conchilega treatment can be by directly pumping NO3

− [47] and/or by

bringing O2 to deeper layers [31] increasing the surface for coupled nitrification–denitrifica-

tion in the sediment along the tube [29] and also by more intensive irrigation activity in this

treatment, compared to the low L. conchilega and control treatments. The most prominent dif-

ferences between the high L. conchilega and the other two treatments were at the deepest sedi-

ment layer (2.5–3 cm). These differences are not due to adaptation of certain OTUs specific to

the high L. conchilega treatment: 93.5% and 94.7% of OTUs in Hd4 were shared with Cd4 and

Ld4, respectively (Fig 6). Instead, observed differences between treatments are due to reduc-

tion in the number of non-abundant and rare OTUs in Hd4 compared with Cd4 and Ld4.

Lanice conchilega ventilates its tube in each pumping activity by a volume of water equiva-

lent to 2.4 cm tube lengths [31]. Therefore, the most suitable condition for denitrification

(concomitant high availability of NO3
− and little or no oxygen in the surrounding sediment)

was met at 2.5–3 cm sediment. In the upper layers, high richness values resulted from the pres-

ence of a larger number of non-abundant and rare OTUs mainly belonging to the Alphapro-

teobacteria. This highly diverse pool may provide a background reservoir for suboptimal
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denitrification conditions increasing niche creation [90,93,94]. In addition, considering deni-

trification is an anaerobic process, the presence of active nosZ community in the top oxic layer

in all treatments (Fig 7) may point to co-consuming oxygen and NO3
− as electron acceptors

(aerobic denitrification [10]) by denitrifying organisms in the sediment of our study area. This

process has also been observed before in marine sediments [10].

Finally, the higher variations in composition of nosZ in the L. conchilega treatments com-

pared with the control (Fig 5A) are in accordance with a previous study indicating higher vari-

ations in denitrification rates in bioturbated sediment [51]. In bioturbated sediments, nitrogen

cycle processes are most likely driven by the formation of microniches surrounding the bur-

row systems [51]. In our study, this pattern can also be visualised in “depth” with increasing

depth (Fig 5B).

Conclusions

This study improves our understanding of the effects of bio-irrigation on the nosZ gene. Our

results reveal that large densities of L. conchilega (>3000 ind. m-2) affect composition, struc-

ture and diversity indices of the active nosZ community both vertically and horizontally in

the sediment. These patterns can be linked with heterogeneity in geochemical environments

in the sediment that are affected by allogenic ecosystem engineering effects of L. conchilega.

The piston-pumping activity of the polychaete transports oxygen rich waters to the deeper

layers of the sediment. This could also provide higher availability of NO3
− at depth by

increasing the surface for coupled nitrification-denitrification in the sediment along the

tube.

Since L. conchilega is present throughout the North Sea, often in dense aggregations, our

results provide evidence for the implementation of this polychaete in marine Ecosystem-Based

Management. This study illustrates that a future loss of macrobenthic diversity, and especially

ecosystem engineers, will have important repercussions for benthic ecosystem functioning.
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