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Abstract

Even among isogenic cells, the time to progress through the cell cycle, or the intermitotic

time (IMT), is highly variable. This variability has been a topic of research for several

decades and numerous mathematical models have been proposed to explain it. Previously,

we developed a top-down, stochastic drift-diffusion+threshold (DDT) model of a cell cycle

checkpoint and showed that it can accurately describe experimentally-derived IMT distribu-

tions [Leander R, Allen EJ, Garbett SP, Tyson DR, Quaranta V. Derivation and experimental

comparison of cell-division probability densities. J. Theor. Biol. 2014;358:129–135]. Here,

we use the DDT modeling approach for both descriptive and predictive data analysis. We

develop a custom numerical method for the reliable maximum likelihood estimation of model

parameters in the absence of a priori knowledge about the number of detectable check-

points. We employ this method to fit different variants of the DDT model (with one, two, and

three checkpoints) to IMT data from multiple cell lines under different growth conditions and

drug treatments. We find that a two-checkpoint model best describes the data, consistent

with the notion that the cell cycle can be broadly separated into two steps: the commitment

to divide and the process of cell division. The model predicts one part of the cell cycle to be

highly variable and growth factor sensitive while the other is less variable and relatively

refractory to growth factor signaling. Using experimental data that separates IMT into G1 vs.

S, G2, and M phases, we show that the model-predicted growth-factor-sensitive part of the

cell cycle corresponds to a portion of G1, consistent with previous studies suggesting that

the commitment step is the primary source of IMT variability. These results demonstrate

that a simple stochastic model, with just a handful of parameters, can provide fundamental

insights into the biological underpinnings of cell cycle progression.
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Introduction

The process through which a cell replicates its DNA, doubles in size, and divides is known as

the mitotic cell cycle [1] (Fig 1). The cell cycle proceeds unidirectionally: DNA synthesis (S

phase) and the segregation of cellular components into two new daughter cells (mitosis or M

phase) are separated by two “gap” phases (G1 and G2). The time it takes a cell to progress from

the beginning of G1 to the end of M phase is referred to as the intermitotic time (IMT). Cell

cycle progression is controlled by molecular signaling networks that verify the integrity of each

step in this process; these verification points are referred to as checkpoints. Many distinct

checkpoint functions have been described [2, 3], including checkpoints that assess: (i) growth

factor signaling (often referred to as the restriction point [4]; see Fig 1); (ii) licensing of DNA

replication to prevent reduplication [5]; (iii) nutrient abundance [6]; (iv) DNA damage [3]; (v)

sufficient size of the cell prior to mitosis [7]; and (vi) proper machinery for chromosomal

alignment and segregation during mitosis [8]. Hyperproliferative diseases, such as cancer,

invariably suffer from defective cell cycle checkpoint function [2], usually caused by genetic

mutations to important molecular regulators [9]. These mutations can disrupt the network

structure in complex ways, reducing checkpoint fidelity and increasing IMT variability. An

improved understanding of the molecular mechanisms underlying cell cycle checkpoints and

IMT variability may thus lead to novel therapeutics that can restore normal cell function and/

or slow or halt disease progression.

The origins and consequences of IMT variability have been the subject of intense research

for decades [10–21]. For example, numerous papers have investigated the checkpoint in G1

that acts as the commitment step to cell division, often referred to as the restriction point.

However, its position in the cell cycle, relationships to other G1 checkpoints, and the transition

into and out of the non-cycling G0 state remain controversial [2, 4–6, 22–26]. In addition,

how much of the variability in the total IMT is contributed before vs. after this step is a point

of contention. Early studies by Zetterberg and Larsson suggest more variability occurs after the

commitment step [22, 27], whereas others suggest that the variability arises prior to commit-

ment [23, 24, 26]. Furthermore, although many of the important molecular components con-

trolling checkpoint passage are known [2, 5, 28, 29], a comprehensive understanding of the

complex network of molecular interactions that drives progression through the cell cycle is

still lacking.

Fig 1. Simple illustration of the cell cycle. The four phases of the cell cycle (G1, S, G2, and M), the non-cycling G0

state, and three well-known checkpoints (dashed lines) are shown. The exact location and nature of the G1 checkpoint

is controversial, indicated by ‘ ?!’. The number and location of other checkpoints within the G1, S, and G2 phases

is also a topic of current research.

https://doi.org/10.1371/journal.pone.0192087.g001
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As a result, mathematical modeling has become an important tool for deriving new insights

into cell cycle control and the origins of IMT variability [30–34]. Models describing IMT vari-

ability in mammalian cells include the Gaussian [35], gamma [36], log-normal [37], delayed

exponential [15], exponentially-modified Gaussian (EMG) [38, 39], exponentially-modified

gamma [40], convolutions of the above [41], and more complex distributions [42, 43]. For sin-

gle-cell organisms, such as bacteria and yeast, a variety of ‘timer,’ ‘sizer,’ and ‘adder’ models, as

well as mixed versions of these, have also been proposed [7, 31, 32, 44–46]. Whether applied to

mammalian cells or single-cell organisms, a major drawback of these ‘top-down’ models is

that the connection between IMT variability and the underlying biochemical processes driving

cell cycle progression is often absent or unclear. Conversely, numerous ‘bottom-up’ models

that explicitly represent the complex biochemical interactions that underlie cell cycle progres-

sion have been developed [34, 47, 48]. While these models can provide insights into, e.g., the

relative contributions of extrinsic vs. intrinsic noise [34], their predictive ability is usually lim-

ited by the large numbers of uncertain parameters generally characteristic of such models [49].

The complexity of these models also precludes derivation of simple analytical expressions for

the IMT distribution, limiting their ability to inform the stage- and phase-structured models

that are typically used to study cell population-level behaviors [18, 50–52].

A simple, top-down model of the cell cycle that is both biologically informed and analyti-

cally tractable could thus be extremely useful in linking dynamic changes occurring at the

molecular scale within individual cells to features of the population as a whole. In recent years,

increasing evidence has emerged that cell fate decisions are driven by biochemical networks

that act as ultra-sensitive switches [53]. For example, it has been shown that the commitment

to apoptosis in higher eukaryotes occurs suddenly, in a “snap-action”-like manner, once pro-

apoptotic proteins reach a critical threshold value [54]. Similarly, cells make an irreversible

commitment to divide once pro-mitotic proteins obtain a critical threshold level [26, 33, 34].

Based on such observations, we recently proposed a model of checkpoint passage [55] in

which a continuous random variable, assumed to be a function of one or more protein concen-

trations, evolves stochastically in time through a simple drift-diffusion process [56, 57]. Once

the value of this variable reaches a critical threshold value, passage of the checkpoint is

assumed to occur instantaneously. The time to checkpoint passage is thus translated into a

first-exit time problem, which is analytically tractable [56, 57]. We refer to this model as the

drift-diffusion+threshold (DDT) model.

Previously, we investigated the descriptive ability of the DDT modeling approach [55]. In

this work, we investigate its predictive potential by fitting one-, two-, and three-checkpoint

DDT models to experimental data from multiple human cell lines (nonmalignant and cancer)

under different growth conditions and drug treatments. We present the mathematical basis of

the DDT modeling approach, compare it to a frequently-used family of models known as

exponentially-modified peak functions (EMPF) [58], and describe a custom numerical method

that enables parameter estimation for multi-fold convolution models in the face of highly-con-

centrated distributions. Our analysis shows that in all cases our experimental data is best

described by a two-checkpoint model, consistent with the view that the cell cycle has two pri-

mary decision points: the commitment to cell division in G1 and the confirmation that the cell

is ready to divide in G2 [1]. Furthermore, by comparing model predictions to experimental

data quantifying residence times in different segments of the cell cycle, the model predicts a

highly variable and growth-factor-sensitive phase that corresponds to a portion of G1. We con-

clude by comparing our model predictions to competing views of the G1 cell cycle phase pro-

posed in the literature and discuss the potential for interfacing the DDT model with complex

bottom-up models of the signaling pathways controlling checkpoint passage.
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Materials and methods

Cell culture

Human lung adenocarcinoma PC-9 cells, human melanoma A375 cells, benign mammary epi-

thelial MCF10A cells, and MCF10AT1 cells (a variant of MCF10A engineered to stably express

V12-Ras that mimics constitutively high levels of growth factor signaling [59]) were cultured

as previously described [52, 60]. Numerous publications have demonstrated the effects of Ras

transformation by comparing the MCF10AT1 cell to the parental MCF10A cell line [60–63].

All cell lines were engineered to express a fusion protein consisting of histone 2B/monomeric

red fluorescent protein (H2B-mRFP) using lentivirus-mediated transduction [60]. A mono-

meric azami green fluorescent protein in-frame with cDNA of human geminin amino acids

1–110 (fluorescent ubiquitination-based cell cycle indicator, a.k.a. Fucci [64]) was also engi-

neered into A375 cells as a marker of S, G2, or M phases, as described [52]. Treatments to per-

turb cell cycle progression include erlotinib, a small-molecule inhibitor of the epidermal

growth factor receptor (EGFR) tyrosine kinase activity (0.5 μM), and cycloheximide (CHX),

an antibiotic that inhibits protein synthesis (0.05 μg/μL). Dimethyl sulfoxide (DMSO) is used

as the vehicle control (0.05 %v/v). Treatment involved replacing medium with complete

medium containing the specified agent. DMSO-, erlotinib-, and CHX-treated MCF10A cell

data were obtained from a single experiment. MCF10AT1 (untreated) and MCF10A

(untreated) were from a separate experiment in which the medium was not changed prior to

imaging. No vector control of the V12-Ras-transformed MCF10AT1 cells was available from

the group that produced the cell line [59]. Together, these cell lines and conditions represent

relevant perturbations of the primary G1 checkpoint.

Automated fluorescence microscopy imaging

Cells proliferating in culture were imaged as previously described [52, 60]. Briefly, a tempera-

ture- and CO2-controlled, automated, spinning-disk confocal microscope (Pathway 855, BD

Biosciences, Rockville, MD) was used to acquire fluorescence images every 6–30 minutes.

Nuclei were enumerated by automated digital image segmentation using the freely available

ImageJ program (http://rsb.info.nih.gon/ij/). Individual cells were manually tracked through a

series of images, mitotic events were identified, and the number of frames between two succes-

sive mitoses was used to determine the IMT [52, 60]. The time of each mitotic event and the

IMT value for each completed cell cycle were extracted. In cells expressing the Fucci marker of

cell cycle position [52, 64], the time at which Fucci became detectable was also recorded. Time

between the first mitotic event and the time of Fucci detection was considered time spent in

G1.

Data censoring

Individual cell IMT data was subject to multiple steps of censoring to remove bias due to cell

death, cells reaching the end of the experiment (EoE) without dividing, cell crowding, and

delays in stabilization of the drug effect. Cell death was rare in the experiments considered

here (only PC-9 and A375 cells exhibited any cell death; Fig B of S1 File). Thus, cells that died

were simply excluded from the analysis. To minimize the effect of the EoE, we calculated the

last birth time at which > 96% of cells divided before reaching the EoE. Cells born after this

time were excluded from the analysis. Thus, we exclusively examined the dividing cells in asyn-

chronously dividing populations. To account for cell crowding (confluence), we analyzed the

correlation between birth time and IMT using the Spearman correlation coefficient [65]. Cells

born after the time at which the correlation becomes significant (p� 0.01) were excluded from
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the analysis. Finally, erlotinib-treated MCF10A cells exhibited a period of transient growth at

the beginning of the experiment, presumably due to a delay in the stabilization of the drug

effect [66]. Thus, cells born < 10 h after drug addition were excluded from the analysis in this

case. Complete data sets, including censored data, are shown in Fig B of S1 File.

Stochastic checkpoint models

We consider models in which the cell cycle is comprised of m� 1 checkpoints with passage

times that vary stochastically in length and need not lie at the boundaries between cell cycle

phases (see Fig 1). In Ref. [55], we proposed a model in which passage of the i-th checkpoint is

controlled by a random variable, yi, that represents a “bifurcation parameter” [67] of the

underlying biochemical network controlling checkpoint passage. Specifically, we assume that

passage of the checkpoint occurs when yi first reaches a critical threshold value, which triggers

an irreversible cell state transition [30, 68]. The temporal evolution of yi is described by the Itô

stochastic differential equation (SDE) [56]

dyiðtÞ ¼ midt þ sidWt; yið0Þ ¼ 0; ð1Þ

where μi and σi are the “drift” and “diffusion” constants, respectively, and Wt is a standard

Weiner process [56]. Checkpoint passage is assumed to occur when yi(t) = 1. We refer to this

type of model as a “drift-diffusion+threshold,” or DDT, model. Note that in the most general

formulation of Eq 1, the drift and diffusion terms can be functions of time [7, 32]. However,

since the growth function describing the mammalian cell cycle is complex and largely

unknown [69, 70], we chose the form in Eq 1 because it is the simplest that can capture, with-

out imposing a specific growth function, the aggregate effects of the complex network of

molecular interactions underlying checkpoint passage. A schematic representation of a

checkpoint in the DDT model is show in Fig 2A; an example simulated time course for a two-

checkpoint DDT (DDT2) model is shown in Fig 3. Additional information regarding the

mathematical basis of the DDT model is provided in S1 File.

Fig 2. Schematic representations of stochastic cell cycle checkpoint models. (A) The DDT model random variable is

depicted as a ball stochastically traversing a staircase. The ball can move both up and down the staircase (diffusion) but

the probability of taking a step up is greater than taking a step down (drift; thick arrow vs. thin arrow). Checkpoint

passage occurs immediately upon the ball reaching the top of the staircase (threshold), emulating a bistable switch. (B)

The EMPF model is depicted as a staircase connected to a basin. Once the ball reaches the top of the staircase it falls

into the basin, from which time to escape is exponentially distributed. In contrast to the DDT model, here the ball can

only move up the staircase (single arrow). The transition-probability model of Smith and Martin [15] corresponds to

the special case in which the time to traverse each step is constant (delayed exponential). The EMG [38, 39] relaxes this

assumption, so that the total time to traverse the staircase is Gaussian distributed. See S1 File for a detailed

mathematical comparison of the two models.

https://doi.org/10.1371/journal.pone.0192087.g002
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It can be shown that for the stochastic process in Eq 1, the time t at which yi(t) = 1, i.e., the

checkpoint passage time, follows an inverse Gaussian (or Wald) distribution [71, 72],

f ðt; mi; siÞ ¼
1

si

ffiffiffiffiffiffiffiffiffi
2pt3
p exp

� ðmit � 1Þ
2

2s2
i t

� �

; ð2Þ

with mean 1/μi and variance s2
i =m3

i . Thus, for an m-checkpoint DDT model, the probability

density function for the IMT is an m-fold convolution of inverse Gaussian distributions,

pðt; m1; s1; . . . mm; smÞ ¼

Z t

0

� � �

Z t�
Pm� 2

i¼1
si

0

f1ðs1Þ . . . fm� 1ðsm� 1Þ fm t �
Xm� 1

i¼1

si

 !

ds1 . . . dsm� 1;
ð3Þ

where we have used the shorthand fi(x) ≔ f(x; μi, σi). For given values of {μ1, σ1, . . . μm, σm}, we

can solve Eq 3 by approximating the convolution as a left-hand Riemann sum [73] (using the

Matlab conv function; www.mathworks.com/help/matlab/ref/conv.html). However, numeri-

cal challenges arise if one of the density functions in Eq 3 is highly concentrated (i.e., has a

very low variance). To handle this situation, we developed a novel algorithm that automatically

identifies and replaces highly-concentrated distributions with Dirac delta functions (an

infinitely narrow, infinitely dense mathematical construct) [56, 57] before performing the

convolution (see “Parameter estimation for convolution models with highly-concentrated dis-

tributions” and S1 File for details). Note that because of the commutative property of convolu-

tions [73], it is not possible to define an ordering of the checkpoints. Therefore, we compare

the model parameters to experimental data specific to known cell cycle phases to infer an

ordering (see “Results”).

An alternative stochastic checkpoint model that has been used to describe IMT distribu-

tions is the exponentially-modified Gaussian, or EMG, model [38, 39]. The EMG model is a

two-part model that assumes that passage of a checkpoint involves “transit” and “dwell” phases

where duration in the former is Gaussian distributed and duration in the latter is exponentially

Fig 3. Illustration of a two-checkpoint drift-diffusion+threshold model of the cell cycle. Simulation was performed

by numerically solving Eq 1, twice in sequence, using the Euler-Maruyama algorithm [56] with a fixed time step

Δt = 0.01. Drift and diffusion constants are μ1 = μ2 = 0.2 and σ1 = σ2 = 0.1, respectively.

https://doi.org/10.1371/journal.pone.0192087.g003
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distributed (see Fig 2B). The checkpoint passage time is thus a convolution of the two distribu-

tions. The Gaussian part of the EMG has been associated with S, G2, M, and early G1 while the

exponential part has been associated with the G1/S checkpoint [38]. The EMG actually belongs

to a larger family of models known as exponentially-modified peak function, or EMPF, models

[58] that includes the “transition probability” model of Smith and Martin [15] (delayed expo-

nential, i.e., deterministic transit time) and the exponentially-modified gamma model [40]. It

is important to note that because of the exponential dwell time, EMPF models do not describe

an ultra-sensitive, switch-like transition mechanism. Given the experimental evidence that

checkpoint passage occurs in a switch-like manner [26, 33, 34, 53, 54], we believe that the

DDT model is a more accurate description of the biological process of checkpoint passage. A

detailed mathematical comparison of the DDT and EMPF modeling approaches is presented

in S1 File.

Parameter estimation for convolution models with highly-concentrated

distributions

Best-fit parameter values for all models are obtained using maximum likelihood estimation

(MLE) [74]. Let θ denote a vector of parameters and p(t; θ) a probability density function

being fit to n experimental data points {t1 . . . tn}, ti 2 R. The likelihood function is defined as

Lðy; tÞ ¼
Yn

i¼1

pðti; yÞ: ð4Þ

The maximum likelihood estimator, ŷ, is the value of θ that maximizes Eq 4. For the DDT

models, the density function p(t; θ) is given by the convolution Eq 3. However, numerical inac-

curacies can arise in evaluating Eq 3 if one (or more) of the inverse Gaussians (Eq 2) within

the integral is highly concentrated. In such cases, the maximum likelihood estimation routine

(here we use the Matlab mle function; www.mathworks.com/help/stats/mle.html) can return

erroneous answers or fail to converge.

To overcome this problem, we developed a novel, adaptive algorithm for identifying and

replacing highly-concentrated distributions with Dirac delta functions [56, 57]. The Dirac

delta function δτ(s) can be thought of as an infinitely dense distribution at the point s = τ 2 R.

It is defined mathematically via the following two relations,

dtðsÞ ¼ 0 for s 6¼ t; ð5Þ

Z 1

� 1

dtðsÞds ¼ 1; ð6Þ

and has the following property [57],

Z s2

s1

dtðsÞf ðsÞds ¼ f ðtÞ for t 2 ðs1; s2Þ: ð7Þ

If h is a highly-concentrated distribution, and both h and f are zero for t< 0, by Eq 7 the con-

volution
R t

0
hðsÞf ðt � sÞds can be approximated as

Z t

0

dtðsÞf ðt � sÞds ¼ f ðt � tÞ for t 2 ð0; tÞ; ð8Þ

where we have set s1 = 0 and s2 = t. For the DDT models, this means that a two-fold convolu-

tion of an inverse Gaussian (Eq 2) with a highly-concentrated inverse Gaussian can be
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approximated as

f ðt � t; mi; siÞ ¼
1

si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðt � tÞ
3

q exp
� ðmiðt � tÞ � 1Þ

2

2s2
i ðt � tÞ

� �

; ð9Þ

i.e., a translated inverse Gaussian. Doing so improves the accuracy and efficiency of MLE

parameter estimation because it avoids the error-prone and computationally expensive step of

numerically integrating over highly-concentrated distributions. Note that since an m-fold con-

volution can be solved as multiple, sequential two-fold convolutions, this approach is easily

generalized to higher-order DDT models with one or more highly-concentrated distributions.

Our adaptive algorithm (outlined in S1 File) identifies theoretical conditions under which a

highly-concentrated distribution can be safely substituted by a Dirac delta function, based on

the width of the distribution and an estimate of the point-wise error in evaluating the convolu-

tion Eq 3 using the approximation. A mathematical derivation of the error bounds used to

make this determination are provided in S1 File. A software implementation is freely available

at https://github.com/rnleander/DDT_cell_cycle.

Model selection

To discriminate between candidate cell cycle models (one-, two-, and three-checkpoint DDT

models and the EMG model), we use the Akaike information criterion (AIC), an information

theoretic approach that estimates the information loss (Kullback-Leibler divergence) when

using a model to describe experimental data [75]. We chose the AIC as a model selection met-

ric because it is well established theoretically, widely used in systems biology, easy to employ,

and does not require prior knowledge like Bayesian-based methods [76]. The key feature of

the AIC is that it mitigates against model overfitting by including a penalty term based on the

number of model parameters, i.e., even if a model gives a tighter fit to experimental data, the

AIC may prefer a different candidate model if it achieves a comparable fit with fewer parame-

ters. In this work, each m-checkpoint DDT model has 2m parameters (μ and σ for each check-

point) and the EMG model has three parameters (the rate parameter of the exponential and

the mean and variance of the Gaussian).

To guard against small-sample effects, we use a modified form of the AIC known as the

“AIC with correction for finite size” (AICc) [75]. For the i-th model, we calculate

AICci ¼ � 2 ln Liðy; tÞ þ 2ki þ
2kiðki þ 1Þ

n � ki � 1
; ð10Þ

where Li(θ; t) is the optimized value of the likelihood function (Eq 4), ki is the number of

parameters, and n is the number of data points. Note that the second term on the right-hand

side is the “penalty” and the third term is the “correction,” which goes to zero as n!1. The

preferred candidate model is that with the minimum AICc value. Model selection is further

aided by the quantity [77]

AICpi ¼ exp
min jfAICcjg � AICci

2

� �

; ð11Þ

which represents an evidence ratio. Note that the preferred model always has an AICp value

equal to 1. The AICp can also be used to compare models pairwise, i.e., model j can be assumed

to be superior to model i if the ratio AICpi/AICpj� 1 [77].
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Parameter variability and hypothesis testing

To estimate variability in the values of model parameters, we used bootstrapping, a popular

Monte Carlo method for approximating confidence intervals and performing hypothesis tests

[78]. For each experimental IMT data set, we sampled the data with replacement to generate

1000 resampled data sets, each the same size as the original data set. For each model, we then

performed MLE on each resampled data set to generate an ensemble of model parameter sets.

Joint distributions of parameters (μ and σ) can then visualized as three-dimensional histo-

grams. We also performed hypothesis testing using a two-sample bootstrapping scheme [74].

In this approach, two experimental data sets are combined and sampled with replacement to

generate two resampled data sets, one the same size as one of the original data sets and one the

same size as the other original data set. MLE is then performed on each resampled data set to

obtain best-fit parameter values. For any parameter θ, the difference, Δθ0, between the values

obtained from the two resampled data sets is recorded. The entire procedure is repeated

N = 1000 times and each value of Δθ0 is compared against Dŷ, the difference between the best-

fit parameter values obtained from the original data sets. We then test the null hypothesis that

parameter values for the two data sets are equal by calculating the proportion of samples for

which Δθ0 is more extreme than Dŷ, i.e., the p-value

py ¼
1

N

XN

i¼1

1ðDy
0

i � DŷÞ ð12Þ

if Dŷ > 0 or

py ¼
1

N

XN

i¼1

1ðDŷ � Dy
0

iÞ ð13Þ

if Dŷ < 0. Here, 1ðxÞ is the unit step function that returns 1 for x� 0 and 0 otherwise.

Results

Modeling predicts two primary cell cycle checkpoints

We fit the EMG and one-, two-, and three-checkpoint DDT models (DDT1, DDT2, and

DDT3, respectively) to experimental IMT data for six different cell line/growth condition com-

binations (Fig 4). In all cases, the DDT2 model is theoretically preferred, based on the Akaike

information criterion (Eq 11). The DDT3 model provides slightly better fits in each case (not

visually apparent in Fig 4; see Table A of S1 File) but is penalized for having two additional

parameters. However, the DDT3 model cannot be entirely ruled out in any case since all ratios

of AICp values with respect to DDT2 are > 0.1 (see “Parameter estimation and model selec-

tion”). The EMG model also cannot be entirely ruled out in one case (MCF10A + 50 μg/ml

CHX). Nonetheless, the weight of the evidence points to the DDT2 model as being best able

to describe the experimentally-observed IMT variability under the growth conditions and per-

turbations considered here. This result is significant in that it emerges from our modeling

approach, rather than being explicitly imposed, and is consistent with the traditional view that

the cell cycle has two primary steps, each regulated by a checkpoint: the commitment to cell

division prior to cells entering S phase and the process of cell division in mitosis [1].

DDT models predict a checkpoint with highly variable passage times

We next investigated the relative contributions of each phase of the DDT2 and DDT3 models

(the theoretically most likely models) to the total IMT. For each phase, we calculated the mean
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and standard deviation of the checkpoint passage time (see Eq 2) using the best-fit values of the

drift (μ) and diffusion (σ) parameters (Tables B–D of S1 File). We then calculated the coefficient

of variation (CV; the ratio of the standard deviation to the mean) as a measure of variability

(Fig 5). For both models, we see that one cell cycle phase is significantly more variable than the

other(s). Hereafter, we refer to this high variability phase as “H phase” and to the low variability

phase(s) as “L phase” (or L1 and L2 in the case of DDT3). Interestingly, the values of the model

parameters associated with H phase are well preserved between the DDT2 and DDT3 models.

For example, for untreated MCF10A cells, the maximum likelihood parameter estimates for μH

and σH are identical to two significant digits (μH� 0.25 and σH� 1.0; Table B of S1 File). The

fact that the H phase is preserved between models suggests that this phase corresponds to a

well-defined biological process that is an important contributor to IMT variability. Moreover,

Fig 4. A two-checkpoint drift-diffusion+threshold (DDT2) model best describes IMT variability under numerous conditions. (A), (B), and

(C) correspond to independent experiments (with slightly different culture conditions; see “Cell culture”). Note that in most cases the DDT3

curve is obscured by the DDT2 curve. n: number of experimental IMT measurements.

https://doi.org/10.1371/journal.pone.0192087.g004
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the fact that the DDT3 model breaks the L phase into two less variable phases is intriguing since

we know that the cell cycle contains more than two checkpoints (Fig 1).

The model-predicted highly variable cell cycle phase is growth factor

sensitive

The experimental conditions for the MCF10A cell line include two opposing growth-factor-

related perturbations: treatment with erlotinib, a growth factor receptor inhibitor, and stable

expression of a mutant form of Ras (V12-Ras) that activates downstream growth factor signal-

ing in the derived MCF10AT1 cell line [59]. To investigate how our modeling approach

accounts for these known effects, we compare values of the drift and diffusion parameters, μ
and σ, for both phases of the DDT2 model under perturbed and unperturbed conditions (Fig

6). For both of these perturbations, we see that parameters for H phase are much more sensi-

tive to growth factor perturbations than those for L phase (see “Parameter estimation and

model selection”). Specifically, we see that erlotinib treatment significantly decreases μH while

V12-Ras significantly increases μH. The mean checkpoint passage time is inversely related to

μH (Eq 2). Therefore, our model predicts that under erlotinib treatment, time spent in H phase

is significantly increased (*4×) relative to control while stable expression of growth factor

(V12-Ras) significantly decreases time spent in H phase (> 4×; Table B of S1 File). Conversely,

the model predicts that growth factor perturbations have a much smaller (< 10%) effect on the

parameters for L phase (Fig 6; Tables B and C of S1 File). Interestingly, the protein synthesis

inhibitor CHX is predicted to lengthen the time spent in both cell cycle phases by a similar

amount (*2×; Fig D and Tables B and C of S1 File). This indicates that the limited effect of

increased growth factor on L phase is not simply due to general unresponsiveness. Taken

together, our results strongly suggest that the model-predicted H phase is very sensitive to vari-

ations in growth factor signaling.

The highly-variable, growth-factor-sensitive phase correlates with G1

In order to ascertain whether our model-predicted H and L cell cycle phases can be associated

with known cell cycle phases, we compared DDT2 model-predicted checkpoint passage time

Fig 5. A highly-variable cell cycle phase is preserved between multi-checkpoint DDT models. Relative variability in

checkpoint passage times, as quantified by the coefficient of variation (CV), is shown for each phase of the DDT2 and

DDT3 models for all experimental conditions considered. Note that the phase numbers are arbitrary (ordered from

largest to smallest CV) and do not reflect their actual order in the cell cycle (see “Stochastic checkpoint models”).

Hereafter, the high-variability phase is referred to as “H” and the low-variability phase(s) as “L” (L1 and L2 for DDT3).

https://doi.org/10.1371/journal.pone.0192087.g005
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distributions to experimentally-measured times spent in G1 and (collectively) S, G2, and M

phases for single melanoma cells (A375, untreated) expressing a live-cell reporter of cell cycle

position (Fig 7; see “Automated fluorescence microscopy imaging”). We see that the H phase

distribution is very similar in shape to the G1 passage time distribution (with both distribu-

tions being highly skewed) while the L phase distribution correlates with the S-G2-M distribu-

tion (both distributions are relatively symmetric). The ability of the model to predict a long-

tailed distribution of G1 times and a near-symmetric and less variable distribution of S-G2-M

times is significant and consistent with experimental evidence that G1 is the primary source of

IMT variability [10, 22, 79, 80].

However, the center of the H phase distribution lies to the left of that for the G1 time distri-

bution while the center of the L phase distribution lies to the right of that for the S-G2-M time

distribution (Fig 7B). This suggests that the model does not segregate the cell cycle at the phase

boundaries. Instead, the model places the G1 checkpoint within the interior of the G1 phase.

The remainder of G1, which appears to be of nearly constant duration, is part of a second

checkpoint process that spans the remainder of the cell cycle. To better characterize this resid-

ual part of G1, we used MLE to shift the H phase distribution such that it optimizes the

description of the G1 time data (Fig 7B). We find an optimal translation time of *3.5 h. More-

over, if we shift the L phase distribution by the same amount to the left, we see a strong

Fig 6. Parameter estimates under growth factor perturbation suggest that the highly-variable (H) phase is growth factor

sensitive. (A) MCF10A cells in DMSO control vs. treatment with the EGFR inhibitor erlotinib; (B) MCF10A wild-type (WT) cells vs.

MCF10AT1 cells (indicated by V12-Ras). p-values were calculated using a two-sample bootstrapping scheme (see “Parameter

estimation and model selection”). Blue signifies unperturbed; red signifies perturbed.

https://doi.org/10.1371/journal.pone.0192087.g006
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correspondence to the experimental S-G2-M time data, further supporting the idea that a por-

tion of G1 is included in the L phase. This result is in agreement with early published studies

suggesting that G1 consists of a highly uniform period of *3 h followed by a more variable

period that is the primary contributor to IMT variability [22]. However, it is also consistent

with more recent studies that associate high variability in cell cycle times to CDK2 activity lev-

els near the beginning of G1 [24, 26] (see “Discussion”).

Discussion

In progressing through the cell cycle (Fig 1), a cell undergoes discrete and irreversible pheno-

typic changes [1]. Growing evidence [33, 54] suggests that these changes are controlled by

complex molecular networks that act as bistable switches in response to modulating levels of

critical biological variables, or “bifurcation parameters” (see below and S1 File). Consistent

with this view, here we model the cell cycle as a series of drift-diffusion processes coupled to a

threshold (the DDT modeling approach; Figs 2 and 3). An early version of this model was pro-

posed in Ref. [55], where its ability to describe experimental IMT data was demonstrated.

Here, we significantly extend this analysis to demonstrate the predictive power of the DDT

modeling approach. By fitting different variants of the DDT model with one, two, and three

checkpoints to experimental IMT data obtained under culture conditions and perturbations

designed to modulate the G1 checkpoint, we gain fundamental insights into the structure and

control of the cell cycle. Specifically, we find that our data is best described by a model with

two checkpoints (Fig 4), one of which has highly variable passage times (Fig 5) and is growth

factor sensitive (Fig 6). Furthermore, by comparing model-predicted checkpoint passage times

to experimentally-observed cell cycle phase residence times, we are able to associate the highly

variable, growth-factor-sensitive phase with a portion of G1 (Fig 7).

These findings are broadly consistent with the standard view of the cell cycle as consisting

of two primary tasks, the replication of cellular components and the distribution of cellular

contents among daughter cells upon division [1]. They are also consistent with multiple studies

that report that G1 is composed of multiple portions and is the primary source of variability in

IMT [10, 22–24, 26, 27, 79, 80]. There is considerable controversy within this literature, how-

ever, regarding the specific structure of G1 and the relative contributions of each portion to

IMT variability [23]. Early studies by Zetterberg and co-workers [22, 27] suggest that G1 is

Fig 7. Model-predicted H and L phases correlate with experimental G1 and S-G2-M times. Experimental results and model predictions for untreated A375 cells:

(A) IMT data (n = 266) overlaid by the best-fit DDT2 model; (B) histograms of times spent in G1 (left) and combined S, G2, and M (right) cell cycle phases were

compared to DDT2 model-predicted H and L phases. The H phase most closely correlates with G1, while the L phase correlates with S-G2-M. Dashed lines indicate

distributions shifted (*3.5 h, indicated by arrows) to best describe the G1 data.

https://doi.org/10.1371/journal.pone.0192087.g007
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comprised of a 3–4 h period of nearly constant duration followed by a highly variable phase

that precedes S phase. The early phase is growth factor dependent, in that, removal of growth

factors and serum causes cells to arrest into a non-cycling G0 state. Upon re-addition of

growth factors, cells can reenter G1 at the same point from which they left. The latter, more

variable phase is growth factor independent insofar as growth factor withdrawal does not

influence G0 arrest. Conversely, more recent work by Meyer and co-workers attributes IMT

variability to early G1 and the commitment to divide, specifically linking commitment to

increasing CDK2 activity [24, 26]. These authors propose that a fraction of cells are born into a

transient G0-like state, characterized by low CDK2 activity, in which they remain for a highly

variable (possibly indefinite) length of time before emerging into G1, at which point their

CDK2 levels begin to rise. The remaining fraction exhibit increasing CDK2 levels very shortly

after mitosis, either by bypassing the G0-like state or emerging from it quickly. This view of

G1 as containing an early, highly variable and growth-factor-sensitive portion is also consistent

with earlier work by Ho and Tucker [23] and work by Yao et al. [33].

In Fig 8, we show schematic illustrations of these two competing views of the structure of

G1 and their relation to our model predictions. The model proposed by Zetterberg and co-

workers [22, 27] places our H phase at the end of G1, immediately preceding S phase, and the

near-constant portion of G1 at the end of L phase (Fig 8A). The H phase is growth factor inde-

pendent in this view and the checkpoint preceding it is termed the “restriction point.” The

model of Meyer and co-workers [24, 26], on the other hand, places the H phase at the begin-

ning of G1 and explains the high variability of this phase in terms of stochastic transitions out

of a transient G0-like state (Fig 8B). While we currently cannot eliminate either of these possi-

bilities, our findings tend to support the view of Meyer and co-workers. In particular, our find-

ing that the H phase is growth factor sensitive appears to be in conflict with Zetterberg and co-

workers’ assertion that IMT variability emanates primarily from the growth-factor-indepen-

dent portion of G1 following the restriction point. We cannot say this definitively, however, as

their definition of growth factor dependence (see above) and our definition of growth factor

sensitivity (increased growth factor signaling decreases time spent in this portion, and vice

versa) are not entirely congruent. Furthermore, Zetterberg and co-workers’ model also implies

that the DDT model is failing to detect two well-characterized M phase checkpoints [81, 82]

(see Fig 1). Again, while this seems unlikely, we cannot rule it out since our experimental

approach focused on modulating growth factor signaling, which is known to specifically regu-

late the G1 checkpoint; other growth-factor-insensitive checkpoints may have been largely

inactive and had a negligible influence on cell cycle kinetics [82, 83]. These points emphasize

Fig 8. Hypothetical models of G1 checkpoint activity. (A) The H phase begins Δ h after the M/G1 phase boundary

and ends at the G1/S phase boundary. Cells can enter G0 at any point within the first Δ h of G1, and return at the same

position, but not after. This model is consistent with Refs. [22, 27]. (B) The H phase begins at the M/G1 phase

boundary and ends Δ h before the G1/S phase boundary. Some cells enter into the cell cycle in G0 and reside there for

some time before stochastically emerging into G1, which is the source of variability in this phase. This model is

consistent with Refs. [23, 24, 26, 33]. Note that Δ� 3.5 h for A375 cells (Fig 7).

https://doi.org/10.1371/journal.pone.0192087.g008
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the need for future experiments aimed at modulating different cell cycle checkpoints. For

example, paclitaxel-related microtubule inhibitors are known to cause cells to prolong or arrest

in mitosis [84] and platinum-based DNA damaging agents cause cells to prolong or arrest in S

phase [85]. Coupling these experiments with the DDT modeling approach may allow us to

construct over time a more definitive map of the locations of cell cycle checkpoints and resolve

this controversy.

As demonstrated here, using the DDT modeling approach as a predictive discovery tool

requires considering variants of the model with increasing numbers of checkpoints and apply-

ing model selection techniques to identify the best candidate model. A consequence of this

approach, however, is that models with “too many” checkpoints will invariably be considered.

In such cases, parameter estimation routines tend to accommodate the spurious checkpoints

by inserting highly-concentrated distributions into the cell cycle description. For example, in

this work, we find that in all cases the DDT3 model differs from the DDT2 model only in a

checkpoint with little to no variability (Fig 5; Tables C–D of S1 File). The inclusion of highly-

concentrated distributions in the model description poses a significant practical challenge for

parameter estimation, i.e., numerical integration techniques can return incorrect solutions or

fail to converge. Thus, an additional contribution of this work is the development of an adap-

tive parameter estimation algorithm that detects and replaces highly-concentrated distribu-

tions with Dirac delta functions (see “Parameter estimation for convolution models with

highly-concentrated distributions”). The basis of this approach is a mathematical estimation of

the error bounds due to substituting a Dirac delta function into the convolution Eq 3. The

mathematics is non-trivial (S1 File) and we thus provide an open-source software implementa-

tion of the method (https://github.com/rnleander/DDT_cell_cycle). This will facilitate future

studies using the DDT modeling approach to explore additional cell cycle checkpoints.

While we have shown that the top-down DDT modeling approach can provide meaningful

insights into the inner workings of the cell cycle, the level of molecular detail that can be

gleaned from this approach alone is limited. To uncover details of the complex biochemical

networks that underlie checkpoint passage and IMT variability—necessary for developing

novel therapies for diseases characterized by cell cycle dysregulation (e.g., cancer)—future

work will aim to connect DDT models to detailed, bottom-up kinetic models of cell cycle regu-

lation. The key to accomplishing this is to first assign biological identities to the random vari-

ables, yi, defined in the DDT model (Eq 1) and then build detailed biochemical models of the

complex molecular networks that regulate those variables in an iterative cycle of model build-

ing, experimentation, and refinement. For example, as described above, the random variable

for passage of the G1 checkpoint may be CDK2 activity [24, 26]. In bacteria, Dinner, Scherer

and co-workers have shown that cell size and septal length correlates with IMT [7, 32]. Mathe-

matically, quantities such as these are potential bifurcation parameters of an underlying cell

cycle control system, e.g., parameters that determine changes in the number or stability of the

equilibrium states of a dynamical system [67, 68, 86]. For complex systems, bifurcation param-

eters may be composite functions of numerous such variables [68].

Once hypotheses about the identities of the model random variables have been made,

detailed biochemical models can be constructed through a combination of literature review

and experimentation. The entire process is likely to entail multiple iterations of refinement. In

S1 File, we provide a simple example illustrating how hypotheses about a random variable’s

identity might be formed. We use a previously proposed model of the biochemical processes

controlling passage of the restriction point [68] and show how yi can be related to cyclin D

concentration, d, via the relation
log ðdÞ� log ðd0Þ

log ðd�Þ log ðd0Þ
, where d0 is the basal concentration and d� is

the threshold concentration above which checkpoint passage occurs. The DDT modeling
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approach thus provides a simple framework for connecting variability in checkpoint passage

times to detailed biochemical models and provides a powerful means to uncover novel details

of the complex molecular networks that underlie cell cycle progression.

Supporting information

S1 File. Supplementary information. Comparison of the DDT and EMPF modeling

approaches; connecting the DDT model to biological mechanism; numerical methods; supple-
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42. Svetina S, Žekš B. Transition probability model of the cell cycle exhibiting the age-distribution for cells in

the indeterministic state of the cell cycle. In: Valleron AJ, MacDonald PDM, editors. Biomathematics

and Cell Kinetics. New York: Elsevier/North-Holland Biomedical Press; 1978. p. 71–82.

43. Cooper S. The continuum model: statistical implications. J Theor Biol. 1982; 94:783–800. https://doi.

org/10.1016/0022-5193(82)90078-9 PMID: 7078225

44. Schaechter M, Williamson JP, Hood JR, Koch AL. Growth, cell and nuclear divisions in some bacteria. J

Gen Microbiol. 1962; 29:421–434. https://doi.org/10.1099/00221287-29-3-421 PMID: 13976593

45. Taheri-Araghi S, Bradde S, Sauls J, Hill N, Levin P, Paulsson J, et al. Cell-size control and homeostasis

in bacteria. Curr Biol. 2015; 25:385–391. https://doi.org/10.1016/j.cub.2014.12.009 PMID: 25544609

46. Jun S, Taheri-Araghi S. Cell-size maintenance: universal strategy revealed. Trends Microbiol. 2015;

23:4–6. https://doi.org/10.1016/j.tim.2014.12.001 PMID: 25497321

47. Alfieri R, Barberis M, Chiaradonna F, Gaglio D, Milanesi L, Vanoni M, et al. Towards a systems biology

approach to mammalian cell cycle: modeling the entrance into S phase of quiescent fibroblasts after

serum stimulation. BMC Bioinformatics. 2009; 10:S16. https://doi.org/10.1186/1471-2105-10-S12-S16

PMID: 19828076

48. Gérard C, Goldbeter A. Dynamics of the mammalian cell cycle in physiological and pathological condi-

tions. WIREs Syst Biol Med. 2015; 8:140–156.

49. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally sloppy parame-

ter sensitivities in systems biology models. PLOS Comput Biol. 2007; 3:1–8. https://doi.org/10.1371/

journal.pcbi.0030189

50. Zilman A, Ganusov V, Perelson A. Stochastic models of lymphocyte proliferation and death. PLoS One.

2010; 5:e12775. https://doi.org/10.1371/journal.pone.0012775 PMID: 20941358
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