
RESEARCH ARTICLE

Radiomic features analysis in computed

tomography images of lung nodule

classification

Chia-Hung Chen1☯, Chih-Kun Chang2☯, Chih-Yen Tu1, Wei-Chih Liao1, Bing-Ru Wu1, Kuei-

Ting Chou3, Yu-Rou Chiou4, Shih-Neng Yang3,4, Geoffrey Zhang5, Tzung-Chi Huang3,4,6*

1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical

University Hospital, Taichung, Taiwan, 2 Department of Medical Imaging, Chang Bing Show Chwan

Memorial Hospital, Changhua, Taiwan, 3 Department of Biomedical Imaging and Radiological Science,

China Medical University, Taichung, Taiwan, 4 Artificial Intelligence Center for Medical Diagnosis, China

Medical University Hospital, Taichung, Taiwan, 5 Department of Radiation Oncology, Moffitt Cancer Center,

12902 USF Magnolia Drive, Tampa, FL, United States of America, 6 Department of Bioinformatics and

Medical Engineering, Asia University, Taichung, Taiwan

☯ These authors contributed equally to this work.

* tzungchi.huang@mail.cmu.edu.tw

Abstract

Purpose

Radiomics, which extract large amount of quantification image features from diagnostic

medical images had been widely used for prognostication, treatment response prediction

and cancer detection. The treatment options for lung nodules depend on their diagnosis,

benign or malignant. Conventionally, lung nodule diagnosis is based on invasive biopsy.

Recently, radiomics features, a non-invasive method based on clinical images, have shown

high potential in lesion classification, treatment outcome prediction.

Methods

Lung nodule classification using radiomics based on Computed Tomography (CT) image

data was investigated and a 4-feature signature was introduced for lung nodule classifica-

tion. Retrospectively, 72 patients with 75 pulmonary nodules were collected. Radiomics fea-

ture extraction was performed on non-enhanced CT images with contours which were

delineated by an experienced radiation oncologist.

Result

Among the 750 image features in each case, 76 features were found to have significant dif-

ferences between benign and malignant lesions. A radiomics signature was composed of

the best 4 features which included Laws_LSL_min, Laws_SLL_energy, Laws_SSL_skew-

ness and Laws_EEL_uniformity. The accuracy using the signature in benign or malignant

classification was 84% with the sensitivity of 92.85% and the specificity of 72.73%.
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Conclusion

The classification signature based on radiomics features demonstrated very good accuracy

and high potential in clinical application.

Introduction

Lung cancer remains the leading cause (Her2-neu and EGFR) was associated with inferior

survival worldwide for both men and women [1, 2]. Early diagnosis of pulmonary nodules

can improve the clinical outcomes. Early and accurate diagnosis plays an important role in

the treatment of cancer [3]. Malignant lung nodules are related to extremely high mortality.

The survival rate of benign lung nodules raise dramatically. Therefore, the accuracy and

reproducibility of diagnosis for discriminating between benign and malignant nodules is

essential.

Much of research on personalized medicine has focused on the molecular level which iden-

tifies the genomic or proteomic signatures. However, it is well known that most tumors are

spatially heterogeneous which possibly represents a limitation in these techniques [4, 5]. As

these methods are costly and time consuming, they are not easy to implement into clinical rou-

tine. Currently, invasive biopsy may help to determine the status of tumors. However, biopsies

need to be taken from the lesion, which is a highly invasive procedure. Also, since tumors are

spatially heterogeneous, only extract a small portion of the lesion may not accurately represent

a complete characterization of the tumor. Moreover, medical imaging is one of the major and

important technologies in clinical oncology for greatly improving the diagnosis and guidance

[6, 7]. It is a noninvasive and widely used method during routine clinical practice. Indeed,

Computed tomography (CT) is the most common imaging modality for detecting and diag-

nosing pulmonary nodules [8–10]. CT images of lung nodules show the difference of intensity

with background and can be well detected due to strong contrast. Nevertheless, the conven-

tional 1- or 2-dimensional measurement of tumor size sometimes may give rise to false posi-

tive results and the overdiagnosis can lead to unnecessary treatments [11–15]. Also, the

characteristics of tumor on the CT images are generally described subjectively. Thus, it is nec-

essary that the quantitative imaging biomarker can potentially be used as more comprehensive

predictor and help to precisely estimate the probability of malignancy for detected nodules.

Radiomics refers to the comprehensive quantification of tumor phenotypes by applying

large amounts of features from medical images [16, 17]. It extracts the high dimensional infor-

mation from medical images using advanced feature analysis algorithms. This means that

such mineable image texture, shape, and intensity features can be further applied to build a

predictive model, which relates specific features to the tumor phenotypes. Additionally, this

approach can reduce subjective variability and improve diagnostic efficiency compared to cur-

rent qualitative evaluation strategies. In a previous study, Aerts et. al. reported several radio-

mics features which could be used to identify a general prognostic phenotype existing in

different cancers and had clinical power [4]. Kim et al. also appraised several 1- or 2-dimen-

sional measurements with discussion on their limits and introduced the potential imaging bio-

markers with emphasis on the current understanding of their clinical usefulness [15]. In those

studies, it is demonstrated that images are minable data, and the phenotypic differences of

tumors can be correlated to radiographic findings. More specifically, the lesion-specific imag-

ing features can capture about tumor phenotypes and may potentially have clinical significance

to cancer detection. However, how to select the features from a large number of imaging data

and make it robust is a challenge in the development of predictive model.
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In this study, the radiomics analysis is applied as a quantitative method to detect pulmonary

nodules, and evaluate the relevance of specific features to phenotypes.

Materials & methods

The overall workflow is shown in Fig 1. First, in the image acquisition step, the clinical CT images

of malignant and benign pulmonary nodules from 72 patients were collected. Second, image seg-

mentation was used to delineate the regions of pulmonary nodules. Next, the image features were

extracted by the automated high-throughput feature analysis algorithm which provided a com-

prehensive characterization of lung nodules. Finally, the statistical analysis was applied as a filter-

ing process and the sequential forward search was used for feature selection to build a multi-

feature signature which should be high efficient and accurate in the classification of lung nodules.

To summarize, the aim of this study was to find accurate image features that can be used in quan-

titative, precise and non-invasive medical diagnosis for lung nodules treatment.

Patients characteristics

Standards of practice procedures at our institution were followed, and a written informed con-

sent was obtained from each participant and the analysis performed in this study was approved

by the Institutional Review Board of our institution (CMUH105-REC2-085). This study retro-

spectively collected the CT images of 32 (22 men and 10 women; age range, 14–82; mean, 55

years) and 40 (19 men and 21 women; age range, 37–85; mean, 59 years) patients with benign

and malignant pulmonary nodules, respectively. The clinical pathological data including

benign and malignant pulmonary nodule with cancer staging (TNM staging) are list in

Table 1. As shown in the table, more than 6 kinds of benign nodules were found in this cohort

of patients and the malignant nodules were distributed into 3 categories. A few patients had

Fig 1. Radiomics analysis workflow. First, the clinical CT images of malignant and benign pulmonary nodules were collected. Second,

image segmentation was used to delineate the pulmonary nodules. Next, the image features were extracted by the automated high-

throughput feature analysis algorithm. Finally, the statistical analysis was applied and the sequential forward search was used for feature

selection for the classification of lung nodules.

https://doi.org/10.1371/journal.pone.0192002.g001

Radiomics in CT of lung nodule

PLOS ONE | https://doi.org/10.1371/journal.pone.0192002 February 5, 2018 3 / 13

https://doi.org/10.1371/journal.pone.0192002.g001
https://doi.org/10.1371/journal.pone.0192002


more than one nodule detected in the CT images. Thus the total number of nodules analyzed

was 75 (42 malignant and 33 benign). The authors had access to information that could iden-

tify individual participants during data collection only.

CT image acquisition

Non-contrast-enhancement CT images were taken under free-breathing condition for all the

patients. A multi-detector row CT (Optima CT660, GE Medical System) was used for the

acquisition of those CT images, with 120 kVp and smart mA. The image slice matrix was

512×512, with slice thickness being 5 mm and the pixel spacing 5×5 mm2, which were the

default setting of the CT scanner for this anatomy site.

Lesion delineation and segmentation

All the CT images were loaded into the Eclipse radiotherapy treatment planning system (ver-

sion 11.0, Varian Medical Systems, Palo Alto, California, USA). A radiation oncologist with

Table 1. Characteristics of population.

Histologically benign

Granulomatous inflammation 11

Organizing pneumonia 7

Cryptococcosis 4

Tuberculosis 3

Sclerosing hemangioma 2

Others 5

Histologically malignant

Adenocarcinoma 36

Squamous cell carcinoma 3

Large cell carcinoma 1

Tumor characteristics

Stage IA 23

Stage IB 6

Stage IIA 1

Stage IIB 3

Stage III 4

Stage IV 1

Unknown 2

T-category

T1a 18

T1b 6

T2a 7

T2b 0

T3 6

T4 1

Unknown 2

N stage

N0 34

N1 1

N2 3

N3 0

Unknown 2

https://doi.org/10.1371/journal.pone.0192002.t001
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twelve years clinical experience delineated the lesion volume which was used for the later fea-

ture extraction. No specific restriction was applied to the nodule selection. Any size, shape and

category (solid, partial-solid, ground glass opacity or GGO) were included. Examples of lung

lesion volume delineation were shown in Fig 2.

Feature extraction

A total of 750 radiomics features per case were extracted from the expert-delineated lesions on

non-contrast-enhanced CT images in this study. All feature calculations were performed by

using a in-house software implemented on the Microsoft Visual Studio 2010 platform. Feature

values are usually calculated using 3 different methods, statistical, modeling and transforming.

Fig 2. Examples of lung lesion segmentation. Original CT image (a) and target segmentation (b) of a benign lung lesion (tuberculosis) in patient’s left

upper lobe. Another original CT image (c) and target segmentation (d) of a malignant lung tumor (adenocarcinoma) in patient’s left upper lobe.

https://doi.org/10.1371/journal.pone.0192002.g002
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The statistical based method uses the intensity distribution in the image to get the regional

characteristics and derive various parameters [18].

First-order features are related to the characteristics of intensity distribution in the region of

interest (ROI). They are usually based on the analysis of the intensity histogram. Such features

include mean, maximum and minimum intensity values, standard deviation, skewness, kurto-

sis, uniformity and entropy [19]. Extended from the intensity histogram, Intensity-volume his-

togram (IVH) simplifies the complicated 3D information into a simple and easy to understand

2D curve. This concept is similar to the dose-volume histogram (DVH). For example, from the

IVH, the intensity that covers a certain volume in the ROI can be determined. I30 is the inten-

sity value that 30% of the ROI volume is covered by this value and higher; V40 represents the

volume that is covered by the intensity value of 40% and up of the maximum intensity [20].

Second-order features include Co-occurrence Matrix (GLCM) features, proposed by Hara-

lick et al [21, 22], and further developed and applied in applications by Liang [23]. The features

are extracted based on the 2D matrix derived from the intensity relationship of the neighbor-

ing voxels in the 3D image. The intensities in the ROI of the 3D image are binned into a certain

number of gray levels, i.e. 256. A 2D co-occurrence matrix with dimensions of 256×256 is then

derived. The intensity relationship is checked in 13 directions in the 3D image set. The final

matrix is an average result over the 13 directions. The matrix is converted into a probability

matrix. The features are then calculated based on the 2D co-occurrence probability matrix.

Run Length Matrix (RLM) is an L×R 2D matrix, where L is the number of gray levels (256 in

this study) and R is the possible runs which is case dependent. A run is a group of voxels that

have the same gray level in a certain direction. RLM is calculated in 13 directions, summed for

all the directions and normalized. The second order features include entropy, uniformity, con-

trast, homogeneity, dissimilarity and correlation, etc. [18, 24].

Some other intensity based features are local regional characteristics related to the intensity

differences between the neighboring voxels, which include coarseness (similar to granularity),

contrast (represents the dynamic regional intensity variation and the variation range), business

(the intensity variation rate) and complexity (sum of the normalized intensity variation) [25].

In this study, the statistical based texture features were extracted from lung lesion CT

images. The feature categories include intensity and shape, Laplacian of Gaussian (LoG), wave-

let, Laws, GLCM, RLM, Gray Level Size Zone Matrix (GLSZM), neighborhood gray-tone dif-

ference matrix (NGDM), fractal dimension. A description of radiomics features and

associated feature category are listed in Table 2.

Table 2. Radiomics feature characteristics.

Radiomics feature # of features

Intensity & shape based features 33

LoG based features 96

Wavelet based features 128

Laws features 432

Co-occurrence features 26

Run-length based features 11

GLSZM based features 11

NGTDM based features 5

Fractal Dimension features 8

Abbreviations: LoG = Laplacian of Gaussian, GLSZM = gray-level size zone matrix, NGTDM = Neighborhood Gray-

Tone Difference Matrix.

https://doi.org/10.1371/journal.pone.0192002.t002
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Statistics analysis of radiomics feature

To reduce the batch effects, in the feature analysis, the quantitative raiodmics raw data were

normalized across all patients by using the Quantile normalization. It is important to select fea-

tures, from the large number of features, that have discrimination power between benign and

malignant lesions [26]. By using nonparametric Wilcoxon rank sum test, the significantly dif-

ferent features (p<0.05) between these two groups of cases were selected. The sequential for-

ward selection (SFS) was then applied to further evaluate the correlation between the features

and the groups. Support vector machine (SVM) was used as the classifier and the leave-one-

out cross-validation method was applied to get the prediction accuracy for each feature. The

most accurate one was selected followed by the next most accurate feature. Repeated the pro-

cess until the number of features reached the desired number. Inclusion of more than 4 fea-

tures did not improve the performance of the classifier. Therefore in this study, only top 4

features were selected to be the signature to identify different groups. All applied algorithms

were implemented on Matlab R 2013a platform.

Results

Radiomics features selection

From the 750 extracted features, only some features from the 4 categories including intensity

and shape, wavelet, Laws and run-length were found showing significant differences between

the benign and malignant lesions (p<0.05). The numbers of features that showed such differ-

ences were 5 in intensity & shape, 4 in wavelet, 65 in Laws and 2 in run-length respectively

(Table 3).

Radiomics signature building

The signature was built using the best 4 features from all the categories. These top 4 features

were Laws_LSL_min, Laws_SLL_energy, Laws_SSL_skewness, Laws_EEL_uniformity. The

4-feature radiomics signature’s performance on all the pulmonary nodules was shown in Fig 3.

Diagnostic performance of radiomics signature

Besides using the built 4-feature radiomics signature, signatures built by all features that

showed significant differences between the two groups (76 features in total) and a random

4-feature from the 76 features were also applied to classify benign and malignant lesions as ref-

erences. The accuracy was 56% when all features were used as the predictor, which demon-

strated no prediction power. With a random 4-feature signature, 1000-time permutation test

was performed and the mean accuracy was 55.8%. The accuracy for the selected 4-feature sig-

nature was 84% (Fig 4). Furthermore, with the 4-feature radiomics signature performance on

various cases, the sensitivity was 92.85% and the specificity was 72.73% (Table 4), which dem-

onstrated good prediction power.

Discussion

In this study, radiomics method was applied to extract large number of radiomics features

from pulmonary nodule patients’ CT images. After quantile normalization over the quantita-

tive features, SFS was used over the normalized data to select and build 4-feature signature.

The prediction power to classify benign and malignant pulmonary nodule of the 4-feature sig-

nature was then compared with that of all features and randomly selected signature.

Traditionally, invasive biopsy is often used in pulmonary nodule diagnosis to distinguish

benign and malignant lesion. This method only exam partial lesion and the result cannot
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reflect the overall nodule which may cause errors in diagnosis [4, 5]. In addition, this invasive

examination may introduce additional risk to the patient. For small nodules, follow-up to

observe the development of the nodule is often the practical method used clinically. Further

clinical action depends on the volume change of the nodule [27, 28]. The radiomics signature

method introduced in this study is only applied on the routine clinical CT images. The patient

does not take any additional surgery risk. And it does not have any limit on the nodule size

and therefore enhances the possibility of proper treatment.

Some studies suggested that besides the biopsy exam to get knowledge regarding the histo-

logical characteristics, benign or malignant could be judged based on the nodule size. How-

ever, this often is not accurate [29]. A few recent studies evaluated the accuracies of physician

direct diagnosis and diagnosis using established models and found that the accuracy by models

Table 3. Radiomics feature list that had significant difference (p<0.05) between malignant and benign groups.

Category of feature Filter associated Feature name #

Intensity based features 5

N/A minI, maxI, meanI, Kurtosis, I30

Wavelet based features 4

LLH min

LHH min

HLH contrast

HHL lcl homo

Laws features 65

EEL uniformity

EES max, SD, RMS, energy

ELL Kurtosis, energy, entropy

ELS max, mean, SD, RMS

ESE max, mean, SD, Coeff Vari, RMS, contrast, lcl homo

ESL max, SD, RMS

ESS max, SD, RMS

LEL Kurtosis

LES max, SD, RMS, energy

LLE Peak, mean, Kurtosis

LLL Kurtosis, energy, uniformity

LLS min

LSE max, SD, RMS

LSL min, SD, Skewness, energy

LSS max, SD, Coeff Vari, RMS, energy

SES max, SD, RMS

SLL energy

SLS SD, RMS

SSE max, SD, RMS

SSE max, SD, RMS

SSL Skewness, CV, energy

SSS max, SD, Skewness, RMS

Run-length based features 2

N/A LGRE, SRLGE

Abbreviations: L = local convolution kernels; E = edge convolution kernel; S = spot convolution kernel;

SD = standard deviation; RMS = root mean square error; CV = coefficient of variation

https://doi.org/10.1371/journal.pone.0192002.t003
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was usually higher [30, 31]. This implies that the model or expression signature established

through clinical data and validated algorithms can enhance the potential of better clinical diag-

nosis. Even more recent studies have attempted to improve the accuracy through the use of

Fig 3. Heat map of the selected 4-features radiomics signature. Radiomics features expression with Z-score. Hierarchical clustering of lung lesions is

on the x axis (n = 75, B = Benign, M = Malignant). The 4-feature radiomics signature expression is on the y axis.

https://doi.org/10.1371/journal.pone.0192002.g003

Fig 4. Prediction performance of the three different feature sets. A leave-one-out cross-validation was performed and the accuracies in the

malignant and benign nodules were plotted. The randomly selected 4 features group was examined in a 1000-time permutation test.

https://doi.org/10.1371/journal.pone.0192002.g004
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radiomics [17], and radiomics on pulmonary nodules [32, 33, 34] have improved accuracy of

the pulmonary nodule classification. Based on the results in our study and previous radiomics

results, the radiomics features extracted from the routine clinical CT images have the potential

to be an non-invasive diagnosis method with high accuracy.

In a few studies, radiomics signatures were built by selecting features from different feature

categories [4,32]. However, in this study, we tried to build signature with sequential forward

selection method. It could be another way to generate signature with high accuracy of classifi-

cation. The final features used in the radiomics signature were all from the Laws features in

this study. This category of features mainly exams the target heterogeneity in the ROI, includ-

ing the region microstructure, specifically spot, edge and level surfaces [33]. This is an implica-

tion that the heterogeneity inside a pulmonary nodule can be used to distinguish if it’s benign

or malignant. The relationship between these features and the biological aspects inside the

nodules needs to be studied in more details.

The benign lesions in this study covered quite different categories, including granuloma-

tous inflammation, organizing pneumonia, cryptococcosis, tuberculosis, sclerosing hemangi-

oma etc., as listed in Table 1. It should be easier to classify if in a single group the differences

are small between cases. If in a group, there are different categories of lesions, the variation in

the group would be large. However, even with this unfavorable condition, the 4-feature radio-

mics signature built in the study still had good capability in classification. For the benign

group, the specificity was greater than 70% even with so many different lesions in the group.

On the other hand, the greater than 90% sensitivity indicates that the signature is very sensitive

in malignant lesion classification, which is clinically important. If a malignant lesion was diag-

nosed as a benign one, the treatment could be delayed which may cause serious problems.

In many other studies, the lesions size which is relative big or small were usually excluded

[34]. However, in this study, there is no specific size restriction applied in case selection. The

lesions size in our sample is from 10 mm to 90 mm in diameter. In addition, various texture

types of lesions were included, including solid nodule, partial-solid nodule, GGO, etc. Even

with such differences in size and texture, the 4-feature radiomics signature still showed excel-

lent power in classification.

The values of many features are voxel size dependent [35]. In this study, all the CT images

were acquired with the same resolution, thus the feature analysis should be valid. In the future,

multi-center collaboration is in our plan to involve more cases in order to enhance the statisti-

cal power. The image resolution is likely to be different between centers. When image data

from multiple centers are analyzed, resampling of the image data to a consistent resolution

could be the way to go to avoid the features’ voxel size dependency issue.

In the future, the analysis workflow may be improved, which in turn may enhance the clas-

sification power. Many studies compared the manual ROI delineation and semi-auto segmen-

tation and found that the semi-auto segmentation gave more consistent results [31]. Therefore

applying semi-auto segmentation method instead of manual delineation in the study may

reduce the inter-observer variation and enhance the efficiency. In addition, with more cases in

the future, an independent dataset may be used as an external validation group for the radio-

mics signature, which may further evaluate the signature’s accuracy in classification.

Table 4. Selected feature.

Radiomic feature Accuracy Sensitivity Specificity

The 4-feature signature

(Laws_LSL_min, Laws_SLL_energy, Laws_SSL_skewness, Laws_EEL_uniformity)

84% 92.85% 72.73%

Abbreviations: L = local convolution kernels; E = edge convolution kernel; S = spot convolution kernel

https://doi.org/10.1371/journal.pone.0192002.t004
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A more significant limitation of this study is that the validation of the 4-feature radiomics

signature was using same data set which is not independent may result in a bit overfitting in

the result. In the future, for evaluation, the validation would run on the independent test data

set and the performance obtained on the set would be more reflective of the real predictive

power of current method.

Conclusion

The radiomics signature that was composed of the best 4 radiomics features demonstrated

high accuracy in lung nodule classification. The signature introduced in this study may pro-

vide a non-invasive method in clinical lung nodule classification. This method would allow

early classification of lung nodules with comprehensive characterization.
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