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Abstract

Background

Attempts to establish a biomarker reflecting individual player load in intermittent sports such as

football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in

various endurance sports settings. While it has been proposed that cfDNA could be a suitable

marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an

essential feature in intermittent sports are unknown. For the first time, we assessed both alter-

ations of cfDNA due to repeated maximal sprints and due to a professional football game.

Methods

Nine participants were subjected to a standardised sprint training session with cross-over

design of five maximal sprints of 40 meters with either “short” (1 minute) or “long” pauses (5

minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA

before and after each series of sprints. Moreover, capillary cfDNA and lactate values were

taken in 23 professional football players before and after incremental exercise testing, dur-

ing the course of a training week at rest (baseline) and in all 17 enrolled players following a

season game.

Results

Lactate and venous cfDNA increased more pronounced during “short” compared to “long”

(1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate

(r = 0.69; p<0.001). Incremental exercise testing increased cfDNA 7.0-fold (p<0.001). The

season game increased cfDNA 22.7-fold (p<0.0001), while lactate showed a 2.0-fold (p =

0.09) increase compared to baseline. Fold-changes in cfDNA correlated with distance cov-

ered during game (spearman’s r = 0.87, p = 0.0012), while no correlation between lactate

and the tracking data could be found.

Discussion

We show for the first time that cfDNA could be an objective marker for distance covered in

elite intermittent sports. In contrast to the potential of more established blood-based markers
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like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation

with a particular load related aspect in professional football.

Introduction

Intermittent sports such as football is characterized by repeated sprinting, jogging and walking

[1]. While objective tracking allows the assessment of external player load in terms of distance

covered, sprints or intense runs, a marker for subjective, internal player load remains to be

established [2]. Since tools like rate of perceived exertion (RPE) or questionnaires include the

risk of manipulation [3], and efforts to establish molecular biomarkers like creatine kinase

(CK), lactate or C reactive Protein (CRP) as markers for exercise load in complex sport settings

have failed so far [2–4], such an objective parameter would be meaningful in particular with

providing a rational for controlling recovery and optimizing training load.

While cell-free DNA (cfDNA) has initially been shown to increase under acute and chronic

pathological conditions like sepsis, stroke, trauma, myocardial infarction, cancer and autoim-

mune diseases [5], the biomarker increasingly gains importance in exercise physiology [6].

Exercise increased cfDNA levels in blood several-fold after marathon [7, 8], strength training

[9, 10] and in laboratory settings including endurance [11] and incremental running [12–14],

cycling [15], or rowing exercise [16]. Recently, it was demonstrated that cfDNA increased even

during aerobic running below the lactate steady state depending on intensity and duration

[17], which points at the enormous potential of cfDNA as a biomarker for exercise load in the

aerobic and the anaerobic state.

Therefore, we hypothesize that cfDNA could be applied as a marker for player load in

intermittent sports, such as football. The underlying idea is, that cfDNA levels might ac-

cumulate or remain elevated over the course of a game, even in periods of moderate jogging or

walking [17]. In contrast, other markers like lactate principally increase during anaerobic

phases in play, but also decrease during pauses or periods with mostly concentric or aerobic

work load [18]. The advantage of cfDNA could be a potential capability of reflecting subjective

load of a complete game, since increases occur throughout the game. However, so far, it has

not been investigated how cfDNA levels are altered due to a repetitive short bouts of sprints, a

characteristic of football in which lactate typically fluctuates around values of 4 to 5 mmol/l

[18, 19].

Consequently, we examined for the first time the impact of a standardised sprint training

session and moreover, tested for the principal feasibility of cfDNA measurement in profes-

sional football during a regular season week including a season game. Firstly, we hypothesise

that cfDNA concentrations increase dependent on different intensities in the sprint exercise

setting. Secondly, we expect that post-game cfDNA values increase significantly in football

players compared to baseline and furthermore correlate with exercise load in terms of distance

covered during the game.

Materials and methods

Ethical approval

Procedures of the trial were authorized by the Human Ethics Committee Rhineland-Palatinate

and conformed to the standards of the Declaration of Helsinki of the World Medical Associa-

tion. All participants were informed orally and in writing about the experimental setup and

the aim of the study and gave written agreement to participate.
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Subjects and exercise setting

Nine healthy subjects were randomly assigned into two groups (A; n = 5 and B; n = 4). After a

15 minute warm-up, the participants performed a series of five sprints of 40 meters each with

short (1 minute) or long pauses (5 minutes) between the single runs. To exclude training

related variations and a reciprocal influence of both sprint series, we applied a cross-over

design in which the participants of group A started with long pauses and group B with short

pauses between the sprints. After a rest of 75 minutes, series with different pause times were

switched between the groups. The tests were conducted at 8:00 AM. The time of each sprint

and the velocity were measured after 10, 20, 30 and 40m with the LAVEG system (JENOPTIK

Laser GmbH, Jena, Germany).

For lactate measurement 20μl of capillary blood was collected from the earlobe before and

after warm-up, after each sprint and after 3, 15 and 75 minutes of resting following the first

and second sprint series. The samples were measured with the Biosen 5130 (EKF Diagnostics,

Magdeburg, Germany). At the same time points 20μl of blood from the fingertip was collected

to analyse capillary cfDNA. 20ml of EDTA-anticoagulated venous blood was collected from

the medial cubital vein after warm-up and immediately after both sprint series. Blood samples

taken after warm-up were analysed for complete blood counts.

For cfDNA measurement in football players, exercise testing with cfDNA and lactate analy-

sis was done at the beginning of the season on 23 professional male football players including

two goalkeepers in total. Capillary cfDNA from the fingertip was drawn before and after a

graded treadmill test until exhaustion. The Test started for every player with a velocity of 6

km/h for 3 minutes and increased by 2 km/h each step [13]. Eight weeks later, we collected

baseline cfDNA values from all field players on Monday, Wednesday and Friday during a reg-

ular training week ahead of a Saturday game. Following the game, we took capillary blood

from those 17 players (3 exchange players, 4 bench players and 10 field players with>70 min-

utes playing time) who competed in the match. The data from all 10 field players playing more

than 70 minutes and for all 4 bench players were analysed. Lactate was measured using plasma

from capillary blood samples. Additionally, intense runs, sprints and total distance covered by

the players were recorded with the OPTA system (PERFORM Media Deutschland GmbH,

Unterhaching, Germany).

Plasma collection

For analysing capillary cfDNA, blood from the fingertip was centrifuged at 1,600g for 2 min-

utes at 4˚C. Plasma was pipetted and centrifuged at 16,000g for 5 minutes at 4˚C to remove cel-

lular debris. Venous blood was centrifuged at 1,600g for 10 minutes at 4˚C and plasma

supernatant was centrifuged at 16,000g for 5 minutes at 4˚C.

Quantification of cfDNA

Concentrations of nuclear capillary and venous cfDNA were quantified by analysing unpuri-

fied plasma via quantitative real-time PCR (qPCR) as described before. In brief, diluted plasma

(1:40 in H2O) was used as template for qPCR. The amplification was based on primers (5’-
TGCCGCAATAAACATACGTG-3’ and 5’-GACCCAGCCATCCCATTAC-3’) targeting a 90bp

fragment of human long interspersed nuclear elements (LINEs) of the L1PA2 family. Samples

were analysed with a CFX384 Touch™ Real-Time PCR system (Bio-Rad, München, Germany)

using the following protocol: 2 minutes incubation at 98˚C, followed by 35 cycles of denatur-

ation at 94˚C for 10 seconds, annealing at 64˚C for 40 seconds and extension at 75˚C for 10

seconds [20].

Response of cell-free DNA in intermittent sports
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Statistical analysis

The qPCR data were captured with the CFX Manager 3.0 (Bio-Rad, München, Germany).

Microsoft1 Excel 2010 was used for data analysis. We considered p-values<0.05 to be statisti-

cally significant and performed statistical analysis with JMP8 and JMP13 (SAS, Cary, USA).

JMP13 was used for Power-Analysis of cfDNA values. Quantitative changes in parameters at

the various time points or differences between pause times were compared by two-factorial

analysis of variance (ANOVA). For post-hoc comparisons a Dunnett’s test was used including

six time points pre and during exercise using Bonferroni-Holm correction to adjust for multi-

ple comparisons. Non-parametric data were analysed by Wilcoxon and Spearman test, respec-

tively. Correlation of variables was determined by linear regression analysis while the

influence of pause time on the variables was analysed by paired t-test. Fold-changes of lactate

and cfDNA values in football players during play were determined using the geometric mean

of all three resting values set to 1-fold. We had to exclude one single resting value of a player

because of physical activity in terms of cycling prior to blood sampling for baseline calculation.

Time of blood drawing following the game was monitored. For those players who were more

than 10 minutes late for blood sampling after the match (exchange players, players at press

conference) on Saturday, values were adjusted for decay of cfDNA as well as lactate based on

roughly the same biological half-life of cfDNA and lactate of approximately 15 minutes [13].

Results

Sprint interval tests

Anthropometric data of the sprint interval test subjects is given in Table 1. Mean 40 meters

sprint time was 5.94 (±0.50) seconds for both series. There was a continuous increase of sprint

time within the series of short pauses (+0.15 seconds between the first and fifth run), while

sprint time of subjects performing the series of long pauses decreased between the first and

third run (-0.10 seconds) and reached baseline time in the fifth run. There were no significant

differences in 40 meters sprint time between both series (Wilcoxon test, p = 0.249). In contrast,

there was a significant effect of pause time on development of running speed over time. From

the third run, velocity development after 30 meters of the athletes performing sprints with

short pauses was significantly lower compared to long pauses between the single runs (Wil-

coxon test, p = 0.04) This effect was most pronounced after 40 meters (Wilcoxon test,

p = 0.005).

In the setting of long pauses (Fig 1A), lactate reached equilibrium between the third and

fifth run, whereas lactate concentrations showed a steady increase due to sprint exercises with

short pause times (Fig 1B). Increases from pre to post were significant after both short

(5.6-fold, p<0.0001) and long pause (3.6-fold, p<0.0001) series, however lactate values showed

a significant difference between both series, reaching 1.4-fold (95%CI: 1.0–1.9; p = 0.032)

higher values in the series with one minute pauses (Fig 2B).

Table 1. Anthropometric data of the study subjects.

n Sex Age (years) Body weight (kg) Body height (cm) Training hours per week

9 Whole cohort 23.6 (1.8) 80.9 (11) 179.6 (8.3) 9.9 (3.8)

7

2

Male

Female

24.1 (1.6)

21.5 (0.7)

83.6 (10.6)

70.5 (3.5)

181.4 (8.1)

173 (7.1)

10 (4.3)

9.5 (0.7)

Values are given as mean (± SD)

n number of subjects

https://doi.org/10.1371/journal.pone.0191915.t001
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Capillary cfDNA values were significantly 1.8-fold (95%CI: 1.1–2.9) elevated following

warm-up prior to exercise (p = 0.0168). After warm-up, capillary cfDNA did not show signifi-

cant alterations (Fig 2A). Concentrations of venous cfDNA increased 1.9-fold (95%CI: 1.2–

2.8) due to sprint exercise with long pauses and 2.8-fold (95%CI: 1.8–4.2) after short pauses in

between. There was no difference in baseline cfDNA levels between both series. In accordance

with lactate, concentrations of venous cfDNA measured after short pause series were signifi-

cantly higher (1.7-fold, 95%CI: 1.1–2.5) compared to 5 minute pauses (p = 0.016). Venous

cfDNA correlated significantly with lactate (r = 0.69; p<0.001).

Power Analysis for venous cfDNA values revealed a power of 1.0 for short pauses and 0.68

for long pauses. A calculation of individual differences between post and pre values revealed a

Power of 1.0 for short pauses und 0.95 for long pauses. For capillary samples, we were not able

to find mean differences to achieve a sufficient power. While variance of data was not the main

problem for lack of an effect, the response pattern of capillary samples seems to be different

from venous samples.

Fig 1. Lactate kinetics during repeated sprint exercise. Concentrations of lactate in athletes before (pre), during (1st– 5th

run) and after 3 (+3), 15 (+15) and 75 minutes (+75) of performing five 40 meters sprints with 5 minute pauses (A) and 1

minute pauses (B). Significant difference between both short and long sprint series after the five sprints (p = 0.032). Shown

are the mean values and 95% confidence intervals. Significant difference �(p<0.05), ���(p<0.001).

https://doi.org/10.1371/journal.pone.0191915.g001

Fig 2. CfDNA and lactate concentrations in sprint series with short and long pauses. Concentrations of capillary cfDNA (A), venous cfDNA (B) and lactate (C) in

athletes before and directly after five sprints with 1 minute pauses (short pre and post) and 5 minutes pauses (long pre and post). Significant difference between both sprint

series in lactate (p = 0.031) and venous cfDNA (p = 0.016). Shown are the mean values and 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0191915.g002
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Football tests

We took capillary blood samples from 23 male professional football players during a regular

season week on Monday, Wednesday and Friday and after the match on Saturday. To allow a

comparison between cfDNA and lactate, fold-changes were determined using the geometric

mean of all resting values set to 1-fold (Fig 3A and 3B). Blood samples post-game were col-

lected on average after 20.6 (+-9.1) minutes. Median cfDNA increase after correction for decay

was 22.7-fold (12.8–30.9-fold; 25th-75th percentile) for active players excluding goalkeeper,

while lactate relatively increased 2.0-fold (1.0–2.9-fold, 25th-75th percentile) after the game.

CfDNA increased significantly after the match compared to the mean of the resting values for

all players with a playing time of more than 70 minutes (Fig 3B; black triangles; Wilcoxon test,

p<0.001). Furthermore, fold-change of cfDNA showed a significant correlation with total dis-

tance covered during the game (spearman’s r = 0.87; p = 0.0012, Fig 4), however, no further

significant correlation with our tracking data in terms of intense runs or sprints was revealed.

In contrast to this finding, fold-changes of lactate showed no statistical significance after the

game compared to baseline values (p = 0.09). Moreover, we could not ascertain any significant

correlation of lactate with the tracking data. We repeated analysis for cfDNA and lactate

increases including only the seven players where we were able to retrieve a sample within

20min following the game without correcting for the decay of the two markers. Even in this

conservative setting median cfDNA increased 16.0-fold (8.5–16.8-fold, 25th-75th percentile),

while lactate values showed a median increase of 0.8-fold (0.6–1.4-fold, 25th-75th percentile)

compared to baseline.

Fig 3. Fold-changes of cfDNA and lactate and after the football game. Fold-changes of lactate (A) and cfDNA (B) of

a regular training week at rest (Mo, We, Fr) and post-game values after the match (Sa). Fold-changes were determined

using the geometric mean of all three baseline values as 1-fold. Players who played more than 70 minutes on Saturday

are in black triangles; bench players in grey circles.

https://doi.org/10.1371/journal.pone.0191915.g003
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After step-wise incremental exercise testing, median cfDNA increased 7.0 fold (3.4–

10.9-fold, 25th-75th percentile), while lactate increased 10.0-fold (6.1–13.6-fold, 25th-75th per-

centile). Additional information is given in Table 2, comparing values of those 10 players who

competed in the match with the respective values of the exercise test.

Discussion

Many studies addressed the issue to determine player load and to optimize recovery in profes-

sional sport settings [2]. Both subjective and objective approaches have shown weaknesses in

this regard [2, 4]. Here, we assessed for the first time the response of cfDNA due to repeated

sprinting with different pause times and the feasibility of cfDNA measurement during a regu-

lar season week in professional football players.

During repeated sprinting, concentrations of venous cfDNA and lactate increased signifi-

cantly, while kinetics of capillary cfDNA was characterized by a discontinuous increase, which

Fig 4. Correlation between total distance covered and fold-changes of cfDNA after the football game.

https://doi.org/10.1371/journal.pone.0191915.g004

Table 2. Comparison of cfDNA and lactate after treadmill test and season game.

Type of exercise n cfDNA pre (ng/ml) cfDNA post (ng/ml) Lactate pre (mmol/l) Lactate post (mmol/l)

Treadmill test 10 21.9 (8.7) 143.4 (59.3) 1.0 (0.3) 9.6 (2.9)

Season game 10 23.1 (11.9) 396.5 (219.8) 1.7 (0.2) 3.3 (1.8)

Values are given as mean (± SD), Season game pre values are means of resting values.

https://doi.org/10.1371/journal.pone.0191915.t002
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might be attributed to a significant effect of 15 minute warm-up prior to exercise on capillary

cfDNA. Absolute concentrations of venous cfDNA were higher than in capillary samples,

which is in line with previous findings [13]. In principal, our sprint study revealed that both

lactate and venous cfDNA showed higher values in the setting with shorter pause time reflect-

ing a higher level of exertion.

However, since cfDNA, in contrast to lactate, therefore seem to be capable of reflecting the

aerobic as well as the anaerobic state [13, 17], we decided to study the response cfDNA and lac-

tate values due to a professional football match. The outcome was a significant 22.7-fold

increase of cfDNA after the game and a high correlation with total distance covered. To our

knowledge, this is the most pronounced increase of a biomarker in an acute intermittent exer-

cise setting that has ever been reported (Fig 5) [19, 21–27].

Comparable results to those in the current study were provided by Thorpe et al. [27] and

recently by Romagnoli et al. [25] showing that hsIL-6 was correlated with total distance cov-

ered in Italian Under-21 players. In this context, cfDNA appears to be a promising approach

to determine aspects of player load in intermittent sports such as football.

Clearly, cfDNA requires sophisticated technical equipment and time-consuming measure-

ment; however, qPCR method has advanced in the last few years. The establishing of a direct

measurement technique resulted in cost- and time-saving measurement, while a minimum of

capillary blood is needed [20]. Moreover, the peak of cfDNA occurs within the first minutes

post-exercise [12, 13], while established parameters such as CK peak several days after exercise

[1, 19]. RPE is widely used and seems valid for player load, however, includes the risk of

manipulation or rather over- or underestimating subjective load [2, 3]. Therefore, a combina-

tion of multiple parameters such as heart rate, blood lactate and RPE is recommended, which

however seems logistically difficult [28].

Despite the interesting findings in the current study, the mechanism by which cfDNA is

released into circulation remains widely unknown. It was shown that cfDNA during exercise

originates from the hematopoietic lineage as revealed in a sex- mismatched transplant model.

Likewise, in other instances of disease originated cfDNA, there is only minimal literature

about the origin so far [29]. Therefore, the value of this paper is limited to the principal feasi-

bility of cfDNA measurement in a (professional) sport setting and its relation to objective per-

formance traits such as running distance. Furthermore, physiological questions have been

raised due to our study. It seems that venous values may theoretically be more suitable to

reflect repeated sprinting which might have led in the elite sports setting to the fact that only

the covered distance during game but not intensive runs or sprinting was associated with capil-

lary cfDNA values.

The source of cfDNA remains speculative, however, a rapid cfDNA accumulation due to

active mechanisms seems likely rather than passive cell death events [13]. Beiter et al. suggested

neutrophil extracellular traps (NETs) as one source of rapidly released genomic DNA found in

blood collected from athletes after 60 minutes of high intensity cycling [30]. The authors sug-

gested that the elevation of cfDNA during exercise is attributed to netting neutrophils releasing

their content within seconds. Future studies could aim at demonstrating similarities and dif-

ferences between oxidative burst of neutrophils and the release of cfDNA during NETosis.

Lactate was suggested to be closely associated with the appearance of cfDNA during an incre-

mental treadmill exercise. However, energy expenditure and cardiorespiratory parameters

showed a higher correlation with cfDNA indicating that the release of cfDNA into circulation

is unlikely to be triggered by lactate [13]. This finding was supported by data showing a contin-

uous increase of cfDNA during 40 minutes of aerobic exercise, while concentrations of lactate

remained stable over the course of the run [17]. The results of the present study now even pro-

pose a rather indirect association of both parameters. Lactate and cfDNA, particularly in
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capillary samples, responded differently during the sprint session and also during the football

game.

Venous cfDNA concentrations were significantly higher in sprint series with 1 minute

pauses compared to 5 minute pauses indicating an either enhanced release of DNA due to

higher intensity, or a limited cleavage by DNase I or uptake by cells and subsequent degrada-

tion of DNA in the endolysosome via DNase II digestion [17, 31]. Surprisingly, cfDNA did not

change significantly following the warm-up in the sprint study. These findings now indicate

that immediate release and decay mechanisms at the capillary side could be involved in pro-

voking such difference. Particularly, cfDNA might be taken up by capillary cells and degraded

via DNase II in the endolysosome [31]. Moreover, DNase II is a pH-dependent enzyme that is

more active at a lower pH-range with an optimum at pH 5. It remains speculative that decreas-

ing pH in the periphery during anaerobic sprinting may have contributed to decreases in

intra-endothelial cell pH that might lower endolysosomal pH increasing the potential of the

endothelium to cleave cfDNA from the circulation [32–34]. These open questions need to be

addressed in more detail by mechanistic in-vivo studies.

To summarize, cfDNA increased in a pause dependent manner during repeated sprinting.

Moreover, we assessed a 23-fold increase and a significant correlation with running distance,

which points at the potential of cfDNA to reflect load related aspects in professional football.

Since this study was conducted to prove feasibility, upcoming investigations should now focus

on release mechanisms and reveal the full potential by conducting more standardized intermit-

tent exercise raising additional parameters such as lactate, CK or hsCRP and subjective perceived

exertion. Further objective tracking data such as acceleration and deceleration might help with

regard at determining subjective intensity during intermittent exercise. It is conceivable that

cfDNA analysis in intermittent sports may qualify for two main purposes; 1. determining player

Fig 5. Exercise-induced responses of selected blood parameters due to intermittent exercise. Exercise-induced responses to

intermittent sports of selected blood parameters with associated fold-increases and, if already known, the reference to game related aspects

in bold.

https://doi.org/10.1371/journal.pone.0191915.g005
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load and 2. in a long-term trial to detect overtraining syndrome with respect to previous results

[9]. Here, we show that cfDNA due to its enormous sensitivity appears to be a very promising

approach.
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