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Abstract

Recent work suggests that diet affects brain metabolism thereby impacting cognitive func-

tion. Our objective was to determine if a western diet altered brain metabolism, increased

blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in

C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of

hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately

influence cognitive processes as assessed by Y-maze and radial arm water maze. Also,

western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr

-/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation.

Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irre-

spective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate

and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS

showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of

amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our

study reveals that the western diet has multiple impacts on brain metabolism, physiology,

and altered cognitive function that likely manifest via multiple cellular pathways.
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Introduction

Previous studies have shown that elevated blood lipids and a diet high in saturated fats

puts individuals at greater risk for dementia and cognitive impairment [1–5]. Moreover, ani-

mal studies have shown that a high-fat/high-cholesterol diet not only induces cognitive

impairment, but also increases neuroinflammation [6–8]. For instance, low-density lipopro-

tein receptor null (LDLr -/-) mice are predisposed to elevated blood cholesterol levels and

show evidence of cognitive impairment and increased brain inflammation when fed a high fat

diet [9–12]. LDLr mediates the endocytosis of cholesterol rich low-density lipoproteins regu-

lating plasma levels of cholesterol. It is prominently expressed in the liver, but also the gastro-

intestinal tract, muscle (heart and skeletal) and brain [13]. Genetic knock out of LDLr leads to

a twofold elevation in circulating cholesterol and 7-9-fold increase in LDL due to prolonged

clearance rate [14]. Our previous work using brain microvascular endothelial cells and astro-

cytes treated with lipids and lipoproteins showed a complex interaction of multiple cell stress

response signaling mechanisms that was not adequately described by a single cell pathway

[15–17]. In agreement, a western diet (WD) has been shown to decrease brain capillary

expression of tight junction proteins and increase hippocampal blood-brain barrier (BBB) per-

meability in the rat [18], potentially allowing for additional paracellular movement of blood

components including lipids and lipoproteins. Diet has also been shown to activate microglia,

resident brain inflammatory cells, and induce inflammation and cellular degeneration [8, 9,

19], each thought to contribute to the progression of cognitive impairment [20].

Other work has linked brain metabolic perturbations with cognitive impairment. For

instance, studies using positron emission tomography (PET) to examine regional brain glucose

metabolism show that Alzheimer’s disease (AD) and vascular dementia each exhibit a unique

pattern of reduced brain glucose uptake [21, 22]. Further, metabolic stress, suggested by the

elevation of lactate and glutamate, has been implicated in AD, ischemic stroke, epilepsy, and

cognitive impairments [23] and a reduction of N-acetylaspartate accompanied by increases in

glutamate & glutamine are correlated with brain injury and cognitive impairment [24–28].

However, the pathways by which major metabolic stressors such as a western diet or hyperlip-

idemia influence brain metabolite levels and metabolic function are not fully understood.

Therefore, our goal for this project was to better understand the mechanisms of WD-

induced cognitive impairment using molecular, cellular, biochemical, physiological, and imag-

ing approaches. Here, we show that in mice, a WD or hyperlipidemia can alter brain glucose

uptake and metabolite levels, activate resident inflammatory cells (microglia), increase brain

factor VIII vascular expression and the BBB transfer coefficient, and induce moderate cogni-

tive impairments.

We first demonstrated that WD or genetically induced hyperlipidemia moderately impairs

cognition as determined by Y and radial arm mazes. Using, Gd-DTPA contrast magnetic reso-

nance imaging (MRI), we determined that a WD increases BBB transfer coefficient (Ki),

potentially contributing to cognitive perturbation [18, 29]. Further, indicators of brain inflam-

mation and activation, factor VIII and (ionized calcium binding adaptor molecule 1 (IBA1)

protein and prostaglandin-endoperoxide synthase 2 RNA (previously correlated with cognitive

disorders), were found to be elevated by WD. As members of the Mouse Metabolic Phenotyp-

ing Center Imaging Working Group, we combined the collective and comprehensive expertise

of our three universities, to assess how a WD in LDLr-/- and WT mice shifts brain metabolites.

Our collaborators at Yale demonstrated an increase in glucose uptake by 18F-fluordeoxyglu-

cose (18FDG) positron emission tomography (PET) and lactate concentration by 1H magnetic

resonance spectroscopy (1H-MRS) in the brains of live LDLr-/- mice. Our collaborators at

Case Western and UC Davis completed a more extensive metabolic analysis to establish that a
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WD modulates brain fatty acid, TCA cycle intermediates, acyl-CoA’s and complex lipid abun-

dance and elevates proinflammatory lipid mediators. Finally, we review the basic physiological

parameters and histopathological effects of diet and genotype revealed by this study that may

contribute to the metabolic, inflammatory, and cognitive changes observed.

Materials and methods

Mice

All animal studies were approved by the Animal Use and Care Committee at the University of

California, Davis and Yale University School of Medicine and were maintained under similar

environmental and identical experimental conditions (diet, time on diet, and age at start of

diet) at each institution. Animals were euthanized by decapitation or exsanguination under

anesthesia (isoflurane or ketamine). Male C57BL/6J (wild type, WT) and low-density lipopro-

tein receptor knock out mice (LDLr -/-) were imported at ~6 weeks of age from JAX West Lab-

oratory and maintained on a chow diet prior to administering the specialized diet. Mice were

housed 2 to a cage that had a transparent divider with small holes to allow visual and olfactory

interaction in a temperature controlled room with a 12 h light: 12 h dark cycle. They remained

undisturbed except for weekly cage changes and monthly weighs. At eight weeks of age, half

the mice in each genotype were fed ad lib either a western (WD; 42% kcal fat, 0.2% total choles-

terol, and 34% sucrose by weight) or control diet (CD; 19.2% kcal fat, 0% added total choles-

terol, and 12% sucrose by weight) (TD.88137 or TD.08485 respectively, Envigo, Indianapolis,

IN) over the course of 12 weeks. Mice were subjected to behavioral analysis prior to sacrifice at

20 weeks of age when non-fasted tissues and plasma were collected. Separate cohorts were

used for metabolic profile and immunohistochemistry, as well as cognitive/behavioral analyses

(radial arm water maze, Y-maze, and Morris water maze) and MRI analysis of blood-brain

barrier transfer coefficient. Plasma samples were analyzed for glucose, insulin, triglyceride,

total cholesterol, HDL, and LDL by the UC Davis Mouse Metabolic Phenotyping Center Endo-

crinology and Metabolism Core according to their standard protocols. For studies of pathol-

ogy, anesthetized mice were perfusion fixed with 4% paraformaldehyde and sections of brain,

liver, heart, kidney, pancreas, skeletal muscle, and lung were embedded in paraffin.

Cognitive assessment by Y, Morris water, and radial arm water mazes

Y-maze. At age 18 weeks, 10 weeks after initiation of feeding, mice were subjected to test

of spontaneous alternation in a Y-maze as previously described [30]. Mice, adapted to testing

room for 30 min, were placed in the center of the Y-maze and were tracked with an overhead

camera for the extent of an 8-min trial. An elevated white plastic Y-maze with three 40 cm

arms at 120-degree angles illuminated by red light was used. Entry into each arm, total distance

moved, and the amount of time spent resting and active were recorded, and an alternation

score was computed as the number of times the three arms were sequentially entered. The %

alternation score is the number of alternations divided by the total number of arms entered

(n = 8/grp).

Morris water maze. The Morris water maze (MWM) was administered at 19 weeks of age

over a 5-day period as previously described [31]. The cohort (n = 8/grp) was relocated to a

fixed position in the experimental room prior to testing. The first day consisted of a single visi-

ble platform trial to ensure that the mice could swim to the platform and climb to the platform

surface. For training trials, the platform was hidden below the water surface. Each mouse in

the group completed a trial before a new trial was initiated for a total of 4 trials over 4 daily ses-

sions. The water maze was 94 cm in diameter, with a 6 x 6 cm platform whose surface was

located 2 cm below the surface of opacified water. Mice were released in one of three locations
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in non-platform quadrants using a random order that included each location once in the four

daily trials. After the mouse reached the platform or 90 s elapsed, the mouse was placed on the

platform for 30 s and then returned to a heated cage between trials. A probe trial was con-

ducted on the fifth day, after completion of four daily sessions. The platform was removed

from the maze and mice were given one 90 s trial to determine their search strategy for the spa-

tial location of the platform.

Radial arm water maze. A separate group of mice was subjected to a different spatial

learning and memory test, the radial arm water maze (RAWM) [31]. Mice in the first cohort

(n = 5/grp) were tested twice, prior to and after the 12-week experimental diet period to see if

there was an early genotype effect and if there was a change with diet (genotype/diet interac-

tion). Mice in the second cohort (n = 5/grp) were tested only after the experimental diet period

to evaluate diet genotype interaction to eliminate pre-testing training effects. The test was con-

ducted in a six-arm apparatus (77 cm diameter, 20 cm high, 25 cm long, 14cm wide) placed in

a shallow pool of water. The center area was 28 cm in diameter. The escape 6 cm round plat-

form was placed 1 cm below the opacified water surface. The platform was placed at the end of

a different designated arm each day of the 9-day test. Each day consisted of 4 consecutive trials

(at unique start location) followed by a fifth (retention) trial that was performed 30–40 min fol-

lowing the fourth. Trials began when the mouse was placed in the start arm and ended when

the mouse reached the platform or 60 s elapsed. The mouse then remained on the platform for

a 30 s inter-trial interval before beginning, then began the next trial.

MRI measurements of blood-brain barrier (BBB) transfer coefficient (Ki)

experimental set-up

BBB transport was assessed using MRI to map regional changes in the longitudinal relaxation

time (T1) of the brain water signal following an infusion of contrast agent. A minimum of 6

animals from each group were studied and anesthetized with ketamine and xylazine. The left

femoral vein was cannulated with PE-10 tubing for administration of saline and gadopentetate

dimeglumine (Gd-DTPA—Magnevist; Bayer Healthcare Pharmaceuticals, Wayne, NJ, USA).

MRI data were collected using a 7T Bruker Biospec MRS/MRI system (Bruker BioSpin MRI,

Inc., Billerica, MA, USA) interfaced with ParaVision 4 (PV4) software (Bruker BioSpin

GmbH, Rheinstetten, Germany) with a 32mm radiofrequency (RF) volume coil for transmis-

sion and detection. Anesthetized cannulated mice were placed on a PVC animal stage in the

prone position. Body temperature was maintained with circulating heated water bed (Gaymar

Inc., Orchard Park, NY, USA) while the animal was in the magnet. The mice were placed near

the center of the coil such that the isocenter was approximately 1 mm caudal to the bregma.

Data acquisition. For each Gd-DTPA infusion, 10 T1 maps were obtained consecutively

to follow the time course of contrast agent entry into the brain. Each T1 map was acquired

using a rapid-acquisition refocused-echo (RARE) sequence with variable TR = 200ms,

531.8ms, 958.6ms, 1557.2ms, 2568.7ms, and 7500ms; effective TE = 30.80ms; RARE-factor = 16.

A single slice was taken using 1mm in-plane thickness, 32x32 mm2 field of view, 128 x

128-pixel resolution (thus 250 μm x 250 μm x 1 mm voxel size), with a 1.8 min acquisition

time per T1 map (18 min for 10 consecutive maps). A 0.5 mL/kg aliquot of the contrast agent

Magnevist (0.5mmol/mL) was diluted 1:1 with saline and injected i.v. over approximately 10

secs followed by a 50uL saline flush immediately after the acquisition of data for the first T1

map in each 10 map series used for Patlak analysis.

Data processing and analysis. T1 values were calculated using the T1 fit function in the

Bruker PV4 image sequence analysis tools package. Post-processing image analysis was done

using an in-house MATLAB (MATLAB 2014b, MathWorks, Natick, MA) script with Patlak
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linearized regression mathematical modeling for each pixel. The BBB transfer coefficient, Ki

(permeability x surface area/volume - min-1), was calculated from the slope of the Patlak plot

that best fit an impermeable, uni-directional influx, or bi-directional flux model selected using

the F-test with p<0.05 as previously described [32]. Regions-of-interest (ROIs) were manually

defined symmetrically about the midline, one from each hemisphere to exclude the median

eminence and ventricles. Ki was calculated on a pixel-by-pixel basis and averaged to include

both ROIs after pixels with CBF = 0 (see below) were excluded to minimize underestimates of

Ki due to flow-limitation of contrast agent delivery [32].

Perfusion weighted imaging (PWI) analysis of cerebral blood flow (CBF)

Data acquisition. CBF data were obtained before and after MRI measurements of BBB

transfer coefficient using a Bruker PERF spin-echo sequence with TR = 1022.6ms and TE

12.8ms. Imaging parameters were the same as the RAREVTR but with a 4 min 22 s acquisition

time.

Data processing and analysis. Post-image acquisition analysis was done using Bruker

PV4 image sequence analysis tools package with algebra as described by Williams et al. [33]

and ROIs were manually defined in the CBF matrix to match the corresponding Ki matrix.

Assessment of brain factor VIII and IBA1 by immunohistochemistry and

general pathology

Analysis of vessel density and microglia activation in brain was determined using factor VIII

and IBA1 staining, respectively. Paraffin embedded sections (4 μm) were deparaffinized

through xylene to 100% reagent alcohol, and then treated with 0.3% hydrogen peroxide in

100% methanol for 30 min then rehydrated. Antigen retrieval was performed on sections for

IBA1 with heat induced epitope retrieval using Target Retrieval Solution, pH 6 (Dako S1699)

for 30 min at 95˚C, followed by a 20 min cool down and with Proteinase K (Dako S3020) at

room temperature for 10 min for factor VIII. Slides were rinsed in deionized water and placed

in 0.1M Phosphate Buffered Saline, pH 7.4 (PBS). The antibody diluent and blocking reagent

were PBS-Tween 20 (0.02%) and 10% normal horse serum (NHS) in PBS-Tween 20, respec-

tively. Sections were blocked for 20 min followed by the following primary antibodies: factor

VIII (Dako A0082, AB_2315602, 1:2000) and IBA1 (Wako 19–19741, AB_839504, 1:600) for 1

h at room temperature. A single step, polymer based HRP (BioCare Medical, RC542H) was

applied for 30 min to label rabbit anti-IBA1. A dual step, biotin-avidin based HRP (BioCare

Medical, 4+ Detection System GR608) was applied for 10 min to link rabbit anti-factor VIII.

Streptavidin-HRP (BioCare Medical HP604) was applied for 10 min to label the biotin link. All

labels were visualized with NovaRed for peroxidase (Vector SK-4800), per manufacturer’s

instructions. Sections were counterstained in Mayer’s Hematoxylin, air dried and cover

slipped.

A coronal section containing cortex, hippocampus, and thalamus at the level of the genicu-

late bodies and amygdala was used for image analysis. Whole coronal sections were digitally

scanned using an Olympus VS110 system. Images then were analyzed with Visiopharm soft-

ware by manually outlining ROI (cortex, hippocampus, and thalamus) followed by automated

detection of relative areas of immunopositivity in each area of interest.

Histopathology was assessed in brain, heart, and liver by hematoxylin and eosin (H&E)

staining of four-micron thick paraffin embedded sections (n = at least 5–6 grp). Paraffin

was removed with xylene then then sections were rehydrated though a series of decreasing

concentrations of ethanol. Sections were then stained with hematoxylin washed and then
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stained with eosin. Tissue was then dehydrated with ethanol and xylene and a coverslip

mounted.

mRNA expression by quantitative RT-PCR (qRT-PCR)

Total RNA was extracted from powdered mouse brain hemisphere (n = at least 5/group) using

TRI Reagent (Sigma-Aldrich, St. Louis, MO) and RNeasy Mini Kit (Qiagen, Valencia, CA)

according to manufacturer’s protocol. Up to 5 μg of total RNA from each sample was reverse-

transcribed to obtain cDNA in a final volume of 20 μL solution consisting of buffer, random

hexamers, DTT, dNTPs and Superscript-III reverse transcriptase (Invitrogen, Carlsbad, CA).

qRT-PCR with SYBR Green (Applied Biosystems, Foster City, CA) as fluorescent reporter was

used to quantify the expression of selected genes identified by GeneChip analysis. All the gene

specific primers (Table 1) were designed with Primer Express 1.0 software (Applied Biosys-

tems) using the gene sequences obtained from Affymetrix Probeset IDs. The reaction was car-

ried out in 384 well optical plates containing 25 ng RNA in each well. Quantitative RT-PCR

using the ViiA™ 7 Real-Time PCR System (PE Applied Biosystems, Foster City, CA) measured

transcript levels. The PCR amplification parameters were: initial denaturation step at 95˚C for

10 min followed by 40 cycles, each at 95˚C for 15 s (melting) and 60˚C for 1 min (annealing

Table 1. qRT-PCR murine primers. The oligonucleotide sequences for each primer sequence were obtained from

Affymetrix database using the probe set IDs and Primer3 software. The primers were custom prepared and used as

described in the Methods.

Gene Forward (5’-3’) Reverse (5’-3’)

ARG GAACACGGCAGTGGCTTTAAC TGCTTAGCTCTGTCTGCTTTGC

ATF3 AGAGCTGAGATTCGCCATCC GAGGACATCCGATGGCAGAG

C1qA GCACCCAACGGGAAGGAT CTTTAAAACCTCGGATACCAGTC

C1qB TCTGGGAATCCACTGCTGTC AGACCTCACCCCACTGTGTC

C1qC CAGCGTCTTCTCTGGTTTCC TCCTGGAGGAAGAGGTCTGA

CCL2 CTTCTGGGCCTGCTGTTCAC AGCCAACACGTGGATGCTC

CD11b GGATCATAGGCGCCCACTT TCCTTACCCCCACTCAGAGACT

CD16 TTTGGACACCCAGATGTTTCAG GTCTTCCTTGAGCACCTGGATC

CD32 AATCCTGCCGTTCCTACTGATC GTGTCACCGTGTCTTCCTTGAG

CD86 TTGTGTGTGTTCTGGAAACGGAG AACTTAGAGGCTGTGTTGCTGGG

CD206 TCTTTGCCTTTCCCAGTCTCC TGACACCCAGCGGAATTTC

CXCL2 (MIP2α) CCAACCACCAGGCTACAGG GCGTCACACTCAAGCTCTG

DDIT3 AGGGCCAACAGAGGTCACAC GAATCTGGAGAGGGCT

Factor VIII GAGGAACCACCGTCAAGCTTCATT CTGAAGGTGCATAGTCCCAGTCTT

GAPDH GGATAGGGCCTCTCTTGCTCA GCAACAGGGTGGTGGACCT

GDF15 GTGTCCCCACCTGTATCGCT CGTGCTTTGATCTGCGCAT

IBA1 GGATCAACAAGCAATTCCTCGA CTGAGAAAGTCAGAGTAGCTGA

IGF ACCCCACCCACAAAACAACA CGTCCCGGGTCGTTTACAC

IkBα TCCTGCACTTGGCAATCATC AGCCAGCTCTCAGAAGTGCC

IL-12a CCACCCTTGCCCTCCTAAAC GGCAGCTCCCTCTTGTTGTG

IL-1B AAGGGCTGCTTCCAAACCTTT ATACTGCCTGCCTGAAGCTCT

IL- 6 CTCGGCAAACCTAGTGCGTT GGAATGTCCACAAACTGATATGCT

MAPK8 (JNK) GCTCCCAGAAAAGCAAGCAG CATCTTTTGGGGGAGTGCCT

NR4A2 TGCAGGCAGAACCTGAAAGG CTAAATCCAGGATGCCCCG

PTGS2 (COX2) CTTAGTTCCGTTTCTCGTGGTCA AACCCAATCAGCGTTTCTCG

TNFα GGAACACGTCGTGGGATAATG GGCAGACTTTGGATGCTTCTT

TREM2 GCCACCTATCCTGGGAACAG CCAACTCACCACAGATGTACACAC

https://doi.org/10.1371/journal.pone.0191909.t001

Diet & LDLr-/- alter brain function & metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0191909 February 14, 2018 6 / 38

https://doi.org/10.1371/journal.pone.0191909.t001
https://doi.org/10.1371/journal.pone.0191909


and extension). Relative changes in gene expression were determined from real-time quantita-

tive PCR experiments by a ΔΔCT method [34] and was normalized with glyceraldehyde-

3-phosphate dehydrogenase (GAPDH). The threshold cycle, Ct, which correlates inversely

with the target mRNA levels, was measured as the cycle number at which the SYBR Green

emission increases above a preset threshold level. The specific mRNA transcripts were

expressed as fold difference from media control in the expression of the specific mRNAs.

PET/CT imaging analysis of brain glucose uptake

At Yale, a cohort of 24 mice were divided into four groups: WT CD (n = 8, mean weight

30.6 ± 3.7 g); WT WD (n = 6, mean weight 34.0 ± 2.9 g); LDLr -/- CD (n = 6, mean weight

29.9 ± 1.5 g); and LDLr -/- WD (n = 4), mean weight (32.9 ± 4.3 g) and were imaged using
18FDG PET to assess brain glucose uptake. All mice were injected via tail vein with mean activ-

ity of 2.51 ± 3.86 MBq of 18FDG and listmode PET data were acquired for 30 min on a preclin-

ical PET/CT scanner (Inveon PET/CT, Siemens Preclinical Systems, Knoxville, TN, USA). All

animals were injected while in the scanner under isoflurane anesthesia. All animals had a low-

dose CT acquisition after the PET acquisition to provide attenuation correction. All PET

acquisitions were reconstructed using the vendor provided reconstruction algorithms (Inveon

Acquisition Workplace; Siemens preclinical systems, Knoxville, TN, USA). Images for each

acquisition were reconstructed with 3D-OSEM-MAP (OSEM: 2 iterations; 16 subsets) and 18

MAP iterations (β = 0.0023).

Image analysis. ROI tracings and region-specific time activity curves (TACs) for the mice

were performed using the vendor provided image software viewer (Inveon Research Work-

place, Siemens preclinical systems, Knoxville, TN, USA). Due to the incidence in which the

radiotracer did not exit the tail vein after injection, we calculated whole body activity at 30

min, using a full body contour ROI minus the tail activity, as our actual injected activity enter-

ing the vasculature. Global brain uptake for all mice was determined by drawing a whole brain

ROI. Both ROIs were drawn on the co-registered low-dose CT image provided for attenuation

correction. To examine differences in 18FDG uptake between the four groups, brain ROI

TACs were plotted for the entire 30 min acquisition. Based on the initial TACs, brain ROI

quantification was also performed on a summed static image from 25–30 min post injection.

All quantitative comparisons were performed using the body weight standardized uptake

value (SUV) with correction for plasma glucose levels (SUVglu) between groups [35]

In vivo brain metabolomics profiling using 1H magnetic resonance

spectroscopy (1H-MRS)

Concentrations of cerebral metabolites in vivo were determined by localized 1H MRS on

20-week old male C57BL/6J and LDLr -/- mice after 12 weeks on either a CD or WD. Mice

were anesthetized with ~1.5% isoflurane in an air (70%)/ O2 (30%) mixture delivered via a fit-

ted nose-cone. The head was kept immobile using a stereotactic restraint with tooth bar and

the skull was positioned under a 12mm diameter 1H-surface coil. Each mouse was continu-

ously monitored using an MR compatible physiological monitoring system (SA instruments,

Stony Brook, NY); body temperature was maintained using a heated water pad and the depth

of anesthesia was adjusted as necessary to maintain stable physiological function. MR experi-

ments were performed on a 9.4T/31cm Varian DirectDrive system (Agilent Technologies,

Santa Clara, CA), using proprietary and custom-written pulse sequences. Multi-slice gradient

echo scout images were obtained to ensure correct positioning and to establish the ROI for

spectroscopy. To enhance spectral resolution and sensitivity, magnetic field (B0) homogeneity

was optimized over a 3x3x3mm volume using a custom-written, adiabatic Fastmap sequence;
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typical 1H2O linewidths within the region of interest were 15–17 Hz. Localized, water-sup-

pressed, 1H MR spectra were obtained from an 18.75 μL volume (2.5x2.5x3mm) using a

LASER (Localization by Adiabatic Selective Refocusing) sequence [36] (1ms AHP excitation

pulse, 2ms AFP refocusing pulses, sw = 6kHz, 4k points, TR = 3s, TE = 27.3ms) preceded by

chemical shift selective (CHESS) water suppression (6x 10ms AFP pulses). Spectra were

acquired from the cortex of each hemisphere over 256 transients; total acquisition time for

each hemisphere was ~13min.

Spectral processing was performed using MATLAB (Mathworks Inc, Natick, MA) software

developed in house at the Yale Magnetic Resonance Research Center by Dr. Robin deGraaf

and Dr. Douglas Befroy. The relative concentrations of cerebral metabolites were estimated

using LCModel 6.3 [37]. Spectral fitting was performed using simulated spectra of a basis set of

17 metabolites (Alanine, Aspartate, β-Hydroxybutyrate, Choline, Creatine, γ-aminobutyric

acid (GABA), α-Glucose, β-Glucose, Glutamate, Glutamine, Glutathione, Lactate, MyoInosi-

tol, NAA, PhosphoCholine, PhosphoCreatine, Taurine). The contribution of macromolecules

to the in vivo spectrum was fitted using an in vivo macromolecule reference spectrum

(composite of 4 regions) acquired with the metabolite peaks suppressed using a double-inver-

sion module in the LASER sequence; lipid components were fitted using the standard reso-

nances in the LCModel package. Metabolite content is expressed relative to the total creatine

(Cr+PCr) content; estimates for individual metabolites with Craemer-Rao lower bounds

(CRLB)>20% were discarded from the group analysis.

Brain metabolite analyses

Targeted metabolic profiling was conducted at Case Western on whole homogenate brain tis-

sues collected from 20-week-old mice (C57BL/6 and LDLr -/-) fed either CD or WD for 12

weeks. Tricarboxylic acid (TCA) cycle intermediates, total (free + bound) lipids and choles-

terol, acyl-CoA’s and related amino acids, such as glutamine, glutamate, and aspartate, as well

as ketone body (beta-hyroxybutyrate; BHB) and lactate were quantitatively assayed using sen-

sitive gas chromatography (GC/MS) [38–41] and liquid chromatography (LC/MS/MS) mass

spectrometry [42–44] analyses. Each of the selected intermediates was quantified against refer-

ence standards to yield absolute concentrations (μmol/g wet weight tissue). Following decapi-

tation under isoflurane twilight anesthesia, the brains from each mouse were rapidly collected

and quickly frozen under liquid nitrogen [41, 43]. Metabolic profiles were conducted on a sin-

gle mouse brain. Brain tissues (~200 mg, cortical-subcortical/mouse) were homogenized in a

methanol-5% acetic acid (in milli-Q water) buffer solution (3 ml) following additions of refer-

ence standards. Before centrifugation an aliquot (0.2 ml) of homogenate was reserved for fatty

acid and cholesterol assays and the remaining homogenate then was centrifuged and the

supernatant fraction (extract) was collected and divided into three additional aliquots. One ali-

quot (2.2 ml) from the extract was used for acyl-CoA analysis (LC/MS/MS), and the other ali-

quots were used for GC/MS analysis.

Analysis of TCA and amino acid metabolite. For measurements of TCA and amino acid

metabolites: an aliquot of extract (0.2 ml) was dried by nitrogen gas for 1–2 hr. and derivatized

using MTBSTFA + 1% TBDMCS reagent (N-methyl-N-(tert-butyldimethylsilyl) trifluoroace-

tamide + 1% tert-butyldimetheylchlorosilane, Regis Technologies, Inc. Morton Grove, IL,

USA) and reacted at 70˚C for 30 min [39–41]. Each of the derivatized products were analyzed

as trimethylsilyl derivatives on an Agilent 5973N-MSD equipped with an Agilent 6890 GC

system (GC-MS) coupled to a DB-17MS capillary column (30m x 0.25mm x 0.25 μm) and

operated in electron impact ionization (EI) sim mode during increasing oven temperature

gradient. The corresponding ions monitored for each metabolite were as follows: BHB

Diet & LDLr-/- alter brain function & metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0191909 February 14, 2018 8 / 38

https://doi.org/10.1371/journal.pone.0191909


(m/z = 159), succinate (m/z = 289), fumarate (m/z = 287), (malate m/z = 419), citrate (m/

z = 459). Other intermediates and amino acids, including 3-hydroxyglutarate (m/z = 433),

aspartate (m/z = 418), glutamate (m/z = 432), glutamine (m/z = 431) and GABA (m/z = 274)

were also measured. The analysis of lactate involved using 0.05 ml of extract and the GC/MS

system as describe above, but slightly modified methods. Lactate (m/z = 131) was analyzed as a

PFBBR derivative and operated in chemical ionization mode (CI, ammonia gas) [42].

Fatty acid and cholesterol concentrations were analyzed from the aliquot reserved from the

homogenate and then dried under nitrogen gas. The individual lipids were analyzed as tri-

methylsilyl derivatives using the GC/MS system as described above (EI sim mode) [38, 45].

The corresponding ions monitored for each of the lipids were as follows: C:14 (m/z = 285),

C16:0 (m/z = 313), C17:0 internal standard (m/z = 327), C:16:1 (m/z = 311), C:18 (m/z = 341),

C18:1 (m/z = 339), C18:2 (m/z = 337), C:20 (m/z = 369), C:20:1 (m/z = 367), C:22 (m/z = 397)

and cholesterol (m/z = 368).

Acyl-CoA profiles analysis. Acyl-CoA profiles were assayed from the remaining extract

(~2.2 ml) [41–44]; extract was loaded onto a Supelco solid-phase extraction cartridge ([2-(pyri-

dyl)-ethyl functionalized silica gel]) pretreated with methanol. The cartridge was washed with

a buffer containing methanol with 2% acetic acid, followed by elution of acyl-CoAs using buff-

ers containing ammonium formate and/or methanol. The eluent was evaporated under nitro-

gen gas, and applied to LC/MS/MS. The LC was coupled with an API4000 Qtrap MS (Applied

Biosystems, Foster City, CA, USA) operated under positive ionization mode, and the Q1/Q3

components were monitored for each acyl-CoA species (C2:0 –C20:4 CoA).

Complex lipids. Whole brain metabolic analysis of complex lipids was assessed by the

West Coast Metabolomic Center at UC Davis by charged-surface hybrid column electrospray

ionization quadrupole time of flight tandem mass spectrometry (CSH-ESI QTOF MS/MS) in

both positive and negative modes using methods described previously [46–49]. Samples were

extracted using the Matyash protocol using methyl tert-butyl ether (MTBE) [50]. 4 mg of pul-

verized brain sample was mixed with 225 μL of ice-cold degassed MeOH and vortexed for 20s,

750 μL of ice-cold degassed MTBE was then added followed by vortexing for 20s and homoge-

nize for 30s. MilliQ water was added (188 μL) followed by vortexing (20 s) and centrifugation

(2 min; 14,000 g). The resulting upper phase is then transferred (350 μL) to a separate tube,

dried, and reconstituted with 65 μL MeOH:toluene+CUDA (9:1, v/v). Aliquots of 30 μL were

transferred to two separate vials with micro-inserts for UHPLC-QTOF-MS analysis. Samples

(3 μL) were injected at 65˚C and separated using a Waters Acquity UPLC CSH C18 column

(100mm× 2.1 mm) with a particle size of 1.9 μm and a flow rate of 0.6 mL/min. Mass spec-

trometry was conducted for positively charged ions (phosphatidylcholine (PC), lysoPC, PE,

and PS) with an Agilent 6530 QTOF MS (resolution: 10,000) and for negatively charged ions

(free fatty acids and phosphatidylinositols) with an Agilent 6550 QTOF MS (resolution:

20,000). Both mass spectrometers operated at full scan range m/z 65–1,700. Peak identification

was processed in MassHunter Qual (Agilent) using the MS/MS information and Fiehn labora-

tory LipidBlast spectral library [51] and then imported to Mass Profiler Professional for peak

alignment. Results are provided as quantifier ion peak heights and normalized to the sum of all

peak heights for all identified metabolites for each sample. In-depth details of the protocol can

be found through the Metabolomics Workbench under protocol number 163 (http://www.

metabolomicsworkbench.org/protocols/protocoldetails.php?file_id=163).

Non-esterified oxylipins and endocannabinoids analysis. Oxylipins, endocannabinoids,

and fatty acids were isolated using methanol:ethyl acetate liquid-liquid extraction protocol

from ~25 mg of the mouse brain. Procedure shortly: ~25 mg mouse brain was homogenized

using Geno rider 2000 sample homogenizer (SPEX Sample Prep; Metuchen, NJ) together with

5 μL BHT/EDTA (1:1 MeOH:water), 5 μL of 1 μM deuterated surrogates in methanol and
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95 μL of methanol. Further, samples were mixed with 0.5 mL of deionized water and 1 mL of

ethyl acetate and subsequently vortexed and centrifuged (10 min at 15,000 rcf). The organic

phase was retreated and dried by applying a vacuum at 15 Hg for 10 min. Samples were recon-

stituted in 100μl of 1-cyclohexyl ureido, 3-dodecanoic acid (CUDA) and 1-Phenyl 3-Hexade-

canoic Acid Urea (PHAU) at 100nM in 1:1 methanol:acetonitrile. Residues within extracts

were separated on a 2.1 x 150mm 0.17μm BEH column (Waters) and detected by electrospray

ionization with multi reaction monitoring on a API 6500 QTRAP (Sciex; Redwood City, CA)

and quantified against 7–9 point calibration curves of authentic standards using modifications

of previously reported methods [52, 53].

Statistics

Values are reported as mean ± SEM unless otherwise noted. Statistical calculations were done

with the Sigma Stat software (Systat Software Inc., San Jose, CA), JMP (SAS institute Inc, Cary,

NC, USA), and GraphPad Prism software (GraphPad Software Inc., La Jolla, CA). Two-way

ANOVA tables were generated as previously described [54]. Grubb’s test was used to exclude

outliers and samples not normally distributed were transformed using 1

x ;
ffiffiffi
x
p

, or log x. Student

t-tests, or one-way or two-way analysis of variance (ANOVA) followed by Tukey or Student-

Newman-Keuls (SNK) post-hoc tests were used to test for differences between groups as indi-

cated in the figure legends and statistical differences assigned at p�0.05. Non-esterified oxyli-

pins and endocannabinoid data were Log transformed and auto-scaled before multivariate

analysis, as previously reported [55]. Statistical analyses including; partial least squares analy-

sis, variable hierarchical clustering and repeated measures ANOVA were performed in

JMP-Pro v 12.2. Repeated measures ANOVA was performed on variable clusters with a ran-

dom subject effect, whereas variable cluster members, diet and genotype were used as fixed

effects. The model tested for the diet, genotype, and the diet x genotype interaction effect.

Results

Western diet leads to poorer Y-maze alternation and better Morris maze

retention while LDLr -/- mice were more active and showed impaired

learning in the radial arm maze

To assess the cognitive effects of LDLr -/- and/or WD mice were tested with either both the Y-

maze and Morris water maze (MWM), or the radial arm water maze (RAWM) at the age of 20

weeks (12 weeks on defined diet). In addition to cognitive performance as reflected in correct

response, performance variables (like speed and thigmotaxis) were analyzed for each of the

maze tests. In the Y-maze, LDLr -/- mice were consistently more active than C57BL/6 (WT)

with an increased number of total arm entries (63.9±2 vs 54.3±2), total distance travelled

(4103.7±104 vs 3538.2±102.5), and decreased % resting time (10.3±.06 vs 14.8±1.0). There was

no effect of diet on performance endpoints; however, diet significantly affected the cognitive

endpoint % alternation triplets regardless of genotype (p�0.05). Poorer performance (fewer

alternation triplets) was seen in the WD-fed group (Fig 1A). There was also a trend (p = 0.06)

toward an interaction between genotype and diet, with the diet effect more prominent in the

LDLr -/- subgroup.

The MWM included visible, training, and probe trials. No effects of diet or genotype were

seen for the ability of the mice to find a visible platform trial and this performance was not

associated with body weight at the end of behavioral testing (20 weeks of age). With the train-

ing trials, there were no effects of diet or genotype seen for performance endpoints (floating,

thigmotaxis, and swimming speed). Similarly, no effects were seen on the cognitive measures

Diet & LDLr-/- alter brain function & metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0191909 February 14, 2018 10 / 38

https://doi.org/10.1371/journal.pone.0191909


Fig 1. Diet and genotype effects on cognitive endpoints from three different behavioral tests. The performance of

C57BL/6 (WT) or LDLr-/- mice in the Y-maze alternation was determined after they were fed a control (CD) or

western (WD) diet (A). The mean percentage of triplicates (number of alternations, number of times 3 adjacent arms,

divided by the total number of arms entered) is shown (n = 8/grp). These same animals were also exposed to the

Morris Water Maze (MWM, B) where % time spent in the platform quadrant during the probe trial is shown. In
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of learning, the decrease in distance and time required to reach the platform between the first

and last day of training. As a group (WT and LDLr-/-), the mice decreased distance to platform

by 43±5% and time to platform by 30±7% during training. While there were no effects of diet

or genotype on performance endpoints (swim speed, float time, or time in “wall zone”) in the

probe trial, a diet effect (p�0.05) was seen for the cognitive endpoint % time in the platform

quadrant (Fig 1B). This finding was supported by a trend toward a diet effect (p = 0.09) for

mean distance to target, or the ability of the mice to maintain a search pattern close to the plat-

form. In both cases, the WD group showed greater time in platform quadrant and reduced dis-

tance to quadrant compared to the CD fed group.

Since the MWM and Y-maze were run on the same animals, we determined whether there

was an association between the results of these tests by principal components analysis (PCA).

We found no correlation between the main cognitive endpoints of the MWM and Y-maze, %

platform quadrant time in the probe trial and % alternation triplets, (r = -0.03). This indicated

that the two endpoints were measuring distinct cognitive processes with no interdependence

in determining behavior for these endpoints. Body mass at the time of testing, cognitive, and

performance endpoints were entered into PCA to determine the associations among these

endpoints. Analysis indicated that performance variables were not strongly associated with

cognitive variables in either task.

To assess spatial learning and memory with a more complex test of learning, two additional

cohorts of mice were tested by RAWM either pre- and post-12-week experimental diet inter-

vention (twice), or only after the experimental diet intervention. We found no genotype effects

on performance endpoints (float time or latency to platform) in mice tested pre-experimental

diet. In addition, no genotype or diet effects were seen on performance endpoints in mice only

post-tested after completion of the dietary exposure. We found that the initial pre-diet testing

substantially improved the learning of the mice at the post-experimental diet test. Mice who

had been tested previously averaged 1.8±0.2 errors during the first 4 RAWM sessions as com-

pared to 3.4±0.2 errors for mice who had not been tested previously. Therefore only the first

testing experience (cohort 1 = pre-diet, cohort 2 = post diet) was used to assess genotype

effects. The LDLr -/- mice made the same number of errors as WT on the early problems (day

1–4), but made more on the later problems (days 5–9) demonstrating lack of improvement as

seen in Fig 1C. Since both WD and LDLr-/- induce altered cognitive function, subsequent

analysis of BBB transport, glucose uptake, neuroinflammation, and brain metabolites were

assessed in both models as well as potential interaction.

Western diet feeding increases blood-brain barrier transport

WT and LDLr -/- mice fed a CD or WD were subjected to MRI analysis to determine if diet

and/or the hyperlipidemic genotype altered BBB transport, indicated by a change in transfer

coefficient (Ki = permeability x surface area/volume). Two-way ANOVA showed a significant

effect of diet on the BBB transfer coefficient Ki where WD increased Ki when WT and LDLr-/-

data were pooled (p�0.05, Fig 2A). There was no significant difference between the genotypes

nor was there a significant interaction between genotype and diet (p = 0.653 and 0.578, respec-

tively). Increased Ki can be seen in the brain (circled in red) as a shift to yellow in the represen-

tative images of Ki maps for each group (Fig 2B). These shifts in Ki were not associated with

measurable differences in blood flow as perfusion weighted imaging of cerebral CBF to the

separate but identically treated groups of WT and LDLr -/- animals, mice were exposed to the Radial Arm Water Maze

(RAWM, C) and the number of trial 4 errors in day’s 1–4 vs 5–9 of testing is shown (n = at least 9/grp). Values are

mean ±SEM and analyzed by two-way ANOVA with Tukey’s multiple comparisons post hoc test.

https://doi.org/10.1371/journal.pone.0191909.g001
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Fig 2. Western diet increases BBB transfer coefficient (Ki). Wild type (WT) and LDLr -/- animals on either a control (CD) or

western diet (WD) are plotted against their mean Ki (min-1) ± SEM (A). Representative images of the Ki maps of WT CD, LDLr -/-

CD, WT WD and LDLr -/- WD are shown (B) where brain is circled in red. Two-way ANOVA showed a significant effect of diet on

the BBB transfer coefficient Ki where WD increased Ki when WT and LDLr-/- data were pooled denoted by �, p<0.05 (n = at least

6/grp).

https://doi.org/10.1371/journal.pone.0191909.g002
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brain was essentially normal at 1.7±0.025 mL/100gm/sec and significant differences between

mean CBF measured for phenotypes and genotypes were not found (data in supplement). Fur-

ther, post-imaging venous blood samples were drawn from the vena cava and there were no

significant differences in pH, pCO2, pO2 levels between the groups (data in supplement).

Altered vessel density and microglia activation in western diet fed mice

To better understand the influence of a WD on brain vascularization, an immunohistological

analysis of vessel density was determined by factor VIII staining. We found a significant

increase in the relative surface area stained with factor VIII in the hippocampus of LDLr -/-

WD-fed mice relative to both control WT or LDLr -/- mice fed a CD, and in the thalamus

compared to WT CD-fed mice (Fig 3A). Subjective evaluation suggests that this represents an

increase in factor VIII expression in individual endothelial cells in larger vessels as well as

expression in capillary endothelium that has a paucity of staining in other groups (Fig 3B and

3C). Subjective histopathologic analysis found no overt differences between genotype and diet

groups in brain sections examined nor planimetry measurements of overall surface area for

the mid temporal and occipital cortex.

To determine the extent and location of microglia activation in the brains of WD-fed and/

or LDLr -/- mice, brain sections were stained for IBA1, which labels microglia and is increased

in activated microglia. There was a significant increase in IBA1 staining in WT mice fed a WD

compared with mice fed the CD in both the cortex and hippocampus (Fig 3D–3H). In addi-

tion, microglial cells had markedly more prominent processes (Fig 3E and 3F). The density of

IBA1 staining in both CD- and WD-fed LDLr -/- mice were no different from WT CD fed

mice. Similar trends in the thalamus were not statistically significant, in part due to variability

in the extent to which the cerebral peduncles were included in the section evaluated. Subjective

observation clearly demonstrated that the cerebral peduncles contained a significantly greater

density of IBA1 positive cells regardless of diet of genotype group.

Diet or genotype effects on inflammatory gene expression

Since we found a significant increase in IBA1 staining in WT mice fed a WD, we attempted to

determine the type of inflammatory response that was occurring. For this, whole brain expres-

sion of genes known to be associated with an M1 or M2 microglia activation (CD16, CD32 &

CD86 vs CD 206 & arginase 1) [56, 57], neurodegeneration (IL-1B and IL-6), neuroprotection

(CX3CR1, TREM2, IGF1, GDF15, IL10) vascular inflammation (factor VIII and TNFα) or

additional stress and inflammatory pathways (ATF3, CHOP, JNK, NFκβ) were assessed. While

many of these showed no significant difference by genotype (WT vs LDLr -/-), diet (CD vs

WD), or diet x genotype interaction, we found a significant decrease in ATF3, CD206, CD32,

and IL-6 in LDLr -/- mice (when compared to WT) and a significant decrease in CD86 and a

trend for a decrease in IBA1 with a WD (Table 2). In addition, prostaglandin-endoperoxide

synthase 2 (PTGS2, also known as COX2) was significantly increased with a WD.

LDLr -/- mice show altered brain glucose metabolism

To determine the effects on brain glucose uptake, C57BL/6 (WT) and LDLr -/- mice fed either

a WD or CD underwent 18FDG PET/CT imaging. 18FDG SUVglu values for brain ROIs in

each respective group were calculated from summed PET images from 25–30 min post-injec-

tion (Fig 4) where LDLr -/- showed a significant increase in glucose uptake compared to WT

mice (2.37 ± 0.10 and 2.00 ± 0.09, p�0.05).
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Fig 3. Factor VIII immunostaining density increases in hippocampus and thalamus of LDLr -/- while IBA1 increases in the cortex

and hippocampus of C57BL/6 (WT) fed a western diet. Area density of factor VIII and IBA1 immunostaining in coronal section of

C57BL/6 (WT) or LDLr -/- mice fed control (CD) or western diet (WD) as determined by image analysis (A and D). Representative

images comparing factor VIII immunostaining in thalamus of LDLr -/- mice fed CD (B) or WD (C) (scale bar = 50μm). WD fed

animals had more granules of factor VIII positive material in capillaries (arrows). Microglia in control fed mice (E) have most IBA-1
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Increase of lactate in LDLr-/- mice and lipid moieties by proton magnetic

resonance spectroscopy (1H-MRS) in LDLr -/- mice fed a WD

To measure shifts in metabolites in vivo, 1H-MRS were analyzed using spectral fitting to esti-

mate the content of 17 discrete metabolites plus lipid and macromolecules within the cortex

(representative image and spectra shown in Fig 5). Lactate concentrations were significantly

increased in the LDLr -/- mice compared to C57BL/6 (2.06±0.14 and 1.47±0.13, p�0.05). In

addition, LDLr -/- mice fed a WD had higher lipid concentrations (lipid 13a, lipid 9 and lipid

13a+13b) compared to LDLr -/- on CD or to WT on either diet (Table 3). While not signifi-

cant, there was a trend (p = 0.084) for glutamine to decrease in the cortex of LDLr -/- when

compared to control mice (2.92±0.14 and 3.70 ±0.41, respectively).

positivity surrounding the nucleus while those from western diet (F) fed animals have denser staining that extends through elongate

strands of cytoplasm (scale bar = 20μm). Representative images comparing IBA1 immunostaining in cortex (red), hippocampus (blue)

and thalamus (green) of WT mice fed CD (G) or WD (H) (scale bar = ~0.5mm). Statistical differences from WT (�) or LDLr -/- (#) CD

fed mice or LDLr-/-WD fed ($), as determined by ANOVA with Tukey’s multiple comparisons post hoc test p<0.05, n = at least 5/grp).

https://doi.org/10.1371/journal.pone.0191909.g003

Table 2. Shift in gene expression with western diet and/or Ldlr -/-. C57BL/6 (WT) or LDLr-/- mice were fed a control (CD) or western (WD) diet for 12 weeks and

their brain gene expression was measured. Values are fold of WT on a CD ±SEM. Means in a row without a common subscript letter differ (p� 0.05) as analyzed by two-

way ANOVA and Tukey test. GxD = Genotype x Diet interaction effect (n = at least 5/grp).

Variable WT LDLr -/- P-value

CD

(n = 6)
WD

(n = 5)
CD

(n = 6)
WD

(n = 6)
Genotype Diet G×D1

ARG 1.06 ± 0.153 1.21 ± 0.22 0.933 ± 0.131 0.85 ± 0.0737 0.127 0.844 0.434

ATF3 1.02 ± 0.0988 0.956 ± 0.0453 0.863 ± 0.0286 0.833 ± 0.0205 0.023 0.426 0.763

C1qA 1.01 ± 0.0514 1.03 ± 0.104 0.833 ± 0.103 0.989 ± 0.0667 0.256 0.306 0.42

C1qB 1 ± 0.0109 0.95 ± 0.091 0.921 ± 0.0678 0.943 ± 0.065 0.494 0.828 0.584

C1qC 1 ± 0.0308 1.01 ± 0.088 1.04 ± 0.0332 1.08 ± 0.0522 0.335 0.688 0.836

CCL2 1.03 ± 0.0995 1.04 ± 0.0434 0.929 ± 0.0862 0.847 ± 0.0471 0.075 0.618 0.561

CD11b 1.01 ± 0.0616 1.06 ± 0.0537 1.14 ± 0.0801 1.07 ± 0.0515 0.287 0.839 0.367

CD16 1 ± 0.0441 0.957 ± 0.0346 1.07 ± 0.135 0.979 ± 0.0689 0.629 0.411 0.8

CD32 1.02 ± 0.0877a 1.01 ± 0.0465ab 0.782 ± 0.0369bc 0.753 ± 0.0406c <0.001 0.709 0.894

CD86 1.04 ± 0.118 0.957 ± 0.0637 1.14 ± 0.0623 0.869 ± 0.0715 0.973 0.042 0.273

CD206 1.07 ± 0.162 1.02 ± 0.0717 0.83 ± 0.0468 0.783 ± 0.0311 0.02 0.595 0.976

CXCL2 1.01 ± 0.0513 1.48 ± 0.41 1.18 ± 0.0795 0.995 ± 0.0866 0.473 0.473 0.114

DDIT3 1.01 ± 0.0507 1.01 ± 0.0381 1.12 ± 0.106 0.964 ± 0.0592 0.627 0.269 0.298

Factor VIII 1.04 ± 0.124 1.1 ± 0.0806 1.11 ± 0.0815 1.03 ± 0.0472 0.992 0.927 0.471

GDF15 1 ± 0.0387 1.07 ± 0.066 1.14 ± 0.126 1.14 ± 0.11 0.258 0.738 0.762

IBA1 1.01 ± 0.0487 0.912 ± 0.0291 1.14 ± 0.132 0.921 ± 0.0348 0.394 0.053 0.431

IGF 1.08 ± 0.186 1.36 ± 0.207 0.955 ± 0.0489 0.988 ± 0.179 0.169 0.366 0.457

IkBα 1.04 ± 0.136 1.15 ± 0.064 1.11 ± 0.112 1.32 ± 0.204 0.395 0.276 0.75

IL-12a 1.4 ± 0.616 0.851 ± 0.119 0.789 ± 0.068 1.23 ± 0.213 0.697 0.938 0.173

IL-1B 1.03 ± 0.103 0.971 ± 0.129 0.821 ± 0.123 0.711 ± 0.114 0.058 0.481 0.822

IL- 6 1.03 ± 0.112a 0.821 ± 0.191ab 0.536 ± 0.061b 0.572 ± 0.0925b 0.004 0.494 0.305

MAPK 8 1.02 ± 0.101 1.29 ± 0.19 1.04 ± 0.0821 0.899 ± 0.0603 0.125 0.628 0.081

NR4A2 1.01 ± 0.0784 0.994 ± 0.0758 0.902 ± 0.046 0.988 ± 0.0504 0.355 0.581 0.408

PTGS2 1.12 ± 0.231 1.3 ± 0.0868 0.942 ± 0.174 1.49 ± 0.172 0.952 0.048 0.322

TNFα 1.01 ± 0.0712 1.07 ± 0.0447 0.989 ± 0.0357 0.948 ± 0.0354 0.178 0.933 0.352

TREM2 1.02 ± 0.0839 1.04 ± 0.108 1.3 ± 0.141 1.05 ± 0.109 0.214 0.289 0.231

https://doi.org/10.1371/journal.pone.0191909.t002
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Perturbation of fatty acid, TCA intermediate, and amino acid profiles in

the brains of LDLr -/- and/or western diet fed mice

Brains from a subset of LDLr -/- and WT, mice fed either a CD or WD were subjected to meta-

bolic analysis by GC/MS and LC/MS/MS to determine fatty acid, cholesterol, TCA cycle inter-

mediate, and amino acid profiles (Table 4). Genotype did not alter C14:0 (myristic acid)

content in the brains but exposure to a WD increased C14:0 (p�0.05) and there was a trend

for a diet x genotype interaction (p = 0.054). In addition, there was a diet effect with respect to

C16:1 content which was elevated in WD compared to CD group. A dietary effect on choles-

terol profiles was observed in the WT group but not in the LDLr -/- group, as the WD-fed WT

mice had significantly higher value than the CD group.

Fig 4. Genotype but not diet alters brain glucose uptake. 18FDG uptake measured by mean standardized uptake

value (SUVglu) corrected for plasma glucose from a summed static image from 20–30 min post injection of C57BL/6

(WT) or LDLr -/- mice fed control (CD) or western diet (WD). Statistical differences by two-way ANOVA between

WT and LDLr -/- mice (�) p<0.05, n = at least 4/grp.

https://doi.org/10.1371/journal.pone.0191909.g004

Fig 5. In vivo brain metabolite content determined by 1H-MRS. Localized 1H spectra were obtained from an 18.75 μl volume

(white box) positioned within the left or right hemisphere of the brain. Metabolite content was determined by spectral fitting with

LC model using a basis set of 17 metabolites plus components due to macromolecules and intracellular lipids.

https://doi.org/10.1371/journal.pone.0191909.g005
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Many of the TCA intermediates and amino acids measured were affected by diet. Those

with the most significant changes include; aspartate, GABA, 2-hydroxyglutarate (reduced α-

ketoglutarate) and glutamine, as these intermediates were increased with WD irrespective of

genotype. Additionally, succinate decreased with WD intervention in the WT but was not

altered by diet in the LDLr -/- mice. β-hydroxybutyrate (BHB) was significantly increased with

WD irrespective of genotype, and the LDLr -/- were significantly elevated over the WT group

demonstrating a genotype effect. Lactate was significantly elevated in the WD groups; whereas

the LDLr -/- genotype appeared to have no effect, as they were similar irrespective of diet. Diet

or genotype had no effect on fumarate, malate, glutamate, or citrate.

Acyl-CoA concentrations were significantly affected by WD and/or LDLr mutation. Ace-

tyl-CoA, propionyl-CoA, butyryl-CoA, and BHB-CoA (intermediates of fatty acid oxidation)

were significantly lower in the LDLr -/- group fed the WD compared to their diet matched

WT groups. Although there were no significant differences in total-CoA concentrations with

diet or genotype, the LDLr -/- group fed the WD trended lower compared to the WT WD

group. C16:0-CoA, C18:0-CoA, C18:1-CoA, and C20:4 were not significantly different but

C20:4 was significantly higher in the LDLr -/- group CD group. Although there were no signif-

icant changes in malonyl-CoA (intermediate of fatty acid synthesis and regulator of carnitine

acyl-transport system for fatty acid transport into mitochondria) with diet or genotype, there

Table 3. Shift in brain metabolites assessed by 1H-MRS by western diet and/or LDLr -/-. C57BL/6 (WT) or LDLr-/ mice were fed a control (CD) or western (WD) diet

for 12 weeks and their brain fatty acid and TCA cycle intermediates were measured. Values are mean of abundance relative to Cr+PCr ±SEM. Means in a row without a

common subscript letter differ (p� 0.05) as analyzed by two-way ANOVA and Tukey test. GxD = Genotype x Diet interaction effect (p� 0.05, n = at least 7/grp).

Metabolite WT LDLr -/- P-value

CD

(n = 7)
WD

(n = 8)
CD

(n = 8)
WD

(n = 7)
Genotype Diet G×D1

Alanine 1.2 ± 0.303 1.21 ± 0.143 1.12 ± 0.195 1.31 ± 0.319 0.951 0.691 0.727

Aspartate 3.2 ± 0.254 3.49 ± 0.375 3.6 ± 0.238 3.69 ± 0.327 0.387 0.566 0.765

Choline 0.598 ± 0.0718 0.726 ± 0.0676 0.663 ± 0.0767 0.566 ± 0.0826 0.517 0.836 0.146

Creatinine 5.19 ± 0.122 5.02 ± 0.107 5.18 ± 0.132 4.96 ± 0.164 0.872 0.152 0.88

GABA 1.42 ± 0.121 1.66 ± 0.0956 1.64 ± 0.179 1.5 ± 0.0827 0.798 0.692 0.155

αGlucose 1.65 ± 0.258 1.54 ± 0.148 1.39 ± 0.0925 1.46 ± 0.11 0.3 0.879 0.584

βGlucose 2.17 ± 0.316 2.1 ± 0.214 1.84 ± 0.147 1.94 ± 0.241 0.299 0.954 0.741

Glutamate 7.95 ± 0.282 8.17 ± 0.106 8.16 ± 0.315 8.36 ± 0.38 0.514 0.463 0.957

Glutamine 3.79 ± 0.639 3.63 ± 0.557 3.25 ± 0.174 2.56 ± 0.102 0.084 0.34 0.549

Glutathione 1.73 ± 0.121 1.65 ± 0.106 1.69 ± 0.0912 1.72 ± 0.0646 0.873 0.774 0.546

Lactate 1.79 ± 0.183ab 1.35 ± 0.163b 2.15 ± 0.191a 1.92 ± 0.227ab 0.018 0.186 0.666

MyoInositol 5.14 ± 0.295 5.21 ± 0.3 5.19 ± 0.0985 5.41 ± 0.218 0.633 0.55 0.756

NAA 6.06 ± 0.16 5.97 ± 0.129 5.94 ± 0.214 5.83 ± 0.113 0.47 0.525 0.963

PhosphoCholine 0.944 ± 0.0636 0.855 ± 0.0592 0.916 ± 0.0839 0.967 ± 0.0726 0.546 0.794 0.332

PhosphoCreatine 2.81 ± 0.122 2.98 ± 0.107 2.82 ± 0.132 3.04 ± 0.164 0.872 0.152 0.88

Taurine 6.73 ± 0.472 6.47 ± 0.221 7.01 ± 0.281 6.79 ± 0.405 0.367 0.496 0.957

MM C57 0.0667 ± 0.00303 0.0716 ± 0.00236 0.0695 ± 0.0041 0.0683 ± 0.00197 0.896 0.549 0.324

Cr+PCr 8 ± 0 8 ± 0 8 ± 0 8 ± 0 0.324 0.292 0.292

Glu+Gln 11.7 ± 0.643 11.8 ± 0.53 11.4 ± 0.22 10.9 ± 0.421 0.22 0.658 0.558

Lip13a 5.04 ± 0.353ab 4.72 ± 0.584ab 4.11 ± 0.389b 9.04 ± 2.31a 0.202 0.054 0.038

Lip 9 1.84 ± 0.2ab 1.6 ± 0.178ab 1.38 ± 0.208b 2.3 ± 0.337a 0.677 0.155 0.021

Lip 20 1.06 ± 0.129 1.05 ± 0.229 1.1 ± 0.175 1.09 ± 0.0886 0.818 0.965 0.998

Lip13a+Lip13b 5.05 ± 0.323 4.67 ± 0.583 4.31 ± 0.441 9.36 ± 2.73 0.186 0.093 0.053

https://doi.org/10.1371/journal.pone.0191909.t003
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was a decrease in the BHB-CoA to malonyl-CoA ratio in the LDLr -/- group fed the WD as

compared to CD. This was likely due to the significant decrease in BHB-CoA.

Complex lipid analysis by CSH-ESI QTOF MS/MS demonstrated that PC moieties 32:0–3,

36:3B, 38:4A, and 38:5A are all elevated in LDLr-/- while PC 30:0, 35:1, 38:1 in addition to

diacylglycerol, and glucosylceramides 40:1 and 42:1 were elevated with a WD (negatively

charged CSH, Table 5). PC moiety’s 31:0 and 33:1 were the only ones affected by both WD and

LDLr-/- and PC 31:0 showed a significant additive effect for diet and genotype. Further, cere-

mide 42:1(Cer18:1/24:0) and 42:2A (Cer18:1/24:1) in addition to fatty acid 18:1 and 20:1 were

also found to be raised with a WD (Table 6, positively charged CSH). However, there were no

Table 4. Shift in brain fatty acid and TCA cycle intermediate abundance with western diet and/or LDLr -/-. C57BL/6 (WT) or LDLr-/- mice were fed a control (CD)

or western (WD) diet for 12 weeks and their brain fatty acid and TCA cycle intermediates were measured. Values are mean in μmol/g tissue ±SEM. Means in a row without

a common subscript letter differ (p� 0.05) as analyzed by two-way ANOVA and Tukey test. GxD = Genotype x Diet interaction effect (n = 4/grp).

Fatty Acids WT LDLr -/- P-value

CD WD CD WD Genotype Diet G×D1

C14 1.62 ± 0.207ab 1.63 ± 0.123ab 1.35 ± 0.0777b 1.97 ± 0.134a 0.825 0.048 0.054

C16 264 ± 21.6 288 ± 5.08 277 ± 13.2 272 ± 10 0.921 0.527 0.305

C16:1 0.884 ± 0.0756b 1.13 ± 0.0512a 0.969 ± 0.0373ab 1.06 ± 0.0586ab 0.925 0.013 0.192

C18 288 ± 18.7 327 ± 10.2 317 ± 6.19 321 ± 10.1 0.36 0.103 0.175

C18:1 211 ± 27.2 212 ± 13.9 187 ± 16.9 174 ± 13 0.123 0.752 0.724

C18:2 2.2 ± 0.379 2.27 ± 0.388 2.07 ± 0.23 1.78 ± 0.0902 0.321 0.71 0.566

C 20 2.83 ± 0.307 3.7 ± 0.292 3.15 ± 0.429 3.09 ± 0.203 0.667 0.226 0.17

C20:1 11 ± 2.24 10.9 ± 0.735 8.74 ± 0.725 8.76 ± 0.462 0.102 0.976 0.962

C22 0.902 ± 0.152 0.992 ± 0.0792 0.864 ± 0.127 0.881 ± 0.0508 0.511 0.635 0.744

Cholesterol 55.8 ± 8.73b 93.7 ± 7.76a 88.9 ± 7.31a 81.5 ± 7.55ab 0.208 0.076 0.014

TCA Cycle intermediates

Succinate 0.518 ± 0.0323a 0.355 ± 0.0274b 0.351 ± 0.0192b 0.386 ± 0.0325b 0.034 0.043 0.004

BHB 0.024 ± 0.00339b 0.0358 ± 0.00452ab 0.0345 ± 0.00259ab 0.0414 ± 0.00249a 0.033 0.016 0.478

GABA 4.66 ± 0.708 5.59 ± 0.743 3.84 ± 0.611 6.43 ± 0.504 0.982 0.019 0.223

Fumerate 0.591 ± 0.058 0.535 ± 0.0272 0.512 ± 0.0349 0.492 ± 0.0199 0.134 0.336 0.645

Malate 0.131 ± 0.00695 0.13 ± 0.0018 0.123 ± 0.00439 0.137 ± 0.00635 0.946 0.252 0.163

Aspartate 2.05 ± 0.0786bc 2.7 ± 0.134a 1.81 ± 0.137c 2.49 ± 0.201ab 0.143 0.001 0.91

2-Hydroxyglutarate 0.213 ± 0.00918b 0.272 ± 0.0143a 0.202 ± 0.0142b 0.271 ± 0.00987a 0.622 <0.001 0.677

Glutamate 16.6 ± 1.81 19.2 ± 1.34 18.2 ± 1.99 21.7 ± 0.989 0.224 0.081 0.779

Glutamine 6.46 ± 0.287bc 7.63 ± 0.363a 5.78 ± 0.205c 7.29 ± 0.159ab 0.077 <0.001 0.531

Citrate 0.131 ± 0.0309 0.136 ± 0.0131 0.119 ± 0.0172 0.125 ± 0.0126 0.585 0.803 0.986

Lactate 12.9 ± 0.828b 17.8 ± 1.34a 16.1 ± 0.825ab 17.5 ± 0.963a 0.185 0.009 0.112

Acyl-CoA’s

Malonyl CoA 1.07 ± 0.144 1.23 ± 0.134 1.12 ± 0.119 1.25 ± 0.0971 0.751 0.293 0.914

Acetyl CoA 3.25 ± 0.217bc 4.01 ± 0.235ab 4.23 ± 0.181a 3.02 ± 0.169c 0.991 0.294 <0.001

Succinyl CoA 2.57 ± 0.287 2.93 ± 0.548 2.5 ± 0.404 3.36 ± 0.354 0.669 0.158 0.556

Butyryl CoA 1.01 ± 0.0306ab 1.11 ± 0.0198a 1.09 ± 0.0158a 0.986 ± 0.0239b 0.327 0.85 0.001

Propionyl CoA 0.171 ± 0.00543 0.191 ± 0.00179 0.188 ± 0.00511 0.172 ± 0.00682 0.86 0.725 0.004

HMG CoA 1.01 ± 0.0335 1.13 ± 0.0257 1.07 ± 0.0434 1.01 ± 0.039 0.415 0.437 0.022

BHB CoA 0.0788 ± 0.00618 0.105 ± 0.00713 0.0962 ± 0.0108 0.0727 ± 0.00538 0.495 0.945 0.01

C16 0 CoA 0.851 ± 0.107 0.857 ± 0.136 0.876 ± 0.069 0.868 ± 0.149 0.883 0.994 0.95

C18 1 CoA 0.324 ± 0.0709 0.363 ± 0.0704 0.371 ± 0.0505 0.343 ± 0.0717 0.843 0.927 0.623

C20 4 CoA 0.242 ± 0.0258 0.266 ± 0.0237 0.383 ± 0.0449 0.262 ± 0.0765 0.176 0.328 0.155

AcAc CoA 0.000871 ± 0.000157 0.000713 ± 3.95e-05 0.00084 ± 6.9e-05 0.00103 ± 0.000342 0.533 0.88 0.415

https://doi.org/10.1371/journal.pone.0191909.t004
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Table 5. Shift in negatively charged complex lipids with western diet and/or LDLr -/-. C57BL/6 (WT) or LDLr-/- mice were fed a control (CD) or western (WD) diet

for 12 weeks and their brain complex lipids were measured by LC CSH-(+)ESI QTOF MS. Values are mean in μmol/g tissue ±SEM. Means in a row without a common

subscript letter differ (p� 0.05) as analyzed by two-way ANOVA and Tukey test. GxD = Genotype x Diet interaction effect (n = 4/grp).

Complex Lipids (neg) WT LDLr -/- P-value

CD WD CD WD Genotype Diet G×D1

Acylcarnitine C16:0 2040 ± 344 2410 ± 298 2490 ± 56.9 2660 ± 227 0.197 0.305 0.709

Acylcarnitine C18:1 1840 ± 422 2450 ± 225 2320 ± 263 2620 ± 162 0.28 0.135 0.604

Ceramide (d42:2) 749 ± 142 1350 ± 244 1100 ± 110 1150 ± 222 0.682 0.108 0.17

Cholesterol 56000 ± 1300 57200 ± 1410 55700 ± 1230 54800 ± 1000 0.285 0.885 0.422

DG (34:1) 693 ± 125 1440 ± 244 835 ± 274 1100 ± 74.7 0.628 0.024 0.246

GlcCer (d40:1) 18300 ± 1600 35900 ± 8130 19900 ± 1450 22100 ± 2480 0.194 0.043 0.105

GlcCer (d42:1) 36900 ± 1960 69300 ± 14600 38700 ± 3850 44400 ± 6610 0.189 0.041 0.134

GlcCer (d42:2) 133000 ± 10700 279000 ± 72100 139000 ± 10800 155000 ± 24400 0.154 0.06 0.12

LPC (16:0) 4930 ± 487 5540 ± 616 5020 ± 203 5540 ± 390 0.917 0.232 0.92

LPC (18:0) 2460 ± 161 2990 ± 338 2620 ± 220 2900 ± 50.2 0.853 0.088 0.582

LPC (18:1) 1450 ± 130 1840 ± 252 1510 ± 61.1 1690 ± 37.2 0.751 0.073 0.476

PC (30:0) 102000 ± 11700b 135000 ± 20100ab 118000 ± 8530ab 162000 ± 8580a 0.136 0.012 0.694

PC (31:0) 3810 ± 336c 5800 ± 519b 4550 ± 274bc 8800 ± 628a 0.002 <0.001 0.031

PC (32:0) 1280000 ± 122000ab 1060000 ± 76100b 1570000 ± 65900a 1540000 ± 96100a 0.001 0.205 0.325

PC (32:1) 188000 ± 25200 175000 ± 25000 245000 ± 22800 229000 ± 15900 0.029 0.528 0.939

PC (32:3) 3730 ± 320b 4050 ± 317ab 4170 ± 221ab 5310 ± 528a 0.038 0.067 0.28

PC (33:1) 4400 ± 357b 6490 ± 666ab 5630 ± 277b 8670 ± 709a 0.008 <0.001 0.387

PC (34:0) 224000 ± 13900 243000 ± 38000 256000 ± 22400 281000 ± 14200 0.173 0.375 0.916

PC (34:1) 1820000 ± 23900 1800000 ± 36900 1850000 ± 11600 1860000 ± 7080 0.073 0.81 0.543

PC (35:1) 10900 ± 660 17400 ± 3480 11200 ± 835 17400 ± 612 0.928 0.005 0.937

PC (36:1) 483000 ± 47500 631000 ± 121000 502000 ± 33400 583000 ± 30200 0.838 0.123 0.632

PC (36:2) 171000 ± 10900 194000 ± 31300 181000 ± 10800 198000 ± 3510 0.691 0.284 0.882

PC (36:3) B 9830 ± 1380ab 7210 ± 1700b 13000 ± 1150ab 13800 ± 1330a 0.004 0.529 0.247

PC (36:4) B 232000 ± 38900 177000 ± 21600 277000 ± 29500 280000 ± 45400 0.056 0.472 0.426

PC (36:5) B 1280 ± 136 1000 ± 37.6 1420 ± 251 1300 ± 74.1 0.153 0.24 0.627

PC (38:1) 13500 ± 1330 28100 ± 7130 12300 ± 1110 14900 ± 1790 0.081 0.041 0.137

PC (38:2) 15000 ± 875 26000 ± 6360 15100 ± 1060 17900 ± 1680 0.26 0.062 0.245

PC (38:3) 6000 ± 448 7950 ± 1860 6800 ± 788 8150 ± 387 0.645 0.141 0.782

PC (38:4) A 309000 ± 39200 252000 ± 26400 343000 ± 27600 357000 ± 28500 0.044 0.498 0.274

PC (38:5) A 46800 ± 7670 37800 ± 3160 57600 ± 6080 57500 ± 6870 0.03 0.48 0.483

PC (38:5) B 4580 ± 1250 4380 ± 426 5890 ± 358 5810 ± 1750 0.24 0.902 0.958

PC (38:6) A 635000 ± 38400 682000 ± 65200 682000 ± 36600 691000 ± 55200 0.589 0.586 0.709

PC (38:6) C 961 ± 20.5 931 ± 72.4 955 ± 174 1100 ± 45.9 0.408 0.552 0.377

PC (39:6) 1040 ± 220 1660 ± 123 1060 ± 264 1510 ± 97.9 0.722 0.015 0.64

PC (40:4) 9480 ± 918 11500 ± 2750 10100 ± 1020 12400 ± 1030 0.658 0.212 0.924

PC (40:5) A 11700 ± 809 11400 ± 2710 12600 ± 809 13400 ± 492 0.35 0.865 0.703

PC (40:5) B 3100 ± 227 2820 ± 789 2720 ± 280 3910 ± 305 0.457 0.337 0.137

PC (40:6) A 1390 ± 165 1450 ± 145 1600 ± 134 1580 ± 162 0.271 0.897 0.807

PC (40:6) B 189000 ± 24100 218000 ± 41000 170000 ± 23900 194000 ± 29900 0.497 0.396 0.928

PC (40:7) 266000 ± 12700 331000 ± 46300 297000 ± 26300 312000 ± 29800 0.857 0.225 0.428

PC (40:8) 891 ± 222 1120 ± 68.6 1140 ± 282 1090 ± 325 0.663 0.735 0.566

PC (o-32:0) 6010 ± 981ab 4790 ± 627b 7120 ± 468ab 8260 ± 978a 0.014 0.961 0.162

PC (o-34:0) 2020 ± 111 1910 ± 179 2140 ± 114 2340 ± 205 0.106 0.746 0.339

PE (34:1) 28400 ± 2030 33600 ± 4730 29100 ± 1260 31600 ± 1240 0.811 0.178 0.632

PE (36:1) 42600 ± 3870 56700 ± 9250 42200 ± 1410 47100 ± 3660 0.369 0.105 0.411

(Continued)
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significant changes in measured phosphatidylethanolamines, sphingomyelins or positively

charged phosphatidylcholine moieties.

Oxylipins and endocannabinoids abundance segregates mice groups by diet

or genotypes with a shift to a pro-inflammatory state

Partial least square analysis, together with the mixed model ANOVA, were applied to deter-

mine the impact of experimental groups on the level of free oxylipins, endocannabinoids and

polyunsaturated fatty acids (PUFAS) (Fig 6A–6C). Forty seven percent of variables had VIP

score greater than 1, suggesting that observed differences are most likely not false positives.

Major diet and genotype effect were observed, however, without significant interaction

between them. WD groups were characterized by decreased levels of 18 carbon PUFAs (alpha

linolenic acid (aLA) and linoleic acid (LA)) as well as their corresponding ethanol amines

(aLEA and LEA). Additionally, WD elevated the levels of soluble epoxide hydrolase metabo-

lites of arachidonic acid (DiHETrEs) as well as 5- lipoxygenase (LOX) metabolites (LTB4 and

5- Hydroxyicosatetraenoic acid (HETE)) and COX metabolites (20-HETE and 6-keton

PGF1a). LDLr -/- animals showed increased level of long chain (C 20 and 22) PUFAs as well as

their 12-LOX metabolites (12-HETE, 12 HEPE, 14-HDoHE). Moreover, LDLr -/- decreased

the levels of 18 carbon derived oxylipins (from both LOX and CYP pathways). Interestingly,

the levels of their parent PUFAs were not impacted by the LDLr -/-.

Western diet exacerbates LDLr-/- elevation of plasma lipid levels without

significantly changing body weight

At the initiation of the diet, WT mice were heavier (23.5 ± 0.2g) than LDLr -/- (22.7 ± 0.2g;

p� 0.05) mice. Mice of both genotypes (WT and LDLr -/-) fed a WD had a significant increase

in body weight compared to CD fed, and the C57BL/6 WD-fed were significantly heavier than

western fed LDLr -/- (Table 7, p< 0.001). A subset of mice (n = 4/grp) had their blood collected

at termination and non-fasting glucose, insulin, and lipid content was measured. There was no

change in glucose but a significant difference between insulin levels was found in CD and WD

fed mice (668.6 ± 148.2 and 3187.0 ± 2263.2 pg/mL, p� 0.01). Total cholesterol, triglyceride

levels, HDL and LDL levels were all found to have significantly effect with diet or genotype as

well as having a diet x genotype interaction.

LDLr -/- and western diet increase aortic sinus plaque formation and

hepatic lipidosis

To determine the effects of diet and genotype on the general pathology of systemic organs,

brain, liver, heart, kidney, pancreas, skeletal muscle, and lung were evaluated by routine histo-

pathology. No gross changes in morphology and no significant lesions were seen in brain,

Table 5. (Continued)

Complex Lipids (neg) WT LDLr -/- P-value

CD WD CD WD Genotype Diet G×D1

PE (36:2) 40900 ± 2570 54300 ± 8810 40100 ± 2390 43800 ± 3600 0.288 0.119 0.36

PE (38:4) 179000 ± 25800 152000 ± 16800 191000 ± 14300 206000 ± 14200 0.096 0.739 0.278

PE (38:5) 33100 ± 1200 38800 ± 4500 32600 ± 1510 35400 ± 1370 0.462 0.121 0.574

PE (38:6) 222000 ± 20700 224000 ± 24300 275000 ± 8730 269000 ± 14800 0.019 0.932 0.835

PE (40:4) 23800 ± 3770 21900 ± 3370 25900 ± 1240 28600 ± 2590 0.154 0.886 0.448

https://doi.org/10.1371/journal.pone.0191909.t005
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Table 6. Shift in positively charged complex lipids with western diet and/or LDLr -/-. C57BL/6 (WT) or LDLr-/- mice were fed a control (CD) or western (WD) diet

for 12 weeks and their complex lipids were measured by LC CSH- (-) ESI QTOF MS. Values are mean in μmol/g tissue ±SEM. Means in a row without a common subscript

letter differ (p� 0.05) as analyzed by two-way ANOVA and Tukey test. GxD = Genotype x Diet interaction effect (n = 4/grp).

Complex Lipids (pos) WT LDLr-/- P-value

CD WD CD WD genotype diet G×D1

Ceremide 34:1 14700 ± 1730 19300 ± 2980 15200 ± 2020 19000 ± 3340 0.967 0.136 0.885

Ceremide 34:2 1500 ± 398 677 ± 204 1330 ± 477 1740 ± 343 0.255 0.58 0.12

Ceremide 36:1 505000 ± 64300 535000 ± 60400 516000 ± 41700 568000 ± 55900 0.704 0.479 0.852

Ceremide 38:1 47600 ± 1080 46300 ± 3680 45400 ± 2830 46800 ± 2730 0.766 0.997 0.629

Ceremide 39:1 5210 ± 886 5090 ± 575 5530 ± 364 5910 ± 851 0.435 0.862 0.728

Ceremide 40:1 10500 ± 930 14000 ± 2110 10300 ± 774 12600 ± 1710 0.571 0.076 0.699

Ceremide 40:2 1340 ± 337 2340 ± 404 1810 ± 598 2320 ± 401 0.631 0.117 0.599

Ceremide 41:1 5740 ± 677 7530 ± 1260 5880 ± 381 6810 ± 686 0.725 0.12 0.605

Ceremide 42:1 5950 ± 623 9170 ± 1660 6130 ± 532 8140 ± 1540 0.732 0.05 0.626

Ceremide 42:2A 28000 ± 2870 46800 ± 8970 29100 ± 4290 36500 ± 5880 0.458 0.048 0.356

Ceremide 42:2B 986 ± 147 1790 ± 322 1350 ± 27.2 1810 ± 294 0.506 0.122 0.616

FA 18:1 165000 ± 27000 261000 ± 45800 178000 ± 20800 222000 ± 29400 0.684 0.049 0.429

FA 20:1 20400 ± 2580ab 37800 ± 7430a 18300 ± 2110b 23000 ± 3020ab 0.076 0.025 0.169

FA 20:2 1380 ± 209 1880 ± 385 1140 ± 134 1700 ± 244 0.435 0.064 0.889

FA 20:3 5620 ± 1210 7210 ± 1060 5410 ± 915 7920 ± 996 0.816 0.074 0.668

FA 20:3 5670 ± 880 8050 ± 1210 6410 ± 765 6990 ± 830 0.87 0.139 0.358

FA 20:4 464000 ± 51300 497000 ± 50600 524000 ± 45600 563000 ± 36100 0.2 0.45 0.942

FA 20:5 1070 ± 380 1470 ± 414 1920 ± 314 2060 ± 349 0.072 0.476 0.727

FA 22:0 4350 ± 1560 3280 ± 1630 6110 ± 937 5490 ± 1690 0.205 0.581 0.88

FA 22:6 85000 ± 10200 127000 ± 18200 95400 ± 8080 110000 ± 18900 0.844 0.076 0.378

FA 24:1 3760 ± 687ab 6760 ± 1530a 2910 ± 375b 3660 ± 572ab 0.05 0.061 0.239

GlcCer 38:1 22800 ± 2140 35400 ± 6160 23600 ± 1940 25600 ± 3160 0.251 0.073 0.182

GlcCer 40:1 107000 ± 9480 162000 ± 27200 110000 ± 6680 118000 ± 13100 0.227 0.076 0.176

GlcCer 41:1 106000 ± 7200 170000 ± 31500 104000 ± 7380 116000 ± 14500 0.146 0.055 0.18

GlcCer 42:1 307000 ± 18400 520000 ± 102000 306000 ± 28500 338000 ± 52100 0.15 0.061 0.153

GlcCer 42:2 840000 ± 56000 1180000 ± 189000 813000 ± 46700 862000 ± 116000 0.166 0.122 0.237

GlcCer d14:1/20:0(2OH 7510 ± 2470ab 3540 ± 1850b 7640 ± 2100ab 13900 ± 777a 0.018 0.565 0.02

LPC 16:0 10800 ± 1310 12000 ± 1520 10900 ± 508 11800 ± 870 0.938 0.358 0.908

LPC 18:0 6700 ± 585 7710 ± 903 6460 ± 216 7170 ± 492 0.529 0.175 0.805

LPC 18:1 2800 ± 203 3610 ± 472 2930 ± 82.2 3280 ± 377 0.765 0.096 0.5

LPE 16:0 1880 ± 131 2260 ± 249 2070 ± 123 2700 ± 526 0.326 0.125 0.686

LPE 18:0 6560 ± 718 7830 ± 996 7110 ± 487 9630 ± 2160 0.371 0.16 0.63

LPE 22:6 12500 ± 3620 8770 ± 552 9090 ± 470 7230 ± 1200 0.229 0.179 0.644

PC 32:0 271000 ± 25300ab 224000 ± 14200b 318000 ± 14900a 304000 ± 15800a 0.004 0.12 0.375

PC 32:1 18700 ± 3280 17600 ± 2670 21300 ± 1470 20600 ± 624 0.246 0.695 0.93

PC 33:1 1960 ± 851 4870 ± 309 3190 ± 1000 4110 ± 1110 0.795 0.049 0.276

PC 34 0 80200 ± 3220 75300 ± 5860 84400 ± 5240 85700 ± 2420 0.124 0.697 0.498

PC 34:1 342000 ± 28600 344000 ± 29300 356000 ± 15200 364000 ± 6760 0.454 0.822 0.895

PC 34:2 8480 ± 317 6830 ± 1630 9780 ± 500 9740 ± 490 0.038 0.367 0.39

PC 36:1 156000 ± 10800 178000 ± 19400 151000 ± 7220 160000 ± 9320 0.385 0.234 0.588

PC 36:2 28200 ± 1930 31900 ± 3310 28900 ± 1200 31000 ± 840 0.941 0.181 0.696

PC 36:3 B 4260 ± 463 3880 ± 233 4890 ± 315 3850 ± 1230 0.674 0.321 0.637

PC 36:4 B 67700 ± 8200 50400 ± 3050 71000 ± 3250 69900 ± 5910 0.062 0.119 0.169

PC 38:2 6350 ± 134 9180 ± 1630 5940 ± 384 6330 ± 747 0.102 0.106 0.209

PC 38:3 2260 ± 60.3 2420 ± 194 2230 ± 106 2240 ± 66.4 0.399 0.476 0.532

(Continued)
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kidney, pancreas, skeletal muscle, and lung. However, diet and genotype related lesions were

present in heart and liver. LDLr -/- mice fed CD had foam cell plaques on the endocardial sur-

face of the aortic sinus (Fig 7, heart). These focal accumulations were composed principally of

aggregates of large mononuclear cells with cytoplasm filled with vacuoles. The aortic sinus of

LDLr -/- mice fed WD also contained foam cell plaques but these were more extensive and

foam cells were interspersed with extracellular accumulations of acicular clefts characteristic of

cholesterol deposits, increased extracellular matrix, and scattered small mononuclear inflam-

matory cells (complex atheroma). Both WT and LDLr -/- mice fed a WD had marked hepatic

lipidosis (Fig 7, liver). In WT mice, a zonal accumulation of lipid in hepatocytes progressed

from multiple lipid droplets in periacinar regions to larger single lipid accumulations in

periportal regions. LDLr -/- mice fed WD had more prominent generalized hepatocyte lipid

accumulations with randomly distributed individual necrotic hepatocytes and associated

mononuclear inflammatory cell infiltration. In addition, Kuppfer cells were markedly enlarged

due to microcystic intracytoplasmic vacuoles interpreted to represent lipid accumulation.

Table 6. (Continued)

Complex Lipids (pos) WT LDLr-/- P-value

CD WD CD WD genotype diet G×D1

PC 38:4 A 45400 ± 5790 36500 ± 2050 47300 ± 2990 48000 ± 2230 0.088 0.276 0.203

PC 38:5 A 17700 ± 2350 14200 ± 784 19200 ± 1170 18600 ± 1240 0.074 0.2 0.359

PC 40:6 B 32500 ± 4090 40700 ± 3790 27800 ± 2610 30200 ± 3430 0.051 0.158 0.417

PC 40:7 42200 ± 4110 52300 ± 7920 45000 ± 2490 48900 ± 4150 0.954 0.195 0.551

PE 34:1 75300 ± 7710 80300 ± 9310 73200 ± 4210 77500 ± 3510 0.716 0.5 0.958

PE 36:2 92800 ± 5240 120000 ± 17200 86400 ± 4960 94700 ± 10200 0.165 0.123 0.399

PE 36:4 46700 ± 6390 39300 ± 1850 48900 ± 3720 48500 ± 2120 0.175 0.339 0.387

PE 38 2 838 ± 77.7 1130 ± 270 958 ± 96.7 1180 ± 115 0.697 0.147 0.839

PE 38:4 A 24600 ± 5950 25000 ± 2410 29600 ± 2020 24500 ± 6290 0.638 0.616 0.559

PE 38:4 B 444000 ± 64100 363000 ± 29200 460000 ± 32400 482000 ± 24100 0.121 0.475 0.227

PE 38:5 84400 ± 5320 94200 ± 7980 81900 ± 3580 88700 ± 3570 0.473 0.152 0.792

PE 38:6 819000 ± 124000 728000 ± 94300 964000 ± 48500 921000 ± 30300 0.064 0.437 0.777

PE 40:4 158000 ± 28100 139000 ± 24500 157000 ± 12200 171000 ± 18500 0.498 0.904 0.465

PE 40:6 1200000 ± 70300 1110000 ± 54200 1270000 ± 46900 1250000 ± 31100 0.064 0.32 0.482

PE 44:10 413000 ± 52500 468000 ± 74700 392000 ± 35200 459000 ± 36500 0.773 0.265 0.908

PG 32:0 12200 ± 1850 11800 ± 1430 10300 ± 552 11400 ± 559 0.357 0.81 0.549

PG 34:1 54800 ± 1980 57700 ± 5120 49800 ± 5130 54100 ± 4900 0.355 0.437 0.89

PI 36:4 3480 ± 1550 3200 ± 1400 6010 ± 68.3 6030 ± 222 0.026 0.904 0.886

PI 38:5 3620 ± 264 2960 ± 214 3510 ± 288 3670 ± 173 0.236 0.327 0.114

PS 36:2 43700 ± 1640 51100 ± 5040 39600 ± 2610 44300 ± 3130 0.128 0.096 0.691

SM d34:1 9590 ± 194 11200 ± 1290 8620 ± 477 10200 ± 555 0.212 0.056 0.992

SM d36:1 80000 ± 3370 71000 ± 7090 67000 ± 4770 75500 ± 3940 0.413 0.966 0.106

SM d36:2 16900 ± 3770 12200 ± 2600 15500 ± 303 18700 ± 2320 0.34 0.764 0.147

SM d38:1 8560 ± 291 10500 ± 872 7750 ± 614 8480 ± 807 0.059 0.073 0.387

SM d40:1 24500 ± 7000 31100 ± 9540 25600 ± 6590 17000 ± 7480 0.415 0.898 0.345

SM d41:1 11500 ± 3030 20200 ± 3580 13400 ± 780 13600 ± 3910 0.459 0.175 0.186

SM d42:2A 40300 ± 2120 58400 ± 10800 37100 ± 2320 43300 ± 6240 0.18 0.083 0.374

SM d42:3 856 ± 221 1440 ± 372 868 ± 254 1150 ± 260 0.746 0.164 0.613

SM d44:2 1420 ± 123 1510 ± 352 1130 ± 262 1410 ± 206 0.436 0.479 0.708

https://doi.org/10.1371/journal.pone.0191909.t006
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Discussion

While there is significant epidemiologic evidence that a diet high in saturated fat and simple

carbohydrates resulting in elevated plasma lipids and insulin resistance puts individuals at a

greater risk for dementia and cognitive impairment, the cellular metabolic reasons for this are

not fully understood. This study was conceived to better understand the mechanisms through

which a western diet (WD—moderately high in saturated fat, sucrose, and cholesterol)

induced cognitive impairment by assessing the brain molecular, cellular, biochemical, and

physiological changes that occur. Our studies demonstrate that WD alters brain metabolism,

Fig 6. Shift in brain free oxylipins, endocannabinoids and polyunsaturated fatty acids (PUFA) to a proinflammatory profile by diet. Partial least squares analysis

(A) discriminate between C57BL/6 (WT) or LDLr-/ mice, fed a control (CD) or western (WD) diet due to differences in brain metabolite pattern seen in associated

loading plot (B). Hierarchical cluster analysis categorized measured variables into clusters and ANOVA analysis tested for effect of the diet, genotype, and the diet x

genotype interaction. Clusters identified as having either a significant change are shown (C). Loading plot: variables with VIP scores>1 are shown. The variables are

colored according to their clusters affiliations.

https://doi.org/10.1371/journal.pone.0191909.g006
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activates microvessels and microglia, and increases BBB transport, all of which may be linked

to the observed moderate altered cognitive function (Fig 8 and Tables 8 and 9).

Previous studies have demonstrated that either a WD [29] and/or gene knockout-induced

hyperlipidemia [9, 58] can result in cognitive impairment in mice while others have demon-

strated a link of cognitive impairment to neuroinflammation or metabolic shifts [59, 60]. We

extended these findings by comprehensively evaluating the consequences of WD and LDLr -/-

genotype on behavior as an indicator of cognitive impairment. Both the MWM and the Y-

maze alternation tests for cognition were sensitive to the effects of the WD with group sizes as

small as 8 mice/group. While % of alternation triplets was decreased in WD-fed mice (an indi-

cator of reduced cognitive function), these same animals showed an increase in % time in the

platform quadrant on the probe trial for the MWM (indicating improved function). Both tests

assess short-term spatial memory, but the MWM additionally evaluates day-to-day learning,

which may contribute to the differences seen here. The Y-maze and MWM results were sensi-

tive to WD, but they did not reflect an effect of LDLr-/- genotype on cognitive endpoints as

seen by other groups [9]. Therefore, a second study was conducted where a different spatial

learning and memory problem was presented on each of nine successive days of testing and

number of errors on the last trial of each problem was compared across days. The RAWM

detected an impairment in ability of LDLr -/- mice to solve a complex spatial problem with

repeated exposure to different problems. Our studies thus indicate that Y-maze alternation

can provide a rapid, inexpensive assessment of the cognitive effects of a WD. However, to

avoid false negative findings in screening for cognitive deficits seen with LDLr-/- mutation

more complex cognitive testing of the RAWM, are most sensitive and appropriate. These mod-

est and potentially contradictory findings are not unexpected, as even genetic mouse models

of Alzheimer’s (Tg2576) show cognitive impairments by T maze (modification of Y-maze)

most consistently, followed by MWM and RAWM, but there is great variability between stud-

ies [61].

Even though under normal conditions the blood-brain barrier (BBB) is highly regulated,

metabolic stresses such as hyperlipidemia can cause neurovascular unit dysfunction and

increase BBB permeability [62]. Studies by our lab have demonstrated that a bolus infusion of

TGRL lipolysis products, similar to an increase that would be found in the postprandial state,

can lead to a transient increase in the BBB Gd-DTPA transfer coefficient (Ki) [17, 63]. Here Ki

was increased in animals fed a WD, while cerebral blood flow, determined by perfusion

weighted imaging, was essentially normal. Interestingly, despite higher circulating lipids on a

CD, LDLr -/- mice did not have elevated baseline Ki and no additive effect of a WD beyond

that of WT. Our findings are consistent with a hypothesis that chronic consumption of a WD

Table 7. Non-fasting physiological parameters at 20 weeks. Data are represented as mean ± SEM for wild type (WT) LDLr -/- on either a control (CD) or western

(WD) diet, n = 20 for body weight and 4 for all other parameters. a-c Means in a row without a common superscript letter differ (P< 0.05) as analyzed by two-way

ANOVA and the TUKEY test. G × D1 = Genotype × Diet interaction effect. n = 20 for body weight and 4 for all other parameters.

Physiological Parameter WT LDLr -/- P-value

CD WD CD WD Genotype Diet G×D1

Body mass(g) 30.9 ± 0.45b 39.2 ± 0.809a 30.8 ± 0.538b 33 ± 0.605b <0.001 <0.001 <0.001

Glucose (pg/dl) 286 ± 34 300 ± 15 303 ± 10.2 310 ± 15 0.533 0.617 0.879

Insulin (pg/ml) 620 ± 77.3 5320 ± 2420 718 ± 176 1060 ± 291 0.115 0.062 0.1

TG (mg/dl) 164 ± 14.1b 56.7 ± 11.7b 393 ± 69.6b 1300 ± 161a <0.001 0.001 <0.001

TC (mg/dl) 153 ± 8.25c 273 ± 7.72c 567 ± 28.2b 2090 ± 75.8a <0.001 <0.001 <0.001

HDL (mg/dl) 122 ± 8.31b 206 ± 7b 211 ± 8.91b 476 ± 45.8a <0.001 <0.001 0.003

LDL (mg/dl) 31.6 ± 2.76c 64.3 ± 3.17c 489 ± 86.7b 1300 ± 46.4a <0.001 <0.001 <0.001

https://doi.org/10.1371/journal.pone.0191909.t007
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increases microvascular leak, assuming no concurrent increase in capillary surface area,

increases BBB permeability. Perhaps this is related to neuroinflammation, activation of endo-

thelial apoptotic pathways [15, 64], or increased transcytosis. Regardless, an increase in BBB

leak would likely increase movement of blood solutes including lipids and lipoproteins into

the brain interstitial space which may alter neurovascular metabolism and inflammation.

High-fat diet induced obesity in C57BL/6 mice not only impaired hippocampus-dependent

memory and reduced long-term potentiation (as determined by Y-maze and novel object

Fig 7. Cardiac and liver histopathology. In heart, CD (A) and WD-fed (B) wild type mice had normal aortic sinus

structures, but the aortic sinus of LDLr -/- mice on CD had subendothelial foam cell plaques and medial

accumulations of extracellular cholesterol (C), both were more extensive in LDLr -/- mice fed a WD (D). In liver,

compared with CD fed (A), WT mice given a WD (B) had marked microvesicular and macrovesicular hepatic lipidosis

that was most marked in the periacinar regions. CD fed LDLr -/-mice (C) had more hepatocellular glycogen than WT

mice but were otherwise histologically normal. LDLr -/- mice given a WD (D) had generalized macrovesicular

lipidosis, enlarged Kupffer cells with foamy cytoplasm (Arrowheads), periportal mononuclear inflammation, and

individual hepatocyte necrosis accompanied by mixed inflammatory cell infiltrates (Arrow). Scale bar: heart = 100μM

and liver = 50μM.

https://doi.org/10.1371/journal.pone.0191909.g007
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recognition) but has also shown increased microglia activation and loss of synapses [19, 65,

66]. Our immunohistochemical analysis demonstrates increased relative surface area of IBA1

in western diet fed WT mice where most immunopositive cells had multiple prominent radiat-

ing elongate cytoplasmic processes typical of microglia. Since upregulation of IBA1is a marker

of microglial activation [67–69], our results suggest neuroinflammation is increased by WD in

WT but not LDLr -/- mice. However, it should be noted that our approach does not discrimi-

nate between increased numbers of microglial cells vs. upregulation of IBA1 in greater propor-

tions of microglial processes.

Upregulation of factor VIII immunostaining in WD-fed LDLr -/- mice was an unexpected

finding as our initial hypothesis was that a WD would decrease the density of microvessels in

brain as is seen in individuals with Alzheimer’s disease [70, 71]. However, as with IBA1 stain-

ing, our approach does not distinguish between increased densities in pre-existing endothelial

cells versus increased endothelial cell numbers. Interestingly other studies associated elevated

circulating plasma factor VIII as a risk factor for vascular dementia [72] and was found to be

significantly elevated in plasma of patients with other brain injury models including ischemic

stroke [73]. Further liver disease is associated with elevated plasma factor VIII levels which is

thought to be due to production by sinusoidal endothelial cells [74]. It is possible that the

increase in brain microvascular factor VIII may be due to an increase in endocytosis by

BBB endothelial cells. Whether microvascular endothelial cell activation as indicated by an

increased expression of factor VIII relate to hypoxia related angiogenesis or endocytosis of cir-

culating factor VIII remains to be determined as does any correlation of these variables with

changes in BBB transfer coefficient.

CD16, CD32 & CD86 versus CD 206 & arginase expression have previously been used as

markers of differentiation between M1 vs M2 microglia and microglia activation [56, 57]. The

downregulation of CD86 with an increase in PTGS2 and IBA1 expression in WD fed mice

may indicate a shift from M1- to M2- like phenotype as described by Abutbul et al. [75]. How-

ever, LDLr -/- showed a decrease in CD32 and CD206 (M1 and M2, respectively) and a

Fig 8. Model of physiological pathway in which diet or genotype induced hyperlipidemia alters cognitive

function.

https://doi.org/10.1371/journal.pone.0191909.g008
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Table 8. Functional changes by western diet (WD) or in a genetic (G) model of hyperlipidemia.

Parameter Overall Summary

Cognitive function

Y-maze #WD Decrease % spontaneous alterations in WD

MWM "WD Increase % time in platform quadrant in WD in probe trial

RAWM # G Increase in the number of Trial 4 errors in LDLr -/-

BBB transport

Ki "WD Increased in WD

IHC

Factor VIII " G x WD Elevated in LDLr -/- WD (hippocampus & thalamus)

IBA1 " G x WD Elevated in WT WD (cortex & hippocampus)

Gene Expression (whole brain RT-PCR)

ATF3, IL-6, CD32 &

CD206

#G Reduced in LDLr -/-

CD86 #WD Reduced with WD

Brain Metabolites (1H-MRS Spec)

glutamine # G x WD Reduced in LDLr -/- WD

lip13a+13b " G x WD Elevated in LDLr -/- WD

Brain glucose utilization

18FDG-PET " G Increased Standardized Uptake Value in LDLr -/-

Brain Metabolites (GC/MS & LC/MS)

C14 "WD Elevated in WD

C16:1 "WD Elevated in WD

Cholesterol " G x WD Elevated in WT WD and LDLr -/- WD

TCA cycle

intermediates

"WD Elevated BHB, GABA, Aspartate, 2-hydroxyguterate, Glutamine,

Lactate in WD

Acyl-CoA’s "# G x WD Acetyl-CoA elevated in LDLr -/- CD, Acetyl- and Butyryl-CoA

reduced in LDLr -/- WD

free 18 C PUFA’s #WD Reduced in WD

HETEs & leukotriene "WD Elevated in WD

Physiological

Weight "WD, G, and G x

WD

Increased with WD, decrease with LDLr -/-

Insulin "WD Increased with WD

TG "WD, G, and G x

WD

Increased in LDLr -/- and WD fed LDLr -/-, but decreased in WD

fed WT

TC "WD, G, and G x

WD

Increased with WD or LDLr -/-, highest in LDLr -/- WD

HDL "WD & G Increased with WD or LDLr -/-, highest in LDLr -/- WD

LDL " G and G x WD Increased with WD or LDLr -/-, highest in LDLr -/- WD

https://doi.org/10.1371/journal.pone.0191909.t008

Table 9. Cardiac and liver histopathology with western diet and/or LDLr -/-.

Histology WT CD WT WD LDLr -/- CD LDLr-/- WD Summary

Aortic sinus + ++ foam cell & plaque formation

Liver lipidosis glycogen lipidosis

enlarged, foamy Kupffer cells

inflammation/necrosis

https://doi.org/10.1371/journal.pone.0191909.t009
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decrease in IL-6 and ATF3, which indicate reduced inflammation and cell stress [64, 76, 77].

Whether these shifts in gene expression correlate to protein abundance or change in activity

with a WD-fed mouse or LDLr -/- mice remains to be determined. With the observed cogni-

tive impairment, and increase in BBB transport and neuroinflammation, we leveraged the col-

lective and comprehensive expertise at our three universities to assess how a WD in LDLr-/-

and WT mice shifts brain glucose uptake and metabolites.

A previous study by Hu et al showed changes in behavior were correlated to a decrease in

brain glucose uptake in the thalamus and striatum of high-fat fed rodents [78]. Yet, our study

showed an increase in 18FDG uptake in LDLr -/- mice. These disparities may in part be due to

differences in the diet (higher % cholesterol and different source of fat), the rodent species (rat

vs mouse), length of time spent on the diet (9 vs 12 weeks), or a difference in fasting vs fed

state. Although observing perturbations in neurological activity in defined portions of the

brain would be beneficial, current imaging technology has limited resolution (~1mm) and

measurements in small regions are difficult.

While metabolic analysis of other cognitively impaired mouse models has shown elevation

in lactate and glutamate [79, 80], we aimed to determine if hyperlipidemia alters metabolic

pathways in vivo using 1H-MRS. Our 1H-MRS data indicated a significant increase in lactate

levels with LDLr -/-, which has been observed previously in other cognitive decline models

[79]. We also observed a trend for glutamine content to decrease.

To further assess metabolite disruption, we utilized GC/MS and LC/MS/MS to examine

whether a broader range of pathways including: fatty acid metabolism, TCA cycle, and β-oxi-

dation may contribute to the progression of cognitive decline. As anticipated, we detected a

significant increase in C14:0 and C16:1 free fatty acids with diet, but the LDLr -/- genotype

appeared to blunt the effects of diet on brain fatty acid and cholesterol profiles. It is feasible

that genetic abolition of the LDL receptor (known as a contributing transporter of cargo into

the brain [81]) could reduce transport of fatty acids into the brain despite elevated plasma lipid

levels. Further evaluation of TCA cycle intermediates found an elevation in metabolic profile

of aspartate, 2-hydroxygluterate, glutamine and lactate that appears to be predominately diet

induced. This is interesting given that lactate, aspartate, and glutamate are increased in AD

and db/db mouse models of cognitive decline [79, 80, 82] indicating that their elevation by

WD may also be associated with the cognitive decline. While confounding, the difference in

observed glutamate, lactate, and lipid moieties in vivo versus ex vivo may be due to methodol-

ogy (GC/MS vs 1H-MRS), brain region (whole vs cortical focus), anesthesia interval effect

(minutes vs hour), or genetic model (LDLr-/- vs db/db), yet, perturbations in lipid and meta-

bolic intermediates are still present. Several studies have indicated that the type and depth of

anesthesia can significantly modulate brain lactate and glutamine [83–85]. Additionally, the

significant increase in GABA concentrations may suggest that GABA synthesis is induced by

the WD in the LDLr-/- mutant mouse. Elevated cerebral spinal fluid levels of GABA have been

linked to various neurological disorders including dementias, cerebellar cortical atrophy, and

multiple sclerosis identifying this as a potential link between brain metabolic dysregulation

and cognitive impairment [86].

WD in LDLr -/- mice showed decreased acyl-CoA species associated with fatty acid oxida-

tion without altering the total acyl-CoA pool. These results suggest that there is a mismatch in

fatty acid oxidation with diet or LDLr mutation suggestive of an inflammatory response due to

oxidative stress-induced by altered lipid metabolism. These studies are consistent with previ-

ous studies that demonstrate hypometabolism precedes the cognitive decline of AD, where a

decline in brain glucose metabolism and mitochondrial function can appear decades prior to

diagnosis of AD [87]. Our studies show that LDLr may play a role in oxidative metabolism of

lipids, as revealed by the changes in the short and medium chain acyl-CoA’s.
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While we hypothesize that WD directly alters astrocyte-neuron metabolic balance, resulting

in impaired cognitive function, elevated brain lactate and glutamine has also been associated

with acute liver disease [88]. Hepatic encephalopathy was accompanied by elevated aspartate,

glutamine, glucose, and lactate throughout the brain with increasing neuronal injury [89, 90].

While LDLr-/- mice had more severe liver disease than WT, it seems unlikely to have resulted

in hepatic failure and it remains uncertain whether this would be sufficient to alter brain

metabolism. Furthermore, the WD-fed LDLr -/- mouse model has predominately been used as

a model for atherosclerosis and only more recently cognitive impairment [9, 91]. Regardless,

these perturbations in systemic metabolism may lead to a derangement in neurotransmission

and result in cognitive defects seen in these mouse models.

Interestingly, the altered cognitive function we see in the LDLr-/- are more modest than

those seen in previous studies, which may be related in part to elevated phosphatidylcholine

(PC) levels in the LDLr-/- mouse brain. The Cermenati et al. study showed that STZ diabetic

mice had reduced myelin PC and may be linked to the neurodegenerative events in diabetes

[92]. Further, we see an elevation in ceramide (d18:1/24:1), previously shown to have roles in

arteriosclerosis, obesity, diabetes, and inflammation. In addition, long-chain sphingomyelins,

derived from ceramides, activate macrophages inducing an inflammatory response [93]. These

shifts in ceramides have been shown to have a role in astrocyte cell death and mediated cogni-

tive impairment [94, 95]. However, the spatial distribution of lipid species is known to support

the structural and metabolic functions of the central nervous system [96] and it remains to be

determined if the spatial distribution of these metabolites are altered with WD.

Our oxylipins and endocannabinoids analysis demonstrated an increase in the 5-lipoxygen-

ase (5-LOX) related metabolites including 5-HETE and Leukotriene LTB4. Elevated arachi-

donic acid (AA) and its 5-LOX products LTB4, LTD4, and 5-HETE have previously been

shown to trigger apoptosis and suppress NFκB cell survival and are linked to hyperlipidemic

inflammation [97, 98]. We also saw a decrease in anti-inflammatory 18:3n3 and 18:2n6 with a

WD [99, 100]. However, this decrease may be due to a shift in dietary PUFA. The CD fat

source is soybean oil, which provides 9.14g/kg of PUFAs while the WD, with milk fat provides

7.35g/kg (a decrease in n-3 PUFAS from 1.21 to 1.05 g/kg and n-6 PUFA’s from 7.93 to 6.3).

Interestingly, in LDLr -/- mice, we saw an increase in the long chain (20 and 22 carbon) neuro-

protective PUFAs [101], and a decrease in 9-Hydroxy-10,12-octadecadienoic acid (9-HODE),

a pro-inflammatory mediator [102] and 13-HODE, shown to regulate platelet vessel wall adhe-

sion [103, 104], and commonly associated with a protective effect. This may be due to a shift in

the types or quantities of lipids normally delivered across the BBB [81].

It is of interest that while the LDLr-/- animals had the highest circulating lipid levels (cho-

lesterol, triglycerides, HDL, and LDL), yet they did not show increased BBB transport, neu-

roinflammation, or cognitive impairment when compared to WT mice on WD. Having a

constantly increased lipid level in the LDLr-/- mice may have a preconditioning/protective

effect against the WD, or perhaps the temporal increase in circulating lipid levels associated

with meals triggers metabolic and inflammatory pathways. Additionally, other undefined

compensatory mechanism in the LDL-/- mice may protect the brain from elevated circulating

lipids found in LDLr -/- mice. This indicates an increased serum lipid level alone may be insuf-

ficient to elicit these changes and that other factors may play a role. In contrast, studies have

shown that high carbohydrate diets are sufficient to induce obesity, metabolic inflexibility, and

inflammation [105, 106]. Further, increased dietary sucrose is sufficient to alter cognition

[107–109] and altering the source of dietary carbohydrates (sucrose or cornstarch) has been

shown to impact life span in rodent models [110]. While not significant, WT animals on a WD

in our study, have the highest nominal insulin level, suggestive of a shift toward insulin resis-

tance, a contributor to inflammation and cognitive impairment [111].
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While we have focused on the metabolic, inflammatory and permeability changes associ-

ated with diet-induced altered cognitive function, others have hinted at the influence of reac-

tive oxygen species (ROS) generated by a deregulated metabolism on cognitive decline. For

instance, NADPH oxidase-derived production of ROS was shown to be involved in learning

and memory impairments in 16-month-old female rats [112], macromolecular ROS damages

neurons from aged WT and 3xTg-AD mice [113], and late stage AD patients show significant

oxidative DNA damage [114]. Furthermore, in an older population, a Mediterranean diet rich

in antioxidants is associated with improved cognitive function [115]. Future studies evaluating

any shift in ROS and the antioxidant potential due to a Mediterranean diet remain to be evalu-

ated as well as their influence on cognitive impairment [114].

In summary, we found that a WD shifts brain metabolism to a more stressed state profile,

activates the inflammatory and vascular system in the brain, and increases BBB transport; all

of which likely play a role in the observed alteration in cognitive function seen in WT and

LDLr-/- mice. By better understanding how hyperlipidemia and insulin resistance influences

neurovascular dysregulation we can better understand neurovascular inflammation-induced

cognitive impairments and identify novel targets for the treatment of these debilitating

disorders.
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