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Abstract

Understanding how environmental variables influence the distribution and density of organ-

isms over relatively long temporal scales is a central question in ecology given increased cli-

matic variability (e.g., precipitation, ENSO events). The primary goal of our study was to

evaluate long-term (15y time span) patterns of climate, as well as environmental parameters

in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic

macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrich-

ment experiment on macroinvertebrate assemblages against the backdrop of this long-term

study. Climate, environmental variables and macroinvertebrate samples were measured

monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in

climatic and environmental variables showed high variability over time, without clear inter-

annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with

increasing discharge and was positively related to the number of days since the last high dis-

charge event. Findings show that fluctuations in stream physicochemistry and macroinver-

tebrate assemblage structure are ultimately the result of large-scale climatic phenomena,

such as ENSO events, while the 8y P-enrichment did not appear to affect macroinverte-

brates. Our study demonstrates that Neotropical lowland streams are highly dynamic and

not as stable as is commonly presumed, with high intra- and inter-annual variability in envi-

ronmental parameters that change the structure and composition of freshwater macroinver-

tebrate assemblages.

Introduction

Global climate change is causing organisms to experience new variability in their environ-

ments. Freshwater ecosystems are likely to undergo substantial changes, as they closely reflect
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changes in atmospheric thermal regimes and global hydrological cycles [1, 2]. Long-term stud-

ies are key to understanding linkages between stream macroinvertebrates and changes intro-

duced by climatic events (e.g., droughts: [3, 4]), long-term climate cycles (e.g., El Niño: [5, 6]),

projected increases in temperature and precipitation variability [7], and impacts resulting

from changes in water quality, and physical habitat [8, 9]. In the context of biodiversity

research, a long-term dataset is defined as information on the variety and abundance of species

(or other taxonomic units) at one or more locations over a considerable period of time [10].

For streams, it can be delimited as at least 5 years, which is the minimum time needed to inter-

pret a meaningful representative range of conditions, such as climate-driven wet and dry cycles

or cool and warm years [11]. However, long-term ecological data are scarce [11]. This is a seri-

ous challenge in Neotropical regions, where there is only one published long-term ecological

study of 15y of duration, linking extreme weather events (e.g., hurricanes and drought), and

their effects on decapod populations [12]. Here we examine another long-term (15y) data set

to investigate the association between temporal variations in climate (i.e., precipitation and

ENSO events) and stream environmental factors, and how they affect macroinvertebrate struc-

ture and composition in two lowland streams in Costa Rica.

Tropical streams offer a unique opportunity to understand the effects of climate change, as

they experience reduced temporal variation in some environmental characteristics relative to

their temperate counterparts. For example, temperature varies less throughout the year, with

seasonal changes of only a few degrees, resulting in a more stable metabolic potential relative

to high latitude temperate streams [13]. Consequently, Hynes [14] and Jackson and Sweeney

[15] suggest that temperature plays a minor role in tropical benthic communities. Other

environmental drivers such as precipitation may have higher variability in tropical versus tem-

perate streams. Precipitation is more abundant in many parts of the tropics than at higher lati-

tudes, and can generate strong aseasonal flow regimes [13] that affect aquatic communities

(e.g., [16, 17]). Lowland Neotropical streams draining volcanic landscapes can exhibit natural

variability in nutrient concentrations (e.g., phosphorus) due to inputs of geothermally-modi-

fied groundwater [18]. Nutrients can enhance basal resources (i.e., algae and microbes) that

indirectly benefit primary consumers [13]. Neotropical studies along natural nutrient gradi-

ents have demonstrated that nutrients play important roles in ecosystem processes, such as leaf

litter breakdown [19, 20]. Also, high nutrient concentrations enhance detritus decay rates,

microbial activity, and chironomid biomass turnover [21].

Large-scale climate phenomena, such as El Niño Southern Oscillation (ENSO) events, exert

important controls over stream ecosystems. A period of ENSO is characterized by complex

weather patterns, such as changing wind direction and velocity, temperature and the timing

and amount of precipitation over cycles that occur roughly every 3–7 years [22]. Previous stud-

ies have found a relationship between the effects of physicochemical variables and large-scale

climate phenomena on aquatic organisms. For example, reproductive success of several fish

species decreased due to a reduction in the availability of nesting habitat in several streams in

Surinam during a severe drought associated with El Niño 1998 [23]. Moreover, a decrease in

the abundance and taxonomic richness of aquatic macroinvertebrates due to high water flow

was observed during La Niña 1999 in streams draining dry forest in Colombia [24]. Climate

change is altering the natural patterns of large-scale climatic phenomena, such as ENSO, caus-

ing their range and magnitude to be less predictable [25]. Freshwater ecosystems are vulnera-

ble to climate change and aquatic fauna could be seriously affected due to the reduction in the

availability of critical habitats [26, 27, 28]. However, information on the effects of climate

change on aquatic ecosystems is limited [28, 29] and understanding how climate change influ-

ences aquatic macroinvertebrate assemblages is a challenge and priority for ecologists. To

meet this challenge, Durance and Ormerod [30, 31] suggest gathering ecological data
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temporally extensive enough to determine the interaction between climate change, extreme

events and other environmental pressures on streams.

The main objectives of this study were to (i) describe long-term fluctuations in climate and

environmental variables, (ii) quantify temporal variation of stream macroinvertebrate assem-

blages, and (iii) determine which climate and environmental variables most closely reflect

observed temporal variations in macroinvertebrates. In addition, one of our study streams was

subject to long-term (8y) phosphorus (P) enrichment and we predicted that this would have a

positive effect on macroinvertebrate assemblages, as it enhances microbial activity in streams.

Material and methods

Study system

La Selva Biological Station (LSBS) (10˚ 26’N, 84˚ 01’W) is located on the Caribbean Slope of

Costa Rica. LSBS, combined with the Braulio Carrillo National Park, form a biological corridor

that covers an elevational range of approximately 2900 m asl to 35 m asl. LSBS has 1563 ha

of mature (73% of the reserve) and secondary forest in the wet forest life zone [32], with an

annual precipitation range between 4000 to 6000 mm and a bimodal precipitation distribution,

with peaks of more than 400mm month−1 occurring both from June to July and November to

December. The period with least precipitation is from February to April, with March as the

driest month [33]. LSBS is drained by a complex network of streams that flow through the for-

est and are tributaries of two main rivers: Rı́o Puerto Viejo and Rı́o Sarapiquı́. Stream water

temperature is relatively constant throughout the year and ranges from 24 to 27˚C [33].

Streams at LSBS exhibit a wide range of solute concentrations due to natural inputs of sol-

ute-rich groundwater, which originates at high elevations where volatile gases from a deep

magma source are absorbed into groundwater [34, 35]. This interbasin groundwater flow is

cold and enters lowland streams enriched with various chemical constituents, including: P,

Ca2+, Fe2+, Mg2+, Na+, Si, Cl− and SO4
2−. Geothermally-modified streams are common in vol-

canically active areas throughout Central America [18]. Seasonal changes in water pH have

been observed in some of the streams in LSBS [36]. Previous research described a pH decline

during the wet season; in some cases dropping ~3 units between seasons. The magnitude of

seasonal pH change is positively related to total precipitation during both the previous dry and

wet season. Streams receiving inputs of solute-rich groundwater are better buffered against

changes in pH, with solutes such as HCO3
- acting as a pH buffer [37].

Our study was conducted in Carapa-60 and Saltito-100, two small streams that flow into

the Rı́o Sarapiquı́. Numbers in the stream name represent the approximate elevation in meters

above sea level. We selected a 100 m reach of each stream to sample the different study param-

eters, so the stream is our sampling unit. Both streams drain mature forest covered by dense

riparian vegetation, which provides abundant litter and woody debris to streams. Stream chan-

nels are about 1 m wide and 0.25 m deep. Dominant benthic substrata are detritus and sedi-

ments (i.e., silt and clay). Stream banks and margins are covered with leaf litter and are

partially inundated during high flows, mainly during the wet season.

Climate data

We used precipitation data from the meteorological station at LSBS (available at (http://www.

ots.ac.cr/meteoro/). To examine relationships between macroinvertebrate assemblages at LSBS

and global weather patterns, we used the Southern Oscillation Index (here after SOI), which is

a measure of the standardized difference in sea level pressure between Darwin (Australia) and

Tahiti. The SOI is used as the El Niño Southern Oscillation (ENSO) phase indicator. Thus, the

cold La Niña phase of the SOI is characterized by a positive index, whereas the warm El Niño
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phase is characterized by a negative index. Monthly values of SOI are publicly available

through the National Oceanographic and Atmospheric Administration (NOAA; http://www.

cpc.ncep.noaa.gov/data/indices/soi).

We related precipitation and discharge using Spearman Rank Correlation (rs) to determine

the precipitation necessary to cause a storm and calculate days elapsed since the last storm

(DSLS, Carapa-60: rs = 0.49, p<0.001, Saltito-100: rs = 0.59, p<0.001). DSLS has been used as a

powerful explanatory variable influencing aquatic macroinvertebrate structure in Neotropical

streams [38]. A rain event of>15 mm in 24 h was considered a storm because it doubles dis-

charge at the study streams. This increase of discharge was taken as a disturbance, as headwater

streams are easily influenced by small scale differences in local hydrological conditions (e.g.,

[39, 40, 41]).

Physicochemical variables

Physicochemical variables were measured parallel with macroinvertebrate sampling: from

1997 to 2004 the macroinvertebrate sampling was monthly, while from 2005 to 2011 it was

quarterly. Water pH, temperature, and conductivity were determined in the field using porta-

ble multi-probe meters (Hanna Instruments, Woonsocket, RI, USA). Nutrient concentrations

were measured by collecting two filtered (0.45-μm Millipore filters) water samples in each

stream using new 125 mL bottles. Samples were kept frozen until analyzed at the University of

Georgia. NO3
− N, NH4

+ N, and P (as soluble reactive P: SRP) concentrations were measured

using continuous-flow colorimetry and an Alpkem RFA 300 colorimetric analyzer. The Cd

reduction, phenate, and ascorbic acid methods were used for NO3
− N, NH4

+ N, and SRP,

respectively [42]. Flow was measured with a Marsh–McBirney current meter, and discharge

was estimated using the velocity–area method [43]. We did not measure flow during extreme

storm conditions, due to difficulties in accessing the streams during storms, so the values

obtained represent discharge during non-extreme storms.

The experimental P enrichment was conducted over 8 y in Carapa-60; P-addition ran from

August 1998 to February 2006 [44]. Phosphoric acid (H3PO4) was added continuously using a

Mariotte bottle to increase P concentrations from natural background SRP levels of ~5 to

300 μg L−1 SRP, a mean concentration for streams that receive an input of interbasin ground-

water inputs at LSBS [34]. SRP was analyzed using the molybdenum blue method [45].

Samples were collected biweekly 10 m downstream of the injection. The whole-stream P

enrichment is described in more detail in Ramı́rez and Pringle [21] and Small et al. [44, 46].

Contrary to our study, in which the complete macroinvertebrate assemblage was used as a

response variable to the P addition, previous studies focused on the effect of P enrichment on

the production of a dominant primary consumer [21] and on the retention of P in the sedi-

ments once the P addition was concluded [44, 46].

Macroinvertebrate sampling

Aquatic macroinvertebrate sampling was conducted monthly from 1997 to 2004 and quarterly

from 2005 to 2011. Three core samples (0.006 m2 each) were collected per sampling date in

each of three different runs along the 100 m study reach where leaf litter was the dominant

benthic substrata. These three samples were considered as replicates for each study stream and

averaged to represent taxonomic richness and macroinvertebrate abundance per sampling

date. The corer was forced into the substrate, cutting through debris, to a depth of ~10 cm.

Samples were preserved in formalin (~5%), and macroinvertebrates were later removed from

organic material under a dissecting microscope at 40X. Benthic organic matter (BOM) was
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dried at 70˚C for 24 h to determine dry mass and then ashed at 500˚C for 1 h to determine

ash-free dry mass (AFDM).

Macroinvertebrate samples were identified to the lowest taxonomic level possible (mostly

genus, except in Chironomidae, which were identified to subfamily in most cases) using

Springer et al. [47]. Biomass was estimated by measuring the length of each individual to the

nearest 0.5 mm and applying length–mass relationships [48, more details in S1 File] derived

from insects of similar morphology and typically from the same family. Macroinvertebrate

abundance and biomass were expressed as ind/m2 and g AFDM/m2, respectively. We obtained

appropriate collecting permits from the National System of Conservation Areas of Costa Rica.

Permits are renewed annual and our latest has the number No: 035-2017-ACC-PI.

Statistical analyses

We tested for the presence of linear trends in environmental factors and macroinvertebrate

assemblages with a Mann-Kendall nonparametric trend analysis (M-K), using the MannKen-
dall function of the Kendall package [49] for R statistical software [50]. The Mann-Kendall

analysis works well on small and large data sets; it is not affected by outliers and can be used

with irregularly spaced data [51]. Sen’s slope was calculated to determine the magnitude of the

trends on the data assessed from Mann-Kendall analysis [52], using the mannKen function of

the wq package [53] for R. Sen’s slope calculates the median of all differences between succes-

sive data values to determine the changes per unit time [54].

The relationship between environmental factors influencing macroinvertebrates (i.e., nutri-

ents: SRP, NO3−, NH4
+; physicochemistry: pH, conductivity, temperature; hydrological: dis-

charge, DSLS; climatological: mean monthly precipitation, precipitation the day before

sampling, SOI; and benthic organic matter) was analyzed with a linear regression model

framework, using the lm function of the AICcmodavg package [55] for R. Variables considered

within each model were previously selected with the Artificial Contrast Ensemble (ACE) fea-

ture selection method [56], using the randomForest package [57]. ACE is a non-linear robust

selection method that uses all variables to generate a model and then ranks variables in order

of importance. ACE uses these rankings to remove irrelevant predictors (i.e., variables), using

random forest classifiers and hypothesis tests that provide p-values to assess the statistical sig-

nificance of an individual predictor.

Multicollinearity among environmental variables within each linear model was assessed

with Variance Inflation Factors (VIF), which were calculated with the vif function in the

car package [58] in R. VIF measures how much the variance of the estimated regression

coefficients are increased relative to when the predictor variables are not linearly related. Col-

linearity was determined not to be a problem since all VIF values were less than 10 for all inde-

pendent variables [59, 60]. Additionally, we used Spearman correlation to detect eventual

collinearity for the full set of explanatory variables. All our variables (i.e., physicochemical and

climate) were not strongly collinear (|rs|<0.60, S1 and S2 Tables). ACE and VIF results are

shown in the S3 Table. Violation of standard statistical assumptions was checked by visually

examining residuals and Q-Q plots for all reported models.

Model selection approach based on Akaike’s Information Criteria corrected for small sam-

ple sizes (AICc; [61]) was used to rank models in terms of their capacity to explain the relation-

ship among environmental variables and macroinvertebrate structure and composition. The

single best supported model was selected on the basis of the AIC weight, calculated to evaluate

the relative likelihood of a model [62]. Models that were considered poor as compared to the

best one, were ranked using Delta AIC (best fit model Delta AIC = 0); Delta AIC quantifies

how strongly models compete [61]. When multiple models were supported (Delta AIC <2),
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we used model averaging to increase precision of inference [61, 55]. AIC has the advantage of

comparing several competing models and selecting the most parsimonious model that still

provides an adequate fit to the data. All the data was first standardized ([x-μ]/σ) to reduce vari-

ability due to differences in variable units, while keeping the ratio (i.e., variation) within each

variable. AIC was run with R.

We used non-metric multidimensional scaling (nMDS) based on Bray-Curtis coefficient as

a measure of monthly dissimilarities in macroinvertebrate assemblage abundance or presence/

absence. Each ordination was run with 50 random starting configurations. Cluster analysis

was used to identify composition similarity and visualize groups in the nMDS. Subsequently,

we tested significance of the observed groups using analysis of similarities (ANOSIM). ANO-

SIM scores range between 0 and 1, with higher values corresponding to greater dissimilarity

between groups. ANOSIM used Bray-Curtis distance and 9999 permutations. Finally, the simi-

larity percentage–species contributions (SIMPER) procedure [63] was used to identify which

taxa were responsible for dissimilarities among groups in nMDS and supported by the ANO-

SIM (Bray-Curtis distance).

Permutational multivariate analysis of variation (PERMANOVA) was applied to assess dif-

ferences in environmental variables among groups formed in nMDS and supported by ANO-

SIM. Bray–Curtis dissimilarity was the chosen distance measure to perform PERMANOVA;

9999 randomizations permutations were used. nMDS was run with PC-ORD Software (ver-

sion 5, [64]).

Results

Long-term patterns and trends of environmental variables

The long-term monthly record of environmental variables showed high temporal variability in

both streams (Figs 1 and 2). Most variables fluctuated without showing a significant trend of

increasing or decreasing over time (i.e., NH4
+, NO3

−, BOM, conductivity, pH, precipitation,

DSLS, and SOI; all p>0.05). We found significant temporal trends for a few variables. SRP was

experimentally manipulated in Carapa-60, where it ranged from ~5 μg L−1 to values as high as

6541.9 μg L−1 during the P-addition. Monthly SRP concentration in Saltito-100 showed no sig-

nificant decreasing trend over the study (p>0.05) and ranged from ~0.1 μg L−1 to 152.45 μg

L−1. Temperature decreased by ~1˚C throughout the study and was significant for Carapa-60

(M-K = -0.13, p = 0.04, Sen’s slope = -0.04), ranging from 21.4 to 27.2 ˚C, and in Saltito-100

(M-K = -0.14, p = 0.03, Sen’s slope = -0.05) ranging from 22.8 to 27.0 ˚C. Average monthly dis-

charge ranged from 0.011 m3s−1 to 0.027 m3s−1 in Carapa-60, and from 0.011 m3s−1 to 0.070

m3s−1 in Saltito-100, which showed consistently higher mean discharge than Carapa-60. Over

time, significant decreases in discharge were observed in Carapa-60 (M-K = -0.35, p< 0.0001,

Sen’s slope = -0.0005) and Saltito-100 (M-K = -0.15, p = 0.02, Sen’s slope = -0.0004).

Long-term patterns of macroinvertebrate assemblages

A total of 99 taxa (mostly genera) belonging to 47 families of 9 orders of aquatic macroinverte-

brates were collected in Carapa-60 and Saltito-100 during the 15-y study. The most diverse

order was Diptera with 19 taxa in Carapa-60 and 17 in Saltito-100. Odonata and Trichoptera

were the second and third most diverse orders. Diptera was also the most abundant order,

with more than 89% of the total abundance for each stream. Chironomidae represented

approximately 80% of the total abundance of macroinvertebrates, and 90% of the total abun-

dance of Diptera. Contributions from non-insects to the total abundance were modest, with

approximately 3.14% and 3.63% of the total abundance in Carapa-60 and Saltito-100, respec-

tively. Contributions from other orders of insects to total abundance were minor (<3.05%).
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Fig 1. Monthly temporal patterns of environmental variables between 1997 to 2011 in Carapa-60 (Black line) and Saltito-100 (Gray line).

https://doi.org/10.1371/journal.pone.0191781.g001
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Fig 2. Monthly temporal patterns of climate and environmental variables between 1997 to 2011 in Carapa-60 (Black line) and Saltito-100

(Gray line). Last four graphs show overall patterns for both streams.

https://doi.org/10.1371/journal.pone.0191781.g002
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Biomass in Carapa-60 was dominated by Diptera (44.57%), Odonata (32.87%) and Trichoptera

(15.42%); the rest of macroinvertebrates represented 7.15% of total biomass. In contrast, bio-

mass in Saltito-100 was dominated by Odonata (55.40%); Diptera (26.13%) and Trichoptera

(8.88%); the rest of macroinvertebrates represented 9.59% of the total biomass.

Taxonomic richness in Carapa-60 was highest at the beginning of the study, decreasing sig-

nificantly over time (M-K = -0.56, p< 0.0001, Sen’s slope = -0.70). The maximum number of

taxa was found in September 1999 (22 taxa/m2); while the minimum number was found in

February 2011 (0.67 taxa/m2, Fig 3A). In Saltito-100, richness was stable at the beginning of

the study, but it also showed a significant decrease towards the end (M-K = -0.14, p = 0.03,

Sen’s Slope = -0.14). The maximum number of taxa sampled was 16.33 taxa/m2 in July 1997;

while the minimum was 0.33 taxa/m2 in September 2010 (Fig 3B).

Monthly macroinvertebrate abundance varied widely in both streams throughout the

study. Carapa-60 showed a strong decrease with time (M-K = -0.36, p< 0.0001, Sen’s slope =

-1.09). Maximum abundance was 46,583.6 ind/m2 in March 1998; while the minimum was

209.6 ind/m2 in September 2010 (Fig 3C). Abundance in Saltito-100 showed a significant

decrease over the study (M-K = -0.19, p = 0.003, Sen’s slope = -0.29). Maximum abundance

was 27,143.2 ind/m2 in March 2003, while the minimum was 52.4 ind/m2 in September 2010

(Fig 3D).

Likewise, annual macroinvertebrate biomass fluctuated throughout the study in both

streams. High biomass occurred early and decreased at the end. Macroinvertebrate biomass

in Carapa-60 decreased (M-K = -0.27, p< 0.0001, Sen’s slope = -0.074) and fluctuated between

5.666 g AFDM/m2 in July 2000 to 0.00691 g AFDM/m2 in February 2011 (Fig 3E). Biomass

in Saltito-100 also decreased (M-K = -0.21, p< 0.001, Sen’s slope = -0.026) and fluctuated

between 6.408 g AFDM/m2 in June 1998 to 0.00026 g AFDM/m2 in September 2010 (Fig 3F).

Relationships between macroinvertebrate assemblages and

physicochemical parameters

Model selection criteria showed that of all measured parameters, hydrological and climatic

variables had the greatest potential to explain temporal patterns in macroinvertebrate compo-

sition. In Carapa-60, taxonomic richness was best described by a model that included dis-

charge, DSLS, and SOI (Table 1). Discharge and DSLS were positively related to richness,

while SOI was negatively related. The best model identified by AIC for macroinvertebrate

abundance in Carapa-60 included DSLS and average precipitation. DSLS showed a positive

relationship with abundance, while the average precipitation was negatively related. No model

of the variables were able to describe macroinvertebrate biomass (Table 1). Richness in Saltito-

100 was best described by BOM and SOI. Organic matter was positively related to richness,

while SOI was negatively related. Although average precipitation was the best model that

described macroinvertebrate abundance, AIC analysis results showed no support for this sim-

ple model. The model showed a negative relationship between average precipitation and abun-

dance. No model of the variables explained macroinvertebrate biomass variability (Table 1).

Temporal patterns of macroinvertebrate assemblages

Ordination analysis of macroinvertebrates based on abundance and presence/absence sug-

gested the formation of groups in the data set. We used cluster analysis to delineate major

groups (clusters not shown) and mark them in nMDS plots; the observed groups were ordered

from highest to lowest abundance, starting with group 1. The nMDS of macroinvertebrate

abundance in Carapa-60 showed four well defined groups (Fig 4A). Likewise, ANOSIM analy-

sis confirmed that assemblage abundance differed statistically among these four groups with a
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Fig 3. Long term fluctuations in taxonomic richness, abundance and biomass in Carapa-60 (A, C, E) and Saltito-100 (B, D, F). Gray area

shows 8y of P-enrichment in Carapa-60.

https://doi.org/10.1371/journal.pone.0191781.g003
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high dissimilarity value (R = 0.61, p = 0.0001, Table 2). SIMPER analysis showed that three

Chironomidae taxa accounted for more than 60% of assemblage dissimilarity among groups.

Based on the cluster analysis, nMDS of macroinvertebrate abundance in Saltito-100 also

resulted in four groups (Fig 4B). ANOSIM confirmed that assemblage abundance differed sig-

nificantly among these groups (R = 0.60, p = 0.0001, Table 2). SIMPER analysis revealed that

three taxa of Chironomidae and Ceratopogonidae accounted for more than 60% of assemblage

dissimilarity among groups.

Cluster analysis of macroinvertebrates based on presence/absence of macroinvertebrates

also showed clearly defined groups (clusters not shown); the observed groups were ordered

from highest to lowest presence of organisms, starting with group 1. The three groups delin-

eated for Carapa-60 are shown in the nMDS plot (Fig 5A), and ANOSIM indicated a strong

separation among them (R = 0.61, p = 0.0001, Table 2). SIMPER analyses revealed that the

taxa with highest contribution to the global dissimilarity (i.e., >50%) were: Diptera (Hexa-
toma, Orthocladinae, Xestochironomus, Tipulidae, and Chrysops), Ephemeroptera (Caenis,
Farrodes, and Americabaetis), Coleoptera (Hexacylloepus), Trichoptera (Macronema and Phyl-
loicus), Odonata (Epigomphus) and non-insects (Oligochaeta, Polychaeta and Nematoda). In

Saltito-100, cluster analysis identified two groups, but nMDS showed a weak segregation

between these groups, implying that assemblage structure among months was more similar

(Fig 5B). The low strength of ANOSIM values supports the weak segregation (R = 0.24,

p = 0.0001, Table 2). SIMPER analyses showed that Diptera (Orthocladinae, Hexatoma, Xesto-
chironomus, and Tipulidae), Ephemeroptera (Farrodes), Coleoptera (Hexacylloepus), Trichop-

tera (Macronema and Phylloicus), Odonata (Epigomphus) and non-insects (Oligochaeta, Acari,

Table 1. Akaike Information Criterion (AICc) model results for the composition and structure of macroinvertebrate assemblages. Model were ranked using Delta

AIC. The column “Signal” indicates the direction, (+) positive and (-) negative, of the effect. The column “Model Parameters” indicates if the effects are (�) multiplicative

or (+) additive. K, number of parameters in the model; AICc Wt, AIC weight; Cum. Wt, Cumulative AIC weight.

Stream Response Variable Signal Model Parameters K AICc Delta

AIC

AICc

Wt

Cum.

Wt

Carapa-60 Taxonomic Richness Discharge+ DSLS+ SOI- Discharge � DSLS � SOI 4 299.43 0.00 0.48 0.48

Discharge+ SOI- Discharge + SOI 5 300.80 1.37 0.24 0.73

Discharge+ DSLS+ SOI- Discharge + DSLS + SOI 5 301.13 1.70 0.21 0.93

DSLS+ SOI- DSLS � SOI 9 305.30 5.87 0.03 0.96

Discharge+ DSLS+ Discharge � DSLS 3 306.85 7.42 0.01 0.97

Discharge+ DSLS+ Discharge + DSLS 4 307.21 7.78 0.01 0.98

Discharge+ Discharge 3 307.96 8.53 0.01 0.99

Discharge+ SOI- Discharge � SOI 5 308.25 8.82 0.01 0.99

Abundance DSLS+ Average Precipitation- DSLS � Average Precipitation 5 285.49 0.00 0.28 0.28

DSLS+ SOI- DSLS � SOI 5 286.17 0.68 0.20 0.48

Average Precipitation- SOI- Average Precipitation + SOI 4 286.26 0.77 0.19 0.67

Average Precipitation- SOI- Average Precipitation � SOI 5 287.17 1.68 0.12 0.8

DSLS+ SOI- DSLS + SOI 4 287.67 2.18 0.09 0.89

Average Precipitation - Average Precipitation 3 287.96 2.47 0.08 0.97

Biomass None entered the model

Saltito-100 Taxonomic Richness Benthic organic Matter+ SOI- Benthic organic Matter � SOI 4 300.60 0.00 0.53 0.53

Benthic organic Matter+ SOI- Benthic organic Matter + SOI- 3 302.17 1.58 0.24 0.77

Abundance Intercept 3 297.40 0.00 1.00 1.00

Average Precipitation- Average Precipitation 2 312.44 15.04 0.00 1.00

Biomass None entered in the model

https://doi.org/10.1371/journal.pone.0191781.t001
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Copepoda and Nematoda) accounted for more than 50% of assemblage dissimilarity among

groups.

Relationship between groups and main environmental variables

PERMANOVA detected that differences among nMDS groups were associated with the

same major physicochemical variables identified in the AIC analysis. In the AIC analysis dis-

charge, DSLS, and SOI were included in the best model that described the presence of

Fig 4. non-Metric multidimensional scaling ordinations (nMDS plots) on the basis of the Bray-Curtis

dissimilarity measure of abundance in (A) Carapa-60 and (B) Saltito-100.

https://doi.org/10.1371/journal.pone.0191781.g004
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macroinvertebrates in Carapa-60. In contrast, PERMANOVA indicated that only discharge

explained differences among groups (F = 6.16, p = 0.003, Table 3). Discharge was higher for

group 1 and decreased slightly until lowest for group 3 (Table 4). For Saltito-100, PERMA-

NOVA identified significant differences in benthic organic matter (F = 6.80, p = 0.01, Table 3)

and SOI (F = 12.97, p<0.001, Table 3) among nMDS groups based on presence/absence.

Organic matter was higher for group 1 compared with the group 2. Group 1 was characterized

by a mean SOI that indicated dry months, while mean SOI in group 2 tended to positive value

associated with high precipitation (Table 4).

For nMDS groups based on abundance, PERMANOVA showed that in Carapa-60 signifi-

cant differences were related to DSLS (F = 10.12, p<0.001, Table 3) and average precipitation

(F = 5.59, p = 0.001, Table 3). Months from group 1 were those with the most days elapsed

since the last major storm, and the number of days decreased consecutively until reaching

group 4. Also, months in group 1 were characterized by having less rainfall, which increased

until reaching group 4 with the most precipitation (Table 4). Nonetheless, average precipita-

tion was not supported as a best model in AIC in Saltito-100 composition; PERMANOVA

analysis showed significant differences in precipitation among groups (F = 5.19, p = 0.002),

with group 1 having low precipitation and increasing consecutively until the months of group

4 (Table 3).

Discussion

Our long-term data set demonstrates that lowland Neotropical streams are dynamic environ-

ments that lack intra-annual periodicity and have large inter-annual variability. Contrary to

the supposition of temporal stability or seasonality for streams draining Neotropical humid

forests (e.g., [65, 66, 67]), headwater streams at LSBS in Costa Rica are highly variable environ-

ments. We consistently observed that macroinvertebrate assemblages fluctuated over time in

our two study streams in response to environmental variables that were strongly related to the

hydrologic regime (e.g., rainfall, discharge). Even fluctuations in macroinvertebrates in the

Table 2. ANOSIM analysis results among groups formed in nMDS plots.

Stream Groups compared R p
Carapa-60

Presence Group 1 vs Group 2 0.57 0.0001

Group 1 vs Group 3 0.94 0.0001

Group 2 vs Group 3 0.46 0.0001

Abundance Group 1 vs Group 2 0.62 0.0001

Group 1 vs Group 3 0.92 0.0001

Group 1 vs Group 4 0.82 0.0001

Group 2 vs Group 3 0.48 0.0001

Group 2 vs Group 4 0.88 0.0001

Group 3 vs Group 4 0.57 0.0002

Saltito-100

Presence Group 1 vs Group 2 0.24 0.0001

Abundance Group 1 vs Group 2 0.50 0.0001

Group 1 vs Group 3 0.96 0.0001

Group 1 vs Group 4 0.87 0.0001

Group 2 vs Group 3 0.49 0.0001

Group 2 vs Group 4 0.77 0.0001

Group 3 vs Group 4 0.48 0.0001

https://doi.org/10.1371/journal.pone.0191781.t002
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experimentally P-enriched stream were found to be associated with hydrology rather than

nutrients. The lack of interaction between nutrients and macroinvertebrate assemblages was

unexpected. We predicted that enhanced nutrient levels would stimulate macroinvertebrate

assemblages. While previous studies at LSBS have shown significant effects on basal trophic

levels and processes, (i.e., fungal biomass, microbial respiration), effects on invertebrate con-

sumers may be subtle [20, 68]. Moreover, we found evidence that fluctuations in stream physi-

cochemistry and insect assemblage structure are ultimately the result of large-scale climatic

phenomena, as suggested by the SOI (i.e., via changes in hydrology). The SOI is an indicator of

Fig 5. non-Metric multidimensional scaling ordinations (nMDS plots) on the basis of the Bray-Curtis

dissimilarity measure of presence/absence of macroinvertebrates in (A) Carapa-60 and (B) Saltito-100.

https://doi.org/10.1371/journal.pone.0191781.g005
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the intensity of El Niño / La Niña events, which are important regulators of climate and influ-

ence temperature and precipitation patterns across the globe [69, 70].

ENSO events play a key role in modifying environmental conditions and, therefore, the

dynamics of many populations and ecosystems. Previous studies have found supporting evi-

dence during recent ENSO events, especially strong ones during the 1980s and 1990s. In

Table 3. PERMANOVA analysis results of groups formed using ANOSIM analysis and the relationships with the main environmental variables.

Stream Groups compared Discharge SOI DSLS Average

Precipitation

Organic Matter

F p F p F p F p F p
Carapa-60

Presence Group 1 vs Group 2 12.89 <0.001 1.31 0.256 2.10 0.158 - - - - - - - -

Group 1 vs Group 3 4.52 0.035 0.075 0.777 2.07 0.158 - - - - - - - -

Group 2 vs Group 3 0.02 0.881 0.44 0.502 0.73 0.397 - - - - - - - -

Abundance Group 1 vs Group 2 - - - - - - - - 16.92 0.003 5.42 0.024 - - - -

Group 1 vs Group 3 - - - - - - - - 18.90 0.002 5.70 0.019 - - - -

Group 1 vs Group 4 - - - - - - - - 27.47 <0.001 12.80 <0.001 - - - -

Group 2 vs Group 3 - - - - - - - - <0.1 0.989 0.29 0.584 - - - -

Group 2 vs Group 4 - - - - - - - - 2.59 0.112 8.84 0.005 - - - -

Group 3 vs Group 4 - - - - - - - - 2.75 0.098 6.25 0.013 - - - -

Saltito-100

Presence Group 1 vs Group 2 - - - - 12.97 <0.001 - - - - - - - - 6.80 0.01

Abundance Group 1 vs Group 2 - - - - - - - - - - - - 3.30 0.078 - - - -

Group 1 vs Group 3 - - - - - - - - - - - - 8.91 0.004 - - - -

Group 1 vs Group 4 - - - - - - - - - - - - 10.85 0.003 - - - -

Group 2 vs Group 3 - - - - - - - - - - - - 3.91 0.054 - - - -

Group 2 vs Group 4 - - - - - - - - - - - - 6.58 0.014 - - - -

Group 3 vs Group 4 - - - - - - - - - - - - 0.89 0.347 - - - -

https://doi.org/10.1371/journal.pone.0191781.t003

Table 4. Mean and standard deviation of the main environmental variables identified by AIC for each group.

Stream Discharge SOI DSLS Average

Precipitation

Organic

Matter

Mean SD Mean SD Mean SD Mean SD Mean SD

Carapa-60

Presence Group 1 0.018 0.004 0.00 1.28 9.03 11.74 - - - - - - - -

Group 2 0.015 0.001 0.27 0.95 6.28 6.16 - - - - - - - -

Group 3 0.015 0.004 0.09 1.07 4.89 5.82 - - - - - - - -

Abundance Group 1 - - - - - - - - 14.25 19.62 2.70 3.66 - - - -

Group 2 - - - - - - - - 5.55 7.44 4.89 5.89 - - - -

Group 3 - - - - - - - - 5.89 7.40 5.11 6.42 - - - -

Group 4 - - - - - - - - 2.94 4.55 5.19 6.39 - - - -

Saltito-100

Presence Group 1 - - - - -0.24 0.99 - - - - - - - - 84.55 38.02

Group 2 - - - - 0.48 1.06 - - - - - - - - 67.93 28.39

Abundance Group 1 - - - - - - - - - - - - 6.15 2.69 - - - -

Group 2 - - - - - - - - - - - - 9.89 5.54 - - - -

Group 3 - - - - - - - - - - - - 13.01 6.37 - - - -

Group 4 - - - - - - - - - - - - 14.44 6.93 - - - -

https://doi.org/10.1371/journal.pone.0191781.t004
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African savannas, annual changes in ungulate populations have been related to rainfall deficits,

which affect plant growth during severe ENSO years [71, 72]. Meanwhile, in marine ecosys-

tems, drastic changes in temperature and salinity associated with both La Niña and El Niño

were related with high variability in zooplankton abundance, as well as an abnormal spawning

of the tropical bivalve Donax dentifer in the coasts of South America [73, 74]. In terrestrial eco-

systems, regional shifts in the abundance of three raptor species have been associated with SOI

temperature responses, as their movement followed favorable local conditions for breeding

[75]. Magnusson et al. [76] found a positive correlation between rodent density and SOI due

to the increase in local rain and consequent decrease of fire extent in the Amazonian savanna;

fire and rainfall lead to higher than average seedling growth, favoring increases in rodent

abundance. Lastly, drought during the 1997–1998 ENSO episode was associated with wide-

spread burning that affected 40,000 km2 of standing Amazonian forest [77]. Effects have been

also described for LSBS, such as Clark et al. [78], Silva et al. [79]; thus, it is not surprising that

the SOI is associated with macroinvertebrate variability in the two protected and small lowland

forest streams of this study. At LSBS, El Niño years are often characterized by drier than aver-

age dry seasons, with severe drought and exceptionally high temperatures, which have been

related to decreases in liana density and diversity (e.g., [80]).

Our previous studies have shown that ENSO conditions are associated with deviations in

the patterns of nutrient chemistry in streams of LSBS. Long-term monitoring of SRP concen-

trations in streams revealed an increase in the annual mean SRP fluxes, responding to the

strong ENSOs of 1992 and 1998–1999 [81]. Changes in mean annual SRP fluxes from the Salto

watershed increased from 7.3 kg/ha year in 1997 to 16 kg/ha year in 1998–1999 (ENSO), and

then fell to 2.5 kg/ha year in 2001 (post ENSO). Triska et al. [81] suggested that this large

increase in SRP export was caused by a low flow induced by ENSO, which gradually releases

SRP from the sediments into pore water and riparian groundwater. Likewise, a severe pH

decline in poorly-buffered streams of LSBS was observed after an extended drought, including

the drought followed by ENSO 1998–1999. Intense drought could contribute to increased

labile soil carbon, thus promoting high levels of dissolved CO2 and a drop below 4.0 pH in

low-buffered streams [36, 38]. For the 1998–1999 ENSO period, which was designated among

the top five El Niño rankings since 1871 by Wolter and Timlin [82], Ramı́rez et al. [38] found

a decrease in insect abundance and biomass in several streams of LSBS. Nevertheless, even

though our long-term data set recorded this incident, we did not observe an important assem-

blage reduction during this event in comparison to the reduction we observed at the end of

this study, which could be associated with a combination of hydrological and climatic factors.

Although little is known about the effects of El Niño on streams at LSBS, much less is known

about the effects of La Niña. La Niña is related to an increase in precipitation, which leads to

periods of high discharge that negatively impact organism composition and structure (e.g.,

[80]). Our results showed a decrease in macroinvertebrate richness and abundance at the end

of the study, which coincides with more positive and severe SOI episodes (i.e., more common

La Niña events).

Precipitation and associated changes in discharge influence the structure and composition

of macroinvertebrate assemblages in different environments [5, 83, 84]. Periods of low and

moderate precipitation result in high macroinvertebrate abundance, while high precipitation

may shift assemblages to low abundances (e.g., [17]). Discharge can also influence the relative

success of different species [85, 86]. High discharge plays key roles in driving the structure and

composition of benthic assemblages [87, 88], as the drag force of flowing water can cause cata-

strophic downstream drift of individuals [89]. Our study shows that macroinvertebrate rich-

ness and abundance decreased with increasing discharge and was positively related to the

number of days elapsed since the last strong event (see Table 1). McMullen and Lytle [88]
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demonstrated a significant negative effect of floods on the overall density of macroinverte-

brates within the first days of a flood, as well as an increase in the number of macroinverte-

brates within the first 10 days after a flood.

Benthic organic matter is a major energy component for stream food webs, and it is also a

refuge for aquatic macroinvertebrates [90, 91]. Benthic organic matter can fluctuate in

response to discharge and leaf litter inputs from riparian areas [92]. Previous studies (e.g.,

[93]) have shown a positive relationship between aquatic macroinvertebrates and organic

matter; an increase in debris caused an increase of dominant detritivores, such as Chironomi-

dae. We found that some taxonomic groups, such as Chironomidae, contribute greatly to

overall assemblage dynamics, which could be favored by the benthic organic matter that is

dominant in the sampled habitat. Similar results have been found by Feio et al. [83] in streams

of Portugal, where Chironomidae dominated assemblages. Changes in the macroinvertebrates

assemblages of three regions in northern California were mainly caused by changes in the

abundance of chironomids [5].

Nutrients were not major factors related to macroinvertebrate assemblage dynamics, even

given our long-term phosphorus addition. As expected, we observed low nutrient concentra-

tions in our two study streams (with the exception of the experimental P-enrichment period in

Carapa-60), which are typical in streams without inputs of interbasin groundwater in LSBS

[20, 38]. Moreover, previous studies have demonstrated that P effects in stream ecosystems at

La Selva are more evident at basal trophic levels. Hence, fungal biomass and leaf breakdown

[20] and microbial respiration rates [68] are all positively enhanced by artificial P-amendments

and naturally high P levels. More rapid organic matter decay rates have both been related to an

increase in microorganism and fungal activity associated with nutrient-rich systems. Rose-

mond et al. [20] observed a positive relationship between leaf decay rates and fungal and inver-

tebrate biomass across naturally heterogeneous P landscapes; but these factors were not

enhanced in our artificially P-enriched stream. Exclusion of macroinvertebrates showed that

P, instead of macroinvertebrates, contributed largely to leaf decay, possibly improving micro-

bial processes. Also, Ramı́rez et al. [68] found that microbial respiration rates on Ficus and

mixed leaves were positively related to a natural P gradient in streams at LSBS; also, an experi-

mental P-enrichment in Carapa produced an increase in microbial respiration similar to high-

P streams. High microbial respiration, fungal biomass and invertebrate density were higher in

enriched and naturally high-P streams than in low-P streams, when leaf litter from three differ-

ent species with different qualities (concentrations of cellulose, lignin and tannins) were com-

pared [94]. Nitrogen does not appear to be limiting, as was demonstrated by Stallcup et al.
[95], who found no effect of N addition on leaf breakdown, microbial respiration, ergosterol

and leaf chemistry in both the P-enriched and the reference streams.

Nutrient effect in our study streams appear to be highly variable. We did not observe an

effect of SRP or any other nutrient on macroinvertebrate abundance, biomass or secondary

production, despite the eight-year P addition in Carapa-60. While insect growth and excretion

rates have been found to be more responsive to nutrients, responses are variable (e.g., [21,

46]). Ramı́rez and Pringle [21] found differences in daily growth rates and annual biomass

turnover rates of chironomids associated with phosphorus levels, including a faster growth

rate of small larval Chironomidae in Carapa during enrichment. Small et al. [46] found that

the P demands of chironomids differed across streams with a contrasting nutrient input.

Hence, chironomids from high P streams grew faster with an increase in litter P content, while

the growth rates of chironomids from low P streams did not respond to a dietary increase in

P. Growth rate did not change in chironomids of Carapa-60 (P enrichment stream), but the P-

excretion rate did increase. It is surprising that even after eight years of P addition, chirono-

mids of this low P stream were not able to benefit from the extra P to produce new biomass.
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Small et al. [46] suggested that local genetic adaptation among chironomid populations could

potentially be responsible for differences in P demands, and argue that microevolution could

explain this lack of differences in Carapa-60.

Other environmental variables that we measured did not appear to be drivers of macroin-

vertebrate dynamics. At LSBS, stream conductivity reflects the heterogeneous locations of geo-

thermal seepages, ranging from 22–440 μScm-1 [96]; so conductivity is commonly used to

identify the limit of interbasin groundwater flow. Temporal variation of conductivity in both

streams was rather small and no long-term patterns were observed. Water temperature data

show a decrease in stream water temperature, which was unexpected since air temperature

increased over 22y in LSBS. Mohseni and Stefan [97] demonstrated that air/stream tempera-

ture relationships are not always consistent, fluctuating between a flat to an S-shaped relation-

ship according to the temperature range, travel time (i.e., time it takes for a particle to travel

between two arbitrary points) and geology. The annual decrease in average stream temperature

might have a negative impact on some ecological processes such as leaf litter decomposition,

which is stimulated by greater microbial activity in high tropical temperatures (e.g., [98]). Fur-

thermore, temperature variability was consistent within the range described in previous stud-

ies in LSBS [38, 96]. Stream pH showed a wide variation in streams of LSBS [36]. Moreover,

long-term studies in streams with a wide variety of groundwater inputs have showed a seasonal

trend, with pH increasing during the dry season and decreasing through the wet season [36].

Stream pH has been shown to be important in controlling macroinvertebrate assemblages in

streams at LSBS; for example, Ramı́rez et al. [38] showed a decrease in insect density and bio-

mass in six streams in LSBS due to an episodic acidification event in 1998. However, in this

study, we did not observe a strong effect of temperature or pH on assemblages. It is possible

that other large scale factors (e.g., precipitation, SOI) may be masking their influence.

Implications and future challenges

Climate change model scenarios predict an increase in extreme weather events, which includes

a spatiotemporal redistribution of precipitation patterns resulting in more severe flood and

drought periods through 2100 [99]. Our long-term analysis shows high variability in precipita-

tion and a clear trend in discharge, with a directional reduction in both streams over the study

period. Consistent with our results, long-term meteorological data of rainfall in LSBS has

shown a reduction in the annual mean precipitation from 1963 to 2014 (see meteorological

data form LSBS, http://www.ots.ac.cr/meteoro/). Furthermore, regional studies for Central

America using the Regional Climate Change Index predict a reduction in precipitation and an

increase in precipitation variability in the future scenarios, identifying Central America as a

“hotspot” and one of the most sensitive and vulnerable tropical areas susceptible to climate

change [100, 101]. Additionally, empirical long-term data for Central America have shown

nonsignificant trends in precipitation showing increasing or decreasing values for several sta-

tions across the region; this results in a lack of a coherent signal and specific predictions [102].

Even though the incidences of very high precipitation events have increased in the region,

which could lead to an abrupt reduction of macroinvertebrate richness and abundance [103],

Rauscher et al. [104] predict a decrease in summer precipitation and an intensification of the

midsummer drought for the next 100 years in Central America. Although there is high uncer-

tainty in future climatic scenarios for the tropics, our study indicates that conditions that lead

to increases in stream discharge or floods will likely result in reductions in macroinvertebrate

richness and abundance.

Moreover, climate change will probably intensify ENSO activity due to increased green-

house gases, which cause warming in the ocean surface and affect atmospheric circulation
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patterns [105, 106, 107]. Recent studies have shown an increase in the intensity of El Niño,

indicating it has almost doubled in the past three decades [108]. Furthermore, Yeh et al. [109]

has suggested that El Niño events occur much more frequently under the projected global

warming scenarios, while future extreme La Niña events are expected nearly double their fre-

quency [107]. Interannual variations of Central American climate will be less predictable,

since their climate is directly influenced by the surrounding oceans [110]. Steinhoff et al. [111]

projected variations of the ENSO predictions for Central America and northwest South Amer-

ica using a Coupled Model Intercomparison Project with 15 Global Climate Models for the

complete period of 2006–2100. While results vary greatly among the models considered, the

authors found support for increases in ENSO frequency associated with greater greenhouse

gas concentrations in future climate; this consensus was not found for the duration or ampli-

tude of ENSO events. Steinhoff et al. [111] suggest that an increase in ENSO frequency corre-

sponds to an increase in the potential for extreme rainfall in Central America. Given the

strong relation between ENSO events and stream dynamics, further efforts to improve ENSO

predictions will also help us understand how tropical streams will be affected by future

climate.

In summary, this study documents the effects of large scale climate (i.e., ENSO, precipita-

tion) and hydrological variables (i.e., discharge) on the structure and composition of macroin-

vertebrates in two lowland tropical streams in Costa Rica. While our results are based solely on

the study of two streams inside a protected forest, this is the most extensive and consistent

data set ever collected in a Neotropical freshwater ecosystem. Long-term studies, such as this

one, are essential for observing realistic effects on macroinvertebrate structure and composi-

tion and to better understand stream dynamics in the face of climate change.
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