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Abstract

Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and

transmit multiple copies of each message that causes congestion and some messages are

dropped. This process is known as reactive drop because messages were dropped re-

actively to overcome buffer overflows. The existing reactive buffer management policies

apply a single metric to drop source, relay and destine messages. Hereby, selection to drop

a message is dubious because each message as source, relay or destine may have con-

sumed dissimilar magnitude of network resources. Similarly, DTN has included time to live

(ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is

automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on

messages reached at their destinations. Moreover, nodes keep replicating messages till ttl

expires even-though large number of messages has already been dispersed. In this paper,

we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for

DTN under City Based Environments. The PQB-R classifies buffered messages into source,

relay and destine queues. Moreover, separate drop metric has been applied on individual

queue. The experiment results prove that proposed PQB-R has reduced number of mes-

sages transmissions, message drop and increases delivery ratio.

1 Introduction

Delay Tolerant Network (DTN) [1, 2] exploits intermittent connectivity and support commu-

nication for infrastructure-less mobile applications suffering frequent disconnections, network

partitioning due to small transmission range of mobile nodes. The messages are delivered to

their respective destinations via store, carry and forward paradigm in which a node stores

incoming messages in buffer, carries them while moving and forwards upon connecting to

other nodes. The DTN transmission model can be used in application like wildlife monitoring,

deep-space communication and military networks.
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Based on message transmission criterion and number of message copies, DTN routing

protocols can be divided into two categories known as single-copy routing protocols [3] and

multi-copy routing protocols [4]. In single-copy protocols, the node transmits message and

remove transmitted message from its buffer. The single-copy protocols are vulnerable to

disruptions and experience unbounded delivery delay. Moreover, when message is lost,

then it cannot be recovered. In multi-copy protocols, nodes create multiple copies of each

message and transmit them to all available connections. As result, message can reach to its

destination via multiple paths. The multi-copy protocols are reliable under high disruptions

but requires infinite amount of network resources such as buffer space, bandwidth and

energy.

The nodes under multi-copy protocols cannot be equipped with infinite buffer sizes. How-

ever, efficient message drop policies can increase protocol efficiency even though buffer space

is limited. The existing reactive buffer management policies are activated in reaction to conges-

tion. For instance, a node re-actively trigger drop event upon receiving message with full

buffer. Few popular examples of reactive buffer management are LIFO (Last In First Out) [5],

FIFO (First In First Out) [5], Drop Largest (DLA) [6] and MOFO (Most Forwarded First) [7].

We have observed following issues in buffer management policies:

• The existing buffer management policies [5–9]drop a message by computing a single metric.

This metric is combination of various properties including message size, Time-To-Live,

arrival time and hop count. We argue that a single metric cannot give a fair selection as DTN

nodes carry source, relay and destine messages [10]. Hereby, each message has its own level

of resource consumption. For example a relay message might have been carried by other

nodes and have consumed more resources such as buffer space, energy and bandwidth than

a source message. Similarly, the destine messages might be staying in buffer for longer time.

Hence, a solution is required to define a drop metric according to type of message.

• Beside reactive drop, messages are automatically expelled from network. For this, DTN [1]

has defined a time limit on transmission of message copies called as time-to-live (ttl) [10].

When a message is unable to reach its destination within ttl then it is automatically removed

from all relay nodes including source [11]. The ttl has a direct impact on message delivery

because a message with highest ttl gets more transmission opportunities [12–20]. However,

in existing buffer management policies, ttl based removal does not keep track about life-time

of a message in buffer. For example, when a large-size message remains in buffer without

getting transmission opportunity then it causes congestion. Therefore, if a node is unable to

find a suitable carrier for a message then it is better to remove it.

• Existing buffer management policies continue to replicate message until ttl expires. Hence,

within a same ttl, a message can receive high transmission opportunity. The existing buffer

management policies do not provide any method to calculate number of copies a node has

transmitted so far. It is appropriate to drop a message which has been transmitted more

number of times than pre-defined threshold limit.

• When a message reach its destination then it remains in buffer until consumed by applica-

tion. Hence, it is appropriate to bind a time value with delivered messages and application is

bound to consume that message within this time. When time expires then message will be

removed. This process will minimize congestion.

In order to address the aforementioned issues, we have proposed a buffer management pol-

icy called as Priority Queue Based Reactive (PQB-R) Buffer Management Policy for DTN

under city based environments. The contribution to this paper is as follows:

Priority Queue Based Reactive Buffer Management Policy
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• We have defined a priority queue based mechanism to classify source, relay and destine mes-

sages. Then each priority queue have been assigned an individual drop metric.

• We have proposed a method to assign a time value called as time to dead (ttd) to messages

delivered to their destinations. Hence, application is bound to utilize delivered message

within ttd. However, after ttd expires, messages will be removed from buffer of destine node.

• We have defined a method to keep track of messages that are residing in buffer and has not

been transmitted. The objective is to remove such messages as node is unable to find suitable

carrier for them.

• We have defined a method to count number of message copies transmitted by current node.

The idea is to drop those messages having high transmission count.

• We have compared the proposed PQB-R with existing state-of-art buffer management poli-

cies under real time mobility traces. The results have proved reduction in message drop,

number of transmissions and increase in message delivery.

The rest of paper has been structured as follows: section 2 has discussed related work, sec-

tion 3 is about problem analysis, section 4 describes data structures, section 5 explains pro-

posed Priority Queue Based Reactive Buffer Management Policy (PQB-R) and simulation

results are discussed in section 6 and conclusion in section 7.

2 Related work

The DTN store-forward applications use finite size buffer space to carry messages and efficient

buffer management policies are employed to utilize limited storage. The buffer management

policies in DTN can be classified as local knowledge based buffer management policies, local

knowledge history based buffer management policies and global knowledge based buffer man-

agement policies. The local knowledge based buffer management policies drop a message by

observing information available in the message header. For instance, First In First Out (FIFO),

Last In First Out (LIFO), Drop Largest (DLA), Most Forwarded First (MOFO) [7] and

N-Drop [21].

In First In First Out (FIFO), messages with largest buffer time are dropped. In Last In First

Out (LIFO) / Drop Tail [22], the messages with minimum buffer time are dropped. Shortest

Lifetime First (SHLI) [7] drop messages with minimum TTL value. The Drop Random [23]

obtains message drop sequence by random selection of stored messages. The Drop Largest

(DLA) [24] drop large-size messages.

The local knowledge history based buffer management policies maintain history of mes-

sages on each node. For example, number of message copies transmitted by carrier node and

social probability of carrier node to send a message to its destination. The Most Favorably For-

warded First (MOPR)) [7] is a local knowledge history based buffer management policy in

which each message is associated with Forwarding Predictability (FP). The FP determines the

ability of a node to encounter message destination.

The Message Dropping Policy in Congested Social Delay Tolerant Network [25] exploits

social characteristics of DTNs. The nodes with low social strength to deliver a message are

dropped. Pujol et al. [26] reduces congestion by forwarding a message only to nodes having

strong social bound with message destination.

In [27], Radenkovic and Grundy exploit social characteristics and transmit a message on

nodes having shortest path to reach its destination. The Congestion Control Strategy Based on

Probability Selection in Delay Tolerant Mobile Sensor Network drops a message with smaller

TTL and carrier node is less probable to encounter message destination. In [28] the various

Priority Queue Based Reactive Buffer Management Policy
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parameters such as resource consumption, history of node encounter and location informa-

tion are combined to drop a suitable message. The Enhanced Buffer Management Policy

(EBMP) [29, 30] exploits message properties and computes the utility value.

In delegation forwarding [31, 32], the node forwards a message to other node that has high

quality value to reach message destination. Delegation buffer management policy drops mes-

sages by using delegation number. Hence, delegation number is incremented with each mes-

sage transmission. The messages of high delegation number are dropped to overcome

congestion.

In [18], author has modified Spray and Wait routing protocol with a new fuzzy-based buffer

management strategy called as Enhanced Fuzzy Spray and Wait Routing. The propose method

determines message drop priority by using number of replicas, its size and remaining time-to-

live. Fuzzy spray [18] protocol prioritizes stored messages by using Forward Transmission

Count (FTC) and Message Size (MS).

The Probability-based Spray-and-Wait Protocol with Buffer Management in Delay Toler-

ant Networks [33] proposes a probability-based Spray-and Wait scheme and buffer manage-

ment policy. The spraying phase is used to transmit messages based on probability. The

buffer management has considered factors such as the remaining number of message copies,

message size and receiving time. When congestion arises the hard-to-deliver messages are

dropped.

N-Drop [21] drops messages with ‘n’ number of forwarding. Drop Last proposed in [34] is

Lifetime ASC (Ascending) drop policy which ensures that messages having minimum ttl are

dropped. Lifetime DESC (Descending order), Lifetime ASC (Ascending order) outperforms

against the FIFO- FIFO, Random FIFO in respect of delivery probability and average delay.

Lifetime ASC is also checked with spray and wait routing protocol and also performs well with

the epidemic [35], PRoPHET [36] and Maxprop [37] routing protocols.

The global knowledge based buffer management policies [13] make use of global knowl-

edge of message to drop it. For instance, Krifa et al. presents collection of optimal buffer

management policies by observing global knowledge such as number of message copies in

entire network. The proposed policy was able to minimize average delay and maximizes

delivery ratio.

Global History-based Prediction Buffer Management Policy [38] computes a per message

utility via number of message copies in network and number of nodes that have seen the mes-

sage. The messages are dropped starting from lowest to highest utility value.

3 Problem analysis

This part of paper has presented problem analysis. Various city—based scenarios have been

used to demonstrate the deficiencies in existing buffer management policies.

3.1 Scenario-1: Message not reached at destination node and ttl expires

Scenario-1 describes a situation in which fragmented message parts have reached destination

and time-to-live (ttl) is expired.

Fig 1 shows a sample scenario in which a message M has been divided into three fragments

as M1, M2 and M3. The M3 and M2 have been delivered to P1 within ttl at T4 and T6.

Whereas, M1 stored by car C1 does not reach P1. Hence, when ttl expires then M2 is removed

from C2. Meanwhile, P1 will not be able to extract useful information from fragmented mes-

sage i.e. M3, M2. These messages will remain at P1 and produce congestion.

Priority Queue Based Reactive Buffer Management Policy
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3.2 Scenario-2: The node is unable to find suitable carrier

The DTN messages utilize carrier node(s) as an intermediary to reach destination. However,

when a node is unable to find a suitable carrier for buffered message(s) then it is better to drop

them. This will give storage opportunity to newly created messages.

Fig 2 shows a sample scenario where pedestrian (P1) buffer space is shown on three time

instances as 9:00 AM, 9:04 AM and 9:06 AM. The P1 by carrying M1, M2, M3 and M4 has

encountered a bus and car at 9:04 AM and 9:06 AM and no message is transferred. It is clear

that at P1, messages such as M1, M2, M3 and M4 have not been able to make progress towards

their destinations. Therefore, a better decision would be to drop such messages to reduce

congestion.

3.3 Scenario-3: The node has transmitted various message copies

The scenario-3 describes that a node has transmitted multiple copies of each message that

increases their delivery likelihood. This is because message multiple intermediary node to

reach its destination. Therefore, removing such messages will not affect message delivery and

reduce congestion.

Fig 3 shows a sample scenario in which a pedestrian P1 at time 9:02 AM has transmitted

three (3) copies of M1 to three (3) nodes and increases the transmission count (TC) to three

(3). Similarly, P1 at 9:04 AM has transmitted three (3) copies of M2 thus set transmission

count (TC) to 3 while at 9:06 AM transmitted single-copy of M1 to car and set its transmission

count (TC) to one (1). The messages M1, M2 have been transmitted more number of times.

Fig 1. Message not reached at destination node and ttl expires.

https://doi.org/10.1371/journal.pone.0191580.g001
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Fig 2. Message residual in buffer and congestion.

https://doi.org/10.1371/journal.pone.0191580.g002

Fig 3. Message transmitted and ttl not expires.

https://doi.org/10.1371/journal.pone.0191580.g003
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Therefore, even though ttl is not expired, removing M1 and M2 will not affect message delivery

as message is likely to be delivered by other carrier nodes.

4 Data structures in Priority Queue Based Reactive(PQB-R) Buffer

Management Policy

4.1 Aggregated Redundancy Count (ARC)

The DTN nodes with multi-copy protocols are privileged to create and transmit various copies

of their carried messages. Hence, it is likely that a node has been requested to receive a message

which is already residing in its buffer. This is termed as redundancy, meaning that existence of

a message on more than one node(s). The Aggregated Redundancy Count (ARC) is used to

count multiple existence of a message in network. Eq 1 has been used to compute the ARC.

Xn

i¼1

ARC� Miðni; njÞ ¼
Xn

i¼1

ARC� MiðniÞ þ ARC� MiðnjÞ ð1Þ

Hence, ARC-Mi(ni, nj) is the Aggregated Redundancy Count of message Mi at node ni and

nj. ARC-Mi(ni) is Aggregated Redundancy Count of message Mi at node ni and ARC-Mi(nj)

Aggregated Redundancy Count of message Mi at node nj. If ARC-M3(ni) is one (1) and

ARC-M3(nj) is four (4) then by Eq 1 the ARC-M3 at ni and nj will be five (5).

4.2 Local Transmission Count (LTC)

The Local Transmission Count (LTC) count the number of message copies transmitted by a

node. When a node transmits a message copy then its Local Transmission Count (LTC) is

incremented via Eq 2. Hence, LTC-Mi(ni) is the transmission count of message Mi at node ni.

Xn

i¼1

ðLTC� MiðniÞÞ ¼
Xn

i¼1

ðLTC � MiðniÞ þ 1Þ ð2Þ

4.3 Residual-Queue-Time (RQT)

Residual-Queue-Time (RQT) measures the time a message has spent in queue. RQT is not

same as ttl. The ttl tracks time-to-live of a message. Whereas, RQT starts after node receive

message. Eq 3 has been used to compute RQT.

Xn

i¼1

RQT � MiðniÞ ¼
Xn

i¼1

CT � AT � MiðniÞ ð3Þ

Hence, RQT-Mi(ni), Residual-Queue-Time of Message Mi at node ni, AT-M i(ni) is the

arrival time of message Mi at node ni and CT is Current Time.

4.4 Hop-Count (HC)

Hop Count (HC) indicate the number of nodes a message has traveled so far. When a message

is relayed from one node to another then its Hop Count (HC) is incremented by one. High

Hop Count value shows that message has consumed large amount of buffer space and band-

width. Eq 4 shows the computation of Hop Count (HC) where HC-Mi(ni, nj), is the hop count

of message at node ni and nj.

HC� Miðni; njÞ ¼ HC� Miðni; njÞ þ 1 ð4Þ

Priority Queue Based Reactive Buffer Management Policy
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4.5 Time-To-Dead (TTD)

Time to Dead (TTD) is the time after which message will be destroyed from destine nodes.

When node receives a message as a final destination then its TTD is initialized by using Eq 5.

Xn

i¼1

ðTTD� MiÞdestine ¼
Xn

i¼1

ðCUT� Mi þ TTL� MiÞ � CT ð5Þ

Hence, TTD − Mi is Time-To-Dead of message Mi, CT-Mi is creation time of message Mi,

TTL-Mi is time to live for message Mi and CUT is current time. Assume a message Mi

creation time (CT-Mi) is 9:02 PM, TTL-Mi is 10 minutes and CUT is 9:04 PM then TTD-Mi =

(9:02 + 10) − 9:04 = 8 minutes.

5 The Proposed Priority Queue Reactive (PQB-R) Buffer

Management Policy

The DTN nodes store and carry source, relay and destine messages. A source message is the

one which has been generated by the node itself and destine message is a message that a node

receives as a final destination. The relay message utilizes intermediary nodes to reach its desti-

nation. Hence, source message may have consumed fewer network resources than relay or des-

tine message. However, existing buffer management policies obtain a single metric value to

make drop decision and cannot give a fair selection. For instance, in drop least probable first

(LPF), messages having lowest probability to be delivered by carrier node are dropped. Hence,

a node with lowest delivery probability can drop its source messages. In addition, existing

buffer management policies has not define any method to remove delivered messages or mes-

sages which have been transmitted large number of times than a pre-defined threshold limit or

messages staying in buffer without getting transmission opportunity.

In order to address aforementioned issues we have proposed a novel buffer management

policy called as Priority Queue Based Reactive (PQB-R) Buffer Management Policy for DTN

Under City Based Environments. Fig 4 shows the architecture of Priority Queue Based Reac-

tive (PQB-R). Accordingly, when a new message (Mnew) arrives then buffer manager activates

Drop Expire Message Module in which messages meeting algorithmic criterion are dropped.

Then, message is accommodated if available buffer space (BA) greater than message size. Oth-

erwise, Reactive Message Drop Module is activated and messages are dropped until BA > Msize.

5.1 Drop Expire Message Module

The Drop Expire Message Module is responsible to drop messages meeting the following

criteria:

• Messages having high transmission count than pre-defined threshold limits are dropped.

For this, Local Transmission Count (LTC) data structure is utilized. Hence, messages with

greater transmission count than a threshold limit are dropped.

• Messages with large Residual Queue Time (RQT) than a pre-defined threshold limit and

zero transmission count are dropped. The node store time value with newly arrived message.

Hence, messages with high queue time than a pre-defined threshold limit and zero transmis-

sion count are dropped.

• Messages with expired time-to-dead (ttd) are dropped. When a node receives a message as a

final destination then it associates time-to-dead (ttd) to it. The Drop Expire Message Module

drop all messages with expired time-to-dead (ttd).

Priority Queue Based Reactive Buffer Management Policy
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Fig 4. Message transmitted and ttl not expires.

https://doi.org/10.1371/journal.pone.0191580.g004
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If after dropping aforementioned messages available buffer is not enough to accommodate

new message then Buffer Management Module (BMM) of Priority Queue Based-Reactive

(PQB-R) algorithm is executed. Algorithm 1 shows the functionality of Drop Expire Messages

Module.

Algorithm 1: Drop Expire Message Module
Triggered: When new message arrives and buffer overflows).
Input: BA, Local-Transmission-Count-Mi, TTD, Residual-Queue-Time (RQT)
Output: Drop expire messages
Procedure: Drop Expire Message Module ()
BEGIN
1: For EACH message Mi in B(ni) {
2: IF (LTC-Mi > LTCTH k (RQT-Mi > RQT-MiTH && LTC == 0) k TTD-Mi <= 0)

{
Drop-Message (Mi);
BA(ni) = BA(ni) + Misize); }}

3: IF (BA(ni) < Msize)
Buffer Management Module(); Invoke Buffer Management Module

END

5.2 Priority Queue Based Reactive Module

The responsibility of PQB-R is to drop previously stored messages such that the dropped

message has minimum effect on delivery ratio. Fig 5 depicts algorithmic flow where Buffer

Management Module (BMM) activates Priority Computation Module. The Priority Compu-

tation Module (PCM) classifies messages into source, relay and destine queues and assigns

them drop priorities. Then Buffer Management Module (BMM) invokes Message Drop

Module which drop a message and return size of dropped message to BMM. Finally,

BMM add the size of dropped message in available buffer BA. These iteration continues until

BA < Msize.

5.3 Buffer Management Module (BMM)

When Drop Expire Message Module is unable to accommodate new message then it activates

Buffer Management Module (BMM). The BMM invokes the Priority Computation Module

(PCM) where buffered messages are prioritize into queues. Then BMM invokes Message Drop

Module (MDM) which drop messages from destine, relay and source queues and return size

of dropped message to BMM. Finally, BMM, adds the size of dropped message into buffer

available (BA). The BMM calls MDM only if BA < Mnew. Algorithm 2 describes the operation

of BMM.

Algorithm 2: Buffer Management Module
Triggered: Activated by Drop Expire Message Module.
Input:BA, Mi, Msize
Output: Drop buffered messages
Procedure: Buffer Management Module ()
BEGIN
1: Priority Computation Module (PCM); //Invoke Priority Computation

Module
2: While(BA(ni) < Msize)
{ int MS = Message Drop Module(); //Call the MDM to drop message
BA(ni) = BA(ni) + MS);
}

END

Priority Queue Based Reactive Buffer Management Policy
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5.4 Priority Computation Module (PCM)

The existing buffer management policies assign drop priorities to messages by computing a

single metric. With this method, a fair selection to drop a message cannot be achieved. The Pri-

ority Computation Module is activated by Buffer Management Module (BMM). As shown in

Fig 5. The architecture PQB-Reactive Buffer Management Policy.

https://doi.org/10.1371/journal.pone.0191580.g005
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Fig 6, Priority Computation Module (PCM) splits the buffered messages into three queues

called as Reactive-Queue for Delivered Message (R-QDM), Reactive-Queue for Relay Mes-

sages (R-QRM) and Reactive-Queue for Source Message (R-QSM). Algorithm-03 shows the

functionality of Priority Computation Module.

5.4.1 The Reactive-Queue for Delivered Message (R-QDM). The Reactive-Queue for

Delivered Messages (R-QDM) holds messages delivered to a node as final destination. When a

node receives a message as final destination then its Time-to-Dead (TTD) is activated. The

R-QDM, store all messages having a remaining TTD value less than threshold limit (TTDTH).

The threshold has been defined to prevent the drop of recently delivered messages i.e. applica-

tion must be given some time to consume them. The high Drop Priority (DP) is assigned to

messages having minimum remaining TTD.

5.4.2 The Reactive Queue for Relay Message (R-PQRM). The Reactive Queue for Relay

Messages (R-PQRM) store relay messages. The Drop Priority (DP) for relay messages has been

computed by using message header data fields such as Message Size (MS), time-to-live (ttl),

Hop Count (HC) and Aggregated Redundancy Count (ARC). The following are reasons to

include these parameters:

Fig 6. Logical partition of queues Priority Computation Module (PCM).

https://doi.org/10.1371/journal.pone.0191580.g006
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• The message size has been included because a large size message requires large buffer space,

bandwidth and energy. Hence, congestion can be minimized by dropping fewer large size

messages instead of dropping large number of small size messages.

• The large Hop Count (HC) indicates that message has been replicated on multiple nodes

and can reach destination via multiple links. Therefore, dropping a message with large hop

count will reduce impact of dropped message on delivery ratio.

• The time-to-live defines lifetime of message. When ttl expires then messages are automati-

cally removed from network. A message with larger ttlelapsed indicates that it is near to expire

and dropping such message will not affect delivery ratio.

• The large value of ARC-Mi indicates that message has been redundantly existing on multiple

nodes. Therefore, dropping such message will not affect the delivery ratio.

Xn

i¼1

ðDP� MiÞrelay ¼
Xn

i¼1

1=ðMsize þ HC� Mi þ TTLelapsed þ ARC� MiÞ ð6Þ

Eq 6 has been used to compute the Drop Priority (DP) of relay messages (DP-Mi). Hence,

HC-Mi is hop count, TTLe lapsed is remaining Time-To-Live and Misize is size of message Mi.

Algorithm-01 shows the operation of PQB-Reactive-Priority Computation Module (R-PCM).

5.4.3 The Reactive-Queue Source Message (R-QSM). A source message is a message

which has been generated by node itself. A newly created source message has zero Hop Count.

The source messages have been given the drop priority by observing Residual Queue Time

(RQT).

Xn

i¼1

ðDP� MiÞsource ¼
Xn

i¼1

1=ðRQT � MiÞ ð7Þ

Eq 7 has been used to calculate drop priority for source messages (DP-Mi)source. In above

equation, lower drop priority (DP) indicates that message have been staying in buffer without

getting transmission opportunity. Algorithm 3 shows the operation of Priority Computation

Module (PCM).

Algorithm 3: Priority Computation Module (PCM)
Activated: Activated by Buffer Management Module (BMM).
Input: RQDM[], RQRM[], RQSM[], nodeni, BA, TB, MessagesMi, TTL, TTD,
CRT-Mi
Processing: Split the buffer into three queues as PQDM, PQRM, PRSM
Output: Queues with priorities
Procedure: Procedure Priority Computation Module (PCM)
BEGIN
1: For EACH message Mi in B(ni) {
2: IF (MDEST == ni)

TTD-Mi = (CT-Mi + TTL-Mi) − CUT;
3: IF (TTD-Mi > TTDTH) PQDM[index] = Mi; }
4: ELSE IF (MDEST != ni) {

Drop Priority (DP) (DPrelay) = 1/Misize + HC-Mi + TTLelapsed + Misize +
ARC-Mi);

PQRM[index] = Mi; //place message in relay queue }
5: ELSE IF (HC == 0) {

(DP-Mi)Source = 1/RQT;
PQSM[index] = Mi; // place message in source queue }

Index++; // increment index }
END
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5.4.4 Message Drop Module MDM). The Message Drop Module receives priority queues

from Reactive-Priority Computation Module (R-PCM) and drop one message starting from

R-QDM, then, R-QRM and finally R-QSM. After dropping message, MDM forward id of

dropped message to the Buffer Manager Module (BMM). Algorithm 4 shows the operation of

Message Drop Module.

Algorithm 4: Message Drop Module
Triggered: Buffer Management Module.
Input: Receives priority queues as RQDM [], RQRM[], RQSM[] from PCM
Processing: Drop message according to priority
Output: return size of dropped message to Reactive-Message Drop Module
(R-BMM)
Procedure: Message Drop Module ()
BEGIN
1: IF (PQDM.Size ( ) >0)
{
• Sort PQDM;
• FOR (index = 0; index <= PQDM.Size ( ); index++)
{
• Mid = PQDM[index];
• Delete-Message (Mid);
• return Midsize;
}
}

2: ELSE IF (PQRM.Size ( ) <0) {
• Sort PQRM;
• FOR (index = 0; index ¡= PQDM.Size ( ); index++)
{
• Mid = PQRM[index];
• Delete-Message (Mid);
• return Midsize
}
}

3: ELSE IF (PQSM.Size ( ) >0) {
• Sort PQSM
• FOR (index = 0; index != PQSM.Size ( ); index++)
{
• Mid = PQSM[index];
• Delete-Message (Mid);
• return Midsize
}
}

END

6 Simulation and results

The performance of routing protocols has been investigated using the ONE simulator [39].

ONE is a discrete event simulator written in Java and massively used by numerous scholars to

analyze disrupted store-carry-forward applications. The real time mobility trace of Helsinki

city Finland has been for evaluation existing and proposed buffer management policies.

6.1 Scenario-1: Time-to-live (ttl)

In Scenario-1, we have executed extensive simulations under time-to-live (ttl) parameters.

Table 1 shows the simulation settings for scenario-1.
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Fig 7 shows the results of overhead for proposed PQB-R and existing FIFO, MOFO, LIFO,

DLA, SHLI and WBD Buffer Management policies. The overhead has been growing with

increasing time-to-live (ttl). The reason is that at high ttl, messages got more transmission

opportunities. Under all ttl configurations (5hr, 6hr, 7hr, 8hr and 9hr), PQB-R has shown low

overhead compared to MOFO, LIFO, DLA, SHLI and WBD.

However, overhead has increased slightly compared to FIFO. Meanwhile, at 7hr, 8hr and

10hr the overhead of PQB-R has minor increase compared to FIFO and LIFO. This is because

FIFO and LIFO are less complex algorithms.

In all simulation instances, FIFO has shown minimum magnitude of overhead. The MOFO

at small TTL value like 5hr and 6hr has performed better than WBD. At high TTL such as 7hr,

8hr and 9hr, MOFO begins to perform better than DLA and SHLI. LIFO has low overhead

compared to PQB-R, FIFO and SHLI at 5hr and 6hr. At high TTL as 7hr, 8hr and 9hr LIFO

begins to perform better than DLA, SHLI and WBD. The DLA has shown lower overhead at

5hr and 6hr compared to MOFO and WBD. At high TTL intervals as 8hr and 9hr, DLA begins

to perform poorer than WBD and better than SHLI. The SHLI policy has low overhead at 5hr,

6hr compared to MOFO, LIFO, DLA and WBD. With high TTL, SHLI begins to perform

worse. The WBD has highest overhead in all comparisons. This is because WBD require high

processing to calculate the Drop Priority (DP) of a message.

Fig 8 portrays the results of existing and proposed PQB-R in terms of message delivery

ratio. Clearly, in all simulation instances as 5hr, 6hr, 7hr, 8hr and 9hr, the proposed PQB-R

has delivered more messages than FIFO, MOFO, LIFO, DLA and SHLI. The reason of

high delivery is due to selecting appropriate messages to drop and allocating more space

to incoming messages. Similarly, FIFO has better delivery compared to MOFO, LIFO,

DLA and SHLI. The MOFO has delivered minimum messages in all simulation instances.

The LIFO has delivered fewer messages than PQB-R, FIFO and delivered more messages

than MOFO, DLA and SHLI. The DLA at lower TTL as 5hr, 6hr and 7hr has delivered

fewer messages than LIFO, SHLI, WBD and more messages than MOFO. At high TTL as

8hr, 9hr, SHLI has delivered fewer messages than DLA and LIFO. In all simulation configu-

rations, WBD has delivered more messages than PQB-R, FIFO, MOFO, LIFO, DLA and

SHLI.

Table 1. Simulation setting of PQB-R by varying buffer size.

Parameters Values

Real Time Trace Map of downtown Helsinki, Finland

Group 1 -Nodes Types(speed) 80 Pedestrians (0.5–1.5km/h)

Group 2 -Nodes Types(speed) 40 Cars (2.7–13.9km/h)

Group 3 -Nodes Types(speed) 6 Trains -(7–10 km/h)

Mobility models for Pedestrians Shortest path map based movement model

Mobility models for Cars and trains Map Route Movement

Simulation Area 4500mx3400m

Routing Protocols Epidemic

Drop policies used PQB-R, DLA, FIFO, MOFO, SHLI, LIFO, WBD

Transmission Range 10m

Bandwidth 250KBps

Message Sizes Ranges [500KB- 1MB]

Message inter creation messages time [25s, 35s]

time-to-live (ttl) 300mins = 5hrs

Simulation Time 12hrs

https://doi.org/10.1371/journal.pone.0191580.t001

Priority Queue Based Reactive Buffer Management Policy

PLOS ONE | https://doi.org/10.1371/journal.pone.0191580 February 13, 2018 15 / 24

https://doi.org/10.1371/journal.pone.0191580.t001
https://doi.org/10.1371/journal.pone.0191580


Fig 7. Overhead vs time-to-live (ttl).

https://doi.org/10.1371/journal.pone.0191580.g007

Fig 8. Delivery ratio vs time-to-live (ttl).

https://doi.org/10.1371/journal.pone.0191580.g008
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Fig 9 shows the performance of existing and proposed buffer management policy in terms

of latency. In all simulation instances as 5hr, 6hr, 7hr, 8hr and 9hr, proposed PQB-R has deliv-

ered messages rapidly compared to all existing buffer management policies. The FIFO at 5hr,

6hr has shown less latency compared to MOFO, SHLI, WBD and high latency than PQB-R

and DLA.

At high TTL as 7hr, 8hr, 9hr, FIFO begins to perform better than DLA, SHLI, WBD and

LIFO. The MOFO has performed better with lower latency values compared to LIFO, SHLI

and WBD at 5hr, 6hr. With increasing TTL as 7hr, 8hr and 9hr, the MOFO has shown high

latency values than PQB-R, FIFO, LIFO and SHLI. The LIFO has high latency values com-

pared to PQB-R, FIFO, MOFO, LIFO, DLA, SHLI and low latency compared to WBD. The

DLA at low TTL as 5hr, 6hr has shown low latency values compared to FIFO, MOFO, LIFO,

SHLI and WBD. At higher TTL as 7hr, 9hr, the DLA has shown high latency values compared

to FIFO and SHLI respectively. The SHLI has lower latency at 5hr, 6hr compared to LIFO and

WBD. The SHLI begins minimize its latency values and at 9hr has visualized better than

MOFO, LIFO, SHLI and WBD. In all simulation instances, WBD has shown high value of

latencies.

Fig 10 shows the magnitude of message drop for existing and proposed PQB-R buffer man-

agement policy. It can be observed that with increase in TTL, message drop has been increased

for all buffer management policies. This is because with high life-time, messages got more

transmission opportunities and produce congestion that results in high drops.

The WBD has dropped huge number of messages under all simulation instances as 5hr,

6hr, 7hr, 8hr and 9hr. The PQB-R has dropped fewer messages compared to all buffer manage-

ment policies at 5hr, but dropped higher message than DLA and SHLI. At 8hr, PQB-R has

Fig 9. Latency vs time-to-live (ttl).

https://doi.org/10.1371/journal.pone.0191580.g009
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minimum drop than SHLI DLA and WBD. At highest TTL as 9hr, PQB-R has dropped fewer

messages than MOFO, DLA, SHLI and WBD.

The LIFO has dropped fewer messages at higher TTL as 8hr, 9hr than PQB-R, MOFO,

LIFO, DLA, SHLI and WBD. The DLA performs better compared to MOFO, FIFO, LIFO and

WBD at lower TTL as 5hr and 6hr. However, when TTL is increased as 7hr, 8hr and 10hr,

DLA start dropping more messages than PQB-R, FIFO, MOFO, LIFO and WBD. The SHLI

has dropped large amount of messages at 9hr and least at 5hr. In entire simulation configura-

tions, WBD has dropped more messages compared to all policies.

6.2 Scnario-2: Buffer size vs time-to-live (ttl)

In experiment-2 we have increased buffer size of nodes to monitor performance of proposed

PQB-R and existing FIFO, MOFO, LIFO, DLA, SHLI and WBD. Table 2 summarizes the sim-

ulation setting.

Fig 11 shows overhead of proposed and existing buffer management policies by increasing

buffer sizes. The proposed PQB-R has low overhead at 5MB, 6MB compared to MOFO, LIFO,

DLA, SHLI and WBD. The FIFO has outperformed all existing policies with minimum over-

head. The FIFO has low overhead in 7MB, 8MB, 9MB and proves that FIFO is better under

large buffer sizes. The MOFO at 5MB, 6MB has low overhead compared to WBD. However, at

large buffer sizes as 8MB, 9MB, MOFO has performed better than LIFO, DLA and WBD. The

LIFO at low buffer sizes as 5MB, 6MB and 7MB has low overhead compared to MOFO, DLA

and WBD. At high buffer sizes as 8MB, 9MB, MOFO has gained more overhead than FIFO,

MOFO, LIFO, SHLI and WBD. The DLA has performed worse at high buffer sizes as 8MB

and 9MB. At 5MB, 6MB, 7MB the DLA has performed better than MOFO and WBD. The

SHLI at 5MB, 6MB and 7MB has low overhead compared to MOFO, LIFO, DLA and WBD.

Fig 10. Drop vs time-to-live (ttl).

https://doi.org/10.1371/journal.pone.0191580.g010
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The SHLI begins to reduce its overhead at 8MB and 9MB. The WBD at 5MB, 6MB and 7MB

has high overhead compared to all buffer management policies. The SHLI at 9MB has low

overhead compared to LIFO and DLA.

Fig 12 has mapped results of delivery ratio for proposed PQB-R and existing FIOF, MOFO,

LIFO, DLA, SHLI and WBD buffer management policies. The PQB-R, at 5MB and 6MB has

Table 2. Simulation setting of PQB-R by varying buffer size.

Parameters Values

Real Time Trace Map of downtown Helsinki, Finland

Group 1 -Nodes Types(speed) 80 Pedestrians (0.5–1.5km/h)

Group 2 -Nodes Types(speed) 40 Cars (2.7–13.9km/h)

Group 3 -Nodes Types(speed) 6 Trains -(7–10 km/h)

Mobility models for Pedestrians Shortest path map based movement model

Mobility models for Cars and trains Map Route Movement

Simulation Area 4500mx3400m

Routing Protocols Epidemic

Drop policies used PQB-R, DLA, FIFO, MOFO, SHLI, LIFO, WBD

Transmission Range 10m

Bandwidth 250KBps

Message Sizes Ranges [500KB- 1MB]

Message inter creation messages time [25s, 35s]

time-to-live (ttl) 300mins = 5hrs

Simulation Time 12hrs

https://doi.org/10.1371/journal.pone.0191580.t002

Fig 11. Overhead vs buffer size.

https://doi.org/10.1371/journal.pone.0191580.g011

Priority Queue Based Reactive Buffer Management Policy

PLOS ONE | https://doi.org/10.1371/journal.pone.0191580 February 13, 2018 19 / 24

https://doi.org/10.1371/journal.pone.0191580.t002
https://doi.org/10.1371/journal.pone.0191580.g011
https://doi.org/10.1371/journal.pone.0191580


delivered more messages compared to FIFO, MOFO, KIFO, DLA and SHLI buffer manage-

ment policies. At 7MB, 9MB, FIFO has little bit higher delivery than PQB-R. The FIFO at

5MB, 6MB has performed poorly compared to PQB-R and WBD, but better than MOFO,

LIFO, DLA and SHLI. The FIFO has experienced high delivery ratios at 7MB and 9MB. The

MOFO has lower delivery at 5MB, 6MB compared to existing policies and performed better

than DLA at 7MB, 8MB and 9MB. The LIFO under all simulation instances has delivered

more messages than MOFO, DLA, SHLI, WBD and has delivered less messages than PQB-R,

FIFO and WBD.

Fig 13 shows latency for proposed PQB-R and existing FIFO, MOFO, LIFO, DLA, SHLI

and WBD buffer management policies. The PQB-R, at 5MB and 6MB has delivered messages

rapidly compared to FIFO, MOFO, LIFO, DLA, SHLI and WBD. The PQB-R at 7MB has

higher latency compared to DLA. At large buffer sizes as 9MB, PQB-R has shown minimum

delay. The FIFO at 5MB has low latency compared to SHLI and close to MOFO. At 6MB,

FIFO begins to deliver messages with higher delay than MOFO, SHLI and PQB-R. At high

buffer configurations as 7MB, 8MB, 9MB, the FIFO begins to perfume worse than PQB-R,

MOFO, DLA and SHLI. The MOFO has lower latency at 8MB, 9MB compared to PQB-R,

FIFO, LIFO, DLA, SHLI and WBD. The LIFO in all simulation instances as 5MB, 6MB, 7MB,

8MB and 9MB has experienced high delays compared to PQB-R, FIFO, MOFO, DLA and

SHLI and low delays than WBD. The WBD has performed worse and produced highest latency

levels

Fig 14 depicts the results of message drop for proposed PQB-R and existing FIFO, MOFO,

LIFO, DLA, SHLI and WBD buffer management policies. The PQB-R has dropped small num-

ber of message at buffer sizes as 5MB, 6MB and 8MB. At 7MB, PQB-R has dropped fewer mes-

sages than FIFO, MOFO, LIFO, WBD. At 9MB, PRQ-PR has dropped more messages than

Fig 12. Delivery vs buffer size.

https://doi.org/10.1371/journal.pone.0191580.g012
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Fig 13. Latency vs buffer size.

https://doi.org/10.1371/journal.pone.0191580.g013

Fig 14. Drop vs buffer size.

https://doi.org/10.1371/journal.pone.0191580.g014

Priority Queue Based Reactive Buffer Management Policy

PLOS ONE | https://doi.org/10.1371/journal.pone.0191580 February 13, 2018 21 / 24

https://doi.org/10.1371/journal.pone.0191580.g013
https://doi.org/10.1371/journal.pone.0191580.g014
https://doi.org/10.1371/journal.pone.0191580


FIFO, MOFO, SHLI and fewer messages than LIFO, DLA and WBD. The LIFO at 5MB, 6MB,

7MB has dropped more messages than MOFO, DLA, SHLI. At high buffer sizes, FIFO has

reduced message drop compared to DLA, WBD and LIFO. The MOFO at small buffer sizes as

5MB, 6MB has dropped small number of messages than FIFO, LIFO and WBD and more mes-

sage than PQB-R and DLA and SHLI. The MOFO has performed better at 9MB where it has

minimum drop compared to PQB-R, LIFO, FIFO, DLA and WBD. In all buffer configurations

as 5MB, 6MB, 7MB, 8MB and 9MB, LIFO has minimum drop than WBD and more drop than

PQB-R, FIFO, MOFO, DLA and SHLI. The DLA at 5MB, 6MB has dropped more messages

than PQB-R, SHLI and dropped fewer messages than FIFO, MOFO LIFO and WBD. The

SHLI at 9MB has outperformed all buffer management policies. The WBD has shown high

magnitude of message drop on all simulation instances.

7 Conclusion

In this paper we have proposed a buffer management policy known as Priority Queue Based

Reactive Buffer Management Policy for Delay Tolerant Network (PQB-R) to increase protocol

efficiency under limited buffer space. The PQB-R observe residual TTL, Hop Count (HC),

message-size (Msize) and Created Time (CT) to compute the message Drop Priority (DP) for

relay messages and TTL, CT and (Msize) for source messages. The experiments proved that

proposed PQB-R has performed better in terms of reducing latency, message drop, message

transmission and increasing delivery.
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