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Abstract

This paper mainly studies the globally fixed-time synchronization of a class of coupled neu-

tral-type neural networks with mixed time-varying delays via discontinuous feedback control-

lers. Compared with the traditional neutral-type neural network model, the model in this paper

is more general. A class of general discontinuous feedback controllers are designed. With

the help of the definition of fixed-time synchronization, the upper right-hand derivative and a

defined simple Lyapunov function, some easily verifiable and extensible synchronization cri-

teria are derived to guarantee the fixed-time synchronization between the drive and response

systems. Finally, two numerical simulations are given to verify the correctness of the results.

Introduction

The artificial neural network(ANN) is a very active frontier interdisciplinary, which has strong

engineering application background and great research potential. It has been widely used in

intelligent computing, pattern recognition, signal processing, associative memory, automatic

control, and so on [1–5]. In the process of using large-scale integrated circuits to form a neural

network, it inevitably leads to the emergence of various time-delays. These time-delays occur

not only in the current states of the system, but also in the derivatives of the past states, i.e.

there exists a neutral behavior in some systems. Scientific experiments show that the neutral

behaviors have a great impact on the system, which has prompted lots of scholars to study the

dynamics of neutral-type neural networks [6–11]. Furthermore, the synchronization of the

coupled system, such as coupled oscillators, is a basic phenomenon of nonlinear dynamics. A

series of papers have already studied the dynamic behaviors of coupled nonlinear oscillators,
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such as the dynamic behaviors of coupled Kuramoto oscillators with time delay [12], chimera

states of [13, 14], coexistence phenomena of coherence and incoherence [15], etc [16].

Along with mathematical models of various kinds of neural networks have been put forward,

the dynamic behavior of their structures and characteristics, such as the existence of the equilib-

rium points, the stability and boundedness of solutions, have attracted the wide attention and

research of many scholars in many fields [17–21]. In the real world, the synchronous discharge

of neurons is a universal phenomenon. For example, the synchronization in the visual cortex of

conscious monkeys [22], the synchronization of the hippocampus and the cerebral cortex dur-

ing the maze task [23], the synchronization of local brain regions in patients with Parkinson’s

disease [24], the synchronization of neurons in circadian clock [25–28], and so forth [29, 30].

Neural networks have more complex dynamic characteristics and chaos phenomena. This natu-

rally has made a lot of scholars to transform from the study of chaotic synchronization to neural

network synchronization. Synchronization problem can be seen as an extension of the stability

problem. And synchronization is a behavior of two or more dynamical systems under the

action of external driving or mutual coupling, and constantly adjusts their dynamic characteris-

tics to form a certain kind of overall consistency. At present, the main control methods to

achieve synchronization have drive-response control [31–36], feedback control [37], adaptive

control [38], impulsive control [39], intermittent control [40], sliding control [41] and pinning

control [42]. And the synchronization forms mainly include complete synchronization [43, 44],

lag synchronization [45–47], generalized synchronization [48, 49], etc [50, 51].

In many practical problems, finite-time synchronization is of interests rather than the syn-

chronization over infinite time. Here, there are two ways of understanding. One is finite-time

synchronization that means the system converges within a finite-time interval for given any

initial value, and different initial values result in different synchronization time; the other is

fixed-time synchronization that means the convergence time has a uniform upper-bounds for

all initial values within a defined interval. About the finite-time synchronization of neural net-

works, there has existed some literatures on this study. Ref. [52] investigated the finite-time

synchronization problem of a class of neutral complex dynamical networks with Markovian

switching by using pinning control technique. Ref. [53] studied the finite-time synchroniza-

tion for a class of the complex dynamical network with non-derivative and derivative coupling

and proposed a new finite-time synchronization theory. Refs. [54, 55] discussed the finite-

time synchronization problem of a class of complex dynamical network with coupled items.

Because the initial values of many practical systems are difficult to determine, the final settling

time in finite-time synchronization is not easy to be obtained. The fixed-time synchronization

theory can overcome this shortcoming. However, the references about the fixed-time synchro-

nization are relatively less. Ref. [56] studied the fixed-time master-slave synchronization of

Cohen-Grossberg neural networks, which contains only one kind of time-varying delay τ(t)
and has not coupling items. Ref. [57] studied the fixed-time synchronization control protocol

of multi-agent systems. Refs. [58–62] mainly focused on the fixed-time stability of some simple

nonlinear systems. For example, Ref. [61] considered the finite-time and fixed-time stability

control problems of linear multi-input system. But, there are few studies on the fixed-time syn-

chronization of coupling neutral-type neural networks with mixed time-varying delays.

Through the above discussions, the motivation of our research is summarized as follows:

(1) in the theory aspect, there is little research on the fixed-time synchronization problem of

dynamical neural network, especially the fixed-time synchronization of coupled neutral neural

networks with mixed delays; (2) in the application aspect, the fixed-time synchronization is

more suitable for practical application than the finite-time synchronization or asymptotic syn-

chronization. Because the settling time of the finite-time synchronization depends on the ini-

tial value of the system, but the initial value is not easy to obtain. And the settling time of
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asymptotic synchronization may be infinite. Motivated by the above discussions, this paper

studies the globally fixed-time synchronization control problem for the drive-response cou-

pling neutral-type neural network with mixed time-varying delays, which can achieve synchro-

nization in fixed time independent of the initial values. It has not been studied in the existing

references. The proposed coupled neutral-type neural networks is general and many models

can be considered as a special case of this model [7, 63–65]. According to the proposed model,

we design a general nonlinear and discontinuous control law which involves a variety of differ-

ent time-delays. During the proof process of the conclusion, a simple Lyapunov function is

constructed. With the aid of upper right-hand derivative, the definition of fixed-time synchro-

nization, and related lemmas, we obtain simple synchronization criteria of the drive-response

coupled neutral-type neural networks with mixed time-varying delays. The main contributions

are outlined as follows:

(1) The globally fixed-time synchronization problem for the drive-response coupling neutral-

type neural networks with mixed time-varying delays is studied. At present, there are few studies

on the globally fixed-time synchronization problem of coupled neutral-type neural networks.

(2) The network model we propose has not only neutral-type time-varying delays and dis-

crete time-varying delays, but also distributed time-varying delays. In addition, the coupling

term is also included in our model. Therefore, the obtained results in this paper are more gen-

eral than the aforementioned works.

(3) We design a class of new and general discontinuous fixed-time synchronization feed-

back controllers, define a simple Lyapunov function and derive some easily verifiable and

extensible synchronization criteria to achieve the fixed-time synchronization of drive-response

systems. The sufficient conditions in our results are more simple and easier to calculate than

other methods(such as LMI method).

(4) Two simulation examples are given to verify the validity of the main theorem and

corollary.

The rest of this paper is organized as follows. Section 2 introduces the coupled neutral-type

neural network model, some definitions and lemmas about fixed-time synchronization. Sec-

tion 3 gives the fixed-time synchronization controller and derives the sufficient conditions to

ensure the drive-response system to achieve fixed-time synchronization. Two numerical exam-

ples to verify the main results are given in Section 4. Finally, we summarize the paper and put

forward the prospect in Section 5.

Network model and preliminaries

In this section, we will give the mathematical model of the coupled neutral-type neural network,

some assumptions, definitions, and lemmas about the fixed-time synchronization problem.

Network model

Inspired by Ref. [66, 67], the mathematical model of coupled neutral-type neural network

which contains N identical networks in this paper is given as follows:

_xiðtÞ ¼ di _xiðt � t1ðtÞÞ � cixiðtÞ þ
Xn

j¼1

aijf ðxiðtÞÞ

þ
Xn

j¼1

bijgðxiðt � t2ðtÞÞÞ þ
Xn

j¼1

hij

Z t

t� t3ðtÞ
qðxiðsÞÞds

þk
XN

l¼1

milGxlðtÞ þ Ii; i ¼ 1; 2; � � � ;N;

ð1Þ

Fixed-time synchronization of coupled neutral-type neural network
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with initial conditions

xiðtÞ ¼ �ðtÞ; t 2 ½� t; 0�;

t ¼ max
t2½� t;0�

ft1ðtÞ; t2ðtÞ; t3ðtÞg;

where xi(t) = [xi1(t), xi2(t), � � �, xin(t)]T is the state variable of the ith neutral-type neural network.

D = diag{d1, d2, � � �, dn}, A = (aij)n×n, B = (bij)n×n, H = (hij)n×n are state time-varying delays feed-

back connection weight matrices of the neurons, respectively, and τ1(t), τ2(t), τ3(t) are time-vary-

ing delays. C = diag{c1, c2, � � �, cn} is the state self-feedback diagonal matrix. I = [I1, I2, � � �, IN]T is

the external input vector. f(x) = [f(xi1(t)), f(xi2(t)), � � �, f(xin(t))]T, g(x) = [g(xi1(t)), g(xi2(t)), � � �,
g(xin(t))]T, q(x) = [q(xi1(t)), q(xi2(t)), � � �, q(xin(t))]T are activation functions. κ denotes the

coupling strength. M = (mil)N×N is the outer coupling matrix defined as follows: if there

exist communications between two neural networks via an edge, then mil = 1; otherwise, mil = 0,

i 6¼ l, meanwhile, mil = mli. And M satisfies dissipation condition, i.e. mii ¼ �
PN

l¼1;l6¼i mil.

Γ = diag{γ1, γ2, � � �, γn} is the inner coupling matrix, where γi> 0, i = 1, 2, � � �, n.

Let the network model (1) be the drive system, and the corresponding response system is

formulated as

_yiðtÞ ¼ di _yiðt � t1ðtÞÞ � ciyiðtÞ þ
Xn

j¼1

aijf ðyiðtÞÞ

þ
Xn

j¼1

bijgðyiðt � t2ðtÞÞÞ þ
Xn

j¼1

hij

Z t

t� t3ðtÞ
qðyiðsÞÞds

þk
XN

l¼1

milGylðtÞ þ Ii þ uiðtÞ;

ð2Þ

with initial conditions

yiðtÞ ¼ φðyiðtÞÞ; t 2 ½� t; 0�;

t ¼ max
t2½� t;0�

ft1ðtÞ; t2ðtÞ; t3ðtÞg;

where yi(t) = [yi1(t), yi2(t), � � �, yin(t)]T is the state variable of the ith neutral-type neural net-

work. ui(t) = [ui1, ui2, � � �, uin]T is the controller to be designed in main results. The other

parameters are the same as the model (1).

For the parameters of drive-response systems (1) and (2) throughout this paper, we intro-

duce the following assumptions.

Assumption 1. The activation functions f(x), g(x), q(x) are Lipschitz continuous, i.e. there

exist Lipschitz constants fi, gi, qi, i = 1, 2, � � �, n satisfying the following conditions.

jf ðyiÞ � f ðxiÞj � fijyi � xij;

jgðyiÞ � gðxiÞj � gijyi � xij;

jqðyiÞ � qðxiÞj � qijyi � xij:

And F = diag{f1, f2, � � �, fn}, G = diag{g1, g2, � � �, gn}, Q = diag{q1, q2, � � �, qn}.

Fixed-time synchronization of coupled neutral-type neural network
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Denote the error system ei(t) = yi(t) − xi(t), and the dynamical equation of ei(t) can be

expressed as

_eiðtÞ ¼ di _eiðt � t1ðtÞÞ � cieiðtÞ þ
Xn

j¼1

aijðf ðyiðtÞÞ � f ðxiðtÞÞÞ

þ
Xn

j¼1

bijðgðyiðt � t2ðtÞÞ � gðxiðt � t2ðtÞÞÞÞ

þ
Xn

j¼1

hij

Z t

t� t3ðtÞ
ðqðyiðsÞÞ � qðxiðsÞÞÞds

þk
XN

l¼1

milGelðtÞ þ uiðtÞ;

ð3Þ

with the initial conditions

eiðtÞ ¼ φðtÞ � �ðtÞ; t 2 ½� t; 0�;

t ¼ max
t2½� t;0�

ft1ðtÞ; t2ðtÞ; t3ðtÞg:

Definitions and lemmas

In this subsection, we will introduce some definitions and lemmas related to the fixed-time

synchronization. They are necessary in the process of derivation of the main results.

Suppose the origin be an equilibrium of (3) (if the equilibrium is not origin, we can move

the equilibrium point to the origin through the translation transformation.)

Definition 1. ([60]) The origin of system (3) is said to be globally uniformly finite-time stable

if it is globally uniformly asymptotically stable and there exists a locally bounded function

T : Cn
½� t; 0� ! Rþ [ f0g, such that e(t, e0(t)) = 0 for all t� T(e0(t)), where e(�, e0(t)) is an

arbitrary solution of the error system (3). The function T is called the settling-time function.

Definition 2. ([59]) The origin of error system (3) is said to be globally fixed-time stable

if it is globally uniformly finite-time stable and the settling-time T is globally bounded, i.e.

9Tmax 2 Rþ such that Tðe0ðtÞÞ � Tmax; 8e0ðtÞ 2 R
n:

Definition 3. If e(t) is Lyapunov stable, then the drive-response systems (1) and (2) are said

to achieve globally fixed-time synchronization if there exists T(e0(t)) in some finite time such

that

lim
t!Tðe0ðtÞÞ

keðtÞk ¼ 0;

eðtÞ ¼ 0;8t � Tðe0ðtÞÞ

Tðe0ðtÞÞ � Tmax; 8e0ðtÞ 2 C
n
½� t; 0�:

8
>>>><

>>>>:

Remark 1. In the Definition 1, e(t) = 0) y(t) = x(t), ui(t) to be designed is a function of ei(t)
and ui(t) = 0 when ei(t) = 0.

Remark 2. According to the Definition 1 and Definition 2, we can see the main difference

between finite-time stability and fixed-time stability is whether the settling time is independent

to the initial value. The settling-time of fixed-time stability is independent to the initial value.

Fixed-time synchronization of coupled neutral-type neural network
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Remark 3. From the Definition 2 and Definition 3, we can conclude the globally fixed-time

stability of system (3) is equivalent to the fixed-time synchronization of systems (1) and (2).

Lemma 1. [59] If there exists a continuous radically unbounded function V : Rn ! Rþ [ f0g
such that (1) V(x) = 0) x = 0. (2) Any solution e(t) of system (3) satisfies

_V ðeðtÞÞ � � aVpðeðtÞÞ � bVqðeðtÞÞ; ð4Þ

for some a, b> 0, p> 1, 0< q< 1, where _V denotes the derivative of V. Then,

VðeðtÞÞ ¼ 0; t � Tðe0Þ;

with the settling time bounded by

Tðe0Þ � Tmax ¼
1

aðp � 1Þ
þ

1

bð1 � qÞ
: ð5Þ

Lemma 2. [68] If there exists a continuous radically unbounded function V : Rn ! Rþ [ f0g
such that 1) V(x) = 0) x = 0. 2) Any solution e(t) of system (3) satisfies

_V ðeðtÞÞ � � aVpðeðtÞÞ � bVqðeðtÞÞ ð6Þ

for some a; b > 0; p ¼ 1 � 1

2r
; q ¼ 1þ 1

2r
; r > 1, where _V denotes the derivative of V. Then the

origin is globally fixed-time stable for system (3) and more exact estimation of the settling time

can be obtained as

Tðe0Þ � Tmax ¼
pr
ffiffiffiffiffi
ab
p : ð7Þ

Lemma 3. [69] Let a1, a2, � � �, aN� 0, 0< p� 1, q> 1, then the following two inequalities

hold

XN

i¼1

ap
i �

�XN

i¼1

ai

�p
;
XN

i¼1

aq
i � N1� q

�XN

i¼1

ai

�q
:

Main results

In this section, we will design the controller u(t) and deduce some sufficient conditions in

order to achieve fixed-time synchronization of neutral-type neural networks (1) and (2).

The nonlinear controller in response system (2) is designed as follows:

uiðtÞ ¼ � signðeiðtÞÞðxijeiðtÞj þ o1ij _eiðt � t1ðtÞÞj

þo2ijeiðt � t2ðtÞÞj þ o3i

Z t

t� jt3ðtÞj
jeiðsÞjds

þkijeiðtÞj
a
þ rijeiðtÞj

b
Þ;

ð8Þ

where sign(�) denotes sign function, X = diag{ξ1, ξ2, � � �, ξn}, O1 = diag{ω11, ω12, � � �, ω1N}, O2 =

diag{ω21, ω22, � � �, ω2N}, O3 = diag{ω31, ω32, � � �, ω3N}, K = diag{k1, k2, � � �, kn}, R = diag{r1, r2,

� � �, rn}, α> 1, 0< β< 1 are constants.

Fixed-time synchronization of coupled neutral-type neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0191473 January 25, 2018 6 / 22

https://doi.org/10.1371/journal.pone.0191473


Replacing error system (3) with ui(t) and according to Assumption 1, we have

_eiðtÞ ¼ di _eiðt � t1ðtÞÞ � cieiðtÞ þ
Xn

j¼1

aijðf ðyiðtÞÞ � f ðxiðtÞÞÞ

þ
Xn

j¼1

bijðgðyiðt � t2ðtÞÞ � gðxiðt � t2ðtÞÞÞÞ

þ
Xn

j¼1

hij

Z t

t� t3ðtÞ
ðqðyiðsÞÞ � qðxiðsÞÞÞds

þk
XN

l¼1

milGelðtÞ þ uiðtÞ

� di _eiðt � t1ðtÞÞ � cieiðtÞ þ
Xn

j¼1

aijfieiðtÞ

þ
Xn

j¼1

bijgieiðt � t2ðtÞÞ þ
Xn

j¼1

hijqi

Z t

t� t3ðtÞ
eiðsÞds

þk
XN

l¼1

milGelðtÞ � signðeiðtÞÞðxijeiðtÞj

þo1ij _eiðt � t1ðtÞÞj þ o2ijeiðt � t2ðtÞÞj

þo3i

Z t

t� jt3ðtÞj
jeiðsÞjdsþ kijeiðtÞj

a
þ rijeiðtÞj

b
Þ:

ð9Þ

Theorem 1. Suppose Assumption 1 holds, then the drive-response systems (1) and (2) can

achieve globally fixed-time synchronization under the controller (8) if the following conditions

hold:

Xn

j¼1

aijfi � ci � xi < 0;

di � o1i < 0;

Xn

j¼1

bijgi � o2i < 0;

Xn

j¼1

hijqi � o3i < 0;

i ¼ 1; 2; � � � ;N:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð10Þ

Moreover,

lim
t!Tmax

keðtÞk ¼ 0; eðtÞ ¼ 0; 8t � Tmax;

and the settling time given as

Tmax ¼
1

ða � 1Þmin1�i�NfkiN
1 � a

2 g

þ
1

ð1 � bÞmin1�i�Nfrig
:

ð11Þ

Fixed-time synchronization of coupled neutral-type neural network
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Proof. Consider a Lyapunov function defined by

VðeiðtÞÞÞ ¼
XN

i¼1

jeiðtÞj: ð12Þ

Calculate the upper right-hand derivative of V(ei(t)) along the error system (3) and replace

the inequality (9) with _eiðtÞ, we can obtain

_VþðeiðtÞÞ ¼
XN

i¼1

signðeiðtÞÞ _eiðtÞ

�
XN

i¼1

signðeiðtÞÞ

 

di _eiðt � t1ðtÞÞ � cieiðtÞ þ
Xn

j¼1

aijfieiðtÞ

þ
Xn

j¼1

bijgieiðt � t2ðtÞÞ þ
Xn

j¼1

hijqi

Z t

t� t3ðtÞ
eiðsÞdsþ k

XN

l¼1

milGelðtÞ

� signðeiðtÞÞ
�

xijeiðtÞj þ o1ij _eiðt � t1ðtÞÞj þ o2ijeiðt � t2ðtÞÞj

þo3i

Z t

t� jt3ðtÞj
jeiðsÞjdsþ kijeiðtÞj

a
þ rijeiðtÞj

b
�
!

�
XN

i¼1

dij _eiðt � t1ðtÞÞj �
XN

i¼1

cijeiðtÞj

þ
XN

i¼1

Xn

j¼1

aijfijeiðtÞj þ
XN

i¼1

Xn

j¼1

bijgijeiðt � t2ðtÞÞj

þ
XN

i¼1

Xn

j¼1

hijqi

Z t

t� jt3ðtÞj
jeiðsÞjdsþ k

XN

i¼1

XN

l¼1

milGjelðtÞj �
XN

i¼1

xijeiðtÞj

�
XN

i¼1

o1ij _eiðt � t1ðtÞÞj �
XN

i¼1

o2ijeiðt � t2ðtÞÞj

�
XN

i¼1

o3i

Z t

t� jt3ðtÞj
jeiðsÞjds �

XN

i¼1

kijeiðtÞj
a
�
XN

i¼1

rijeiðtÞj
b

�
XN

i¼1

ð
Xn

j¼1

aijfi � ci � xiÞjeiðtÞj

þ
XN

i¼1

ðdi � o1iÞj _eiðt � t1ðtÞÞj þ
XN

i¼1

ð
Xn

j¼1

bijgi � o2iÞjeðt � t2Þj

þ
XN

i¼1

ð
Xn

j¼1

hijqi � o3iÞ

Z t

t� jt3ðtÞj
jeiðsÞjds

�
XN

i¼1

kijeiðtÞj
a
�
XN

i¼1

rijeiðtÞj
b
:
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According to the conditions (10) and Lemma 3, we have

_VþðeðtÞÞ � �
XN

i¼1

kije
a

i ðtÞj �
XN

i¼1

rije
b

i ðtÞj

� � min
1�i�N
fkig

XN

i¼1

jeiðtÞj
a
� min

1�i�N
frig

XN

i¼1

jeij
b

� � min
1�i�N
fkiN

1� agVaðeðtÞÞ � min
1�i�N
frigV

bðeðtÞÞ

Taking a = min1�i�N{kiN1−α}, b = min1�i�N{ri}, p = α, q = β, then p> 1, 0< q< 1 and

from Lemma 3, we have V(e(t)) = 0, t� Tmax and the settling time Tmax is given as follows:

Tmax ¼
1

ða � 1Þmin1�i�NfkiN
1 � a

2 g

þ
1

ð1 � bÞmin1�i�Nfrig
:

Thus, we complete the proof.

Corollary 1. According to Lemma 2., if a ¼ 1 � 1

2r
; b ¼ 1þ 1

2r
; r > 1, the setting time in

Theorem 1 can be rewritten as the following form:

Tmax ¼
pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min1�i�NfkiN1� agmin1�i�Nfrig

p :

Remark 4. Our proposed model is more general than the other models in some literatures

[52, 56, 70]. When coupling strength κ = 0, model (1) is changed into the common neutral-

type neural networks without coupling items. When di = 0, the model becomes the common

neural networks without neutral items. For these special circumstances, we have the following

corollaries.

Corollary 2. Suppose Assumption 1 holds and the coupling strength κ = 0 in the drive-

response system (1) and (2), then they can achieve a globally fixed-time synchronization under

the controller (8) if the inequality conditions (10) hold.

Remark 5. In the proof of Theorem 1, the coupling item is removed according to the dissi-

pativeness of coupling matrix M. Therefore, the information of coupling item is not included

in the synchronization conditions of Theorem 1 and Corollary 2.

When di = 0 in the drive-response systems (1) and (2), we define the following controller

uiðtÞ ¼ � signðeiðtÞÞðxijeiðtÞj þ o2ijeiðt � t2ðtÞÞj

þo3i

Z t

t� jt3ðtÞj
jeiðsÞjdsþ kijeiðtÞj

a
þ rijeiðtÞj

b
Þ:

ð13Þ

Corollary 3. Suppose the Assumption 1 holds and di = 0 in the drive-response system (1)

and (2), then they can achieve globally fixed-time synchronization under the controller (13) if
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the following conditions hold:

Xn

j¼1

aijfi � ci � xi < 0;

Xn

j¼1

bijgi � o2i < 0;

Xn

j¼1

hijqi � o3i < 0:

i ¼ 1; 2; � � � ;N:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð14Þ

When hi = 0 in the drive-response systems (1) and (2), we modify (8) as the following con-

troller

uiðtÞ ¼ � signðeiðtÞÞðxijeiðtÞj þ o1ij _eiðt � t1ðtÞÞj

þo2ijeiðt � t2ðtÞÞj þ kijeiðtÞj
a
þ rijeiðtÞj

b
Þ:

ð15Þ

Corollary 4. Suppose Assumption 1 holds and hi = 0 in the drive-response system (1) and

(2), then they can achieve the globally fixed-time synchronization under the controller (15) if

the following conditions hold:

Xn

j¼1

aijfi � ci � xi < 0;

di � o1i < 0;

Xn

j¼1

bijgi � o2i < 0;

i ¼ 1; 2; � � � ;N:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð16Þ

Remark 6. In the Corollaries 1-3, the settling time Tmax is the same as that in Theorem 1

because this two parameters α, β have not changed.

By modifying designed controller (8), we can obtain the fixed-time synchronization of the

drive-response systems. The modified controller is given as follows

uiðtÞ ¼ � signðeiðtÞÞðxijeiðtÞj þ o1ij _eiðt � t1ðtÞÞj

þo2ijeiðt � t2ðtÞÞj þ o3i

Z t

t� jt3ðtÞj
jeiðsÞjdsþ rijeiðtÞj

b
Þ:

ð17Þ

where 0< β< 1, the other parameters are the same as those in the controller (8).

Corollary 5. Suppose Assumption 1 holds and hi = 0 in the drive-response systems (1) and

(2), then they can achieve the globally finite-time synchronization under the controller (17) if

the conditions (10) hold in the Theorem 1. Moreover,

lim
t!Tmax

keðtÞk ¼ 0; eðtÞ ¼ 0; 8t � Tmax;
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and the settling time is given as

Tmax ¼

PN
i¼1
jeið0Þj

1� b

ð1 � bÞmin1�i�Nfrig
:

Remark 7. Compared with existing research on the fixed-time synchronization [56, 57, 71],

although the theoretical framework of fixed-time is derived from the research of Polyakov et,

al. [59–61], they study different system models. In this paper, we study the globally fixed-time

synchronization of the coupling neutral-type neural networks with mixed time-varying delays,

which no one seems to have studied such a model.

Numerical examples

In order to verify the rightness of the theoretical results, we give two numerical examples.

Example 1: Consider the following two-dimensional neutral-type neural network with three

identical neurons:

_xiðtÞ ¼ di _xiðt � t1ðtÞÞ � cixiðtÞ þ
X2

j¼1

aijf ðxiðtÞÞ þ
X2

j¼1

bijgðxiðt � t2ðtÞÞÞ

þ
X2

j¼1

hij

Z t

t� t3ðtÞ
qðxiðsÞÞdsþ k

X3

l¼1

milGxlðtÞ þ Ii; i ¼ 1; 2; 3:

ð18Þ

The corresponding response system is shown below:

_yiðtÞ ¼ di _yiðt � t1ðtÞÞ � ciyiðtÞ þ
X2

j¼1

aijf ðyiðtÞÞ þ
X2

j¼1

bijgðyiðt � t2ðtÞÞÞ

þ
X2

j¼1

hij

Z t

t� t3ðtÞ
qðyiðsÞÞdsþ k

X3

l¼1

milGylðtÞ þ Ii þ uiðtÞ; i ¼ 1; 2; 3:

ð19Þ

where the time-varying delays are τ1(t) = τ2(t) = 0.5|sin(t)|, τ3(t) = 0.5|cos(t)|, f(ei(t)) = g(ei(t)) =

h(ei(t)) = tanh(ei(t)). Other parameters in the model (18) are chosen as follows:

D ¼ diagf0:6; 0:8g;C ¼ diagf0:5;0:6g;A ¼
0:2 0:3

0:5 1

2

4

3

5;B ¼
0:5 0:4

0:6 0:3

2

4

3

5;

H ¼
0:3 0:2

0:2 1

2

4

3

5; I ¼ ½0:1; 0:1�T ; F ¼ diagf1; 1g;G ¼ diagf1; 1g;H ¼ diagf1; 1g

M ¼

� 2 1 1

1 � 2 1

1 1 � 2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;G ¼

1 0

0 1

2

4

3

5; k ¼ 2:
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According to the conditions (10) in Theorem 1, the parameters of controller (8) are set as

follows:

X ¼ diagf5; 5g;O1 ¼ diagf2;2g;O2 ¼ diagf2;2g;

O3 ¼ diagf2; 2g;K ¼ diagf4; 3g;R ¼ diagf3; 4g; a ¼ 1:25; b ¼ 0:25:

The initial values of (18) and (19) are x1(t0) = [0.5 + sin(t), cos(t) − 0.5]T, x2(t0) = [sin(t)
− 0.5, 0.5 + cos(t)]T, x3(t0) = [sin(t), cos(t)]T, y1(t0) = [0.1 + sin(t), cos(t) − 0.1]T, y2(t0) = [sin(t)
− 0.1, 0.1 + cos(t)]T, y3(t0) = [0.5 + sin(t), cos(t) − 0.5]T.

When no controller ui(t) is added into the system, the trajectories of the drive system (18)

and the response system (19), and the phase diagram of the first neuron for the drive-response

systems are shown in Figs 1, 2, 3 and 4.

When using controller ui(t), the trajectories and the error curves of the drive-response sys-

tems (18) and (19) are shown in the following Figs 5, 6, 7 and 8.

From the Eq (11), we can calculate the settling-time Tmax� 1.9740.

Remark 8. Obviously, from Figs 1–4, we can see that the drive-response systems (18) and

(19) can not reach the synchronization state when the controller (8) is not used. However,

when the controller (8) is used, the drive-response systems achieve synchronization, which is

easy to see from Figs 5–8. The simulation results verify the effectiveness of Theorem 1.

Next, we verify the rightness of Corollary 4. through the following example.

Example 2: Consider the following two-dimensional drive neutral-type neural network:

_xðtÞ ¼ D _xðt � t1ðtÞÞ � CxðtÞ þ Af ðxðtÞÞ þ Bgðxðt � t2ðtÞÞÞ; ð20Þ

Fig 1. The first dimensional trajectories of the drive system (18) with initial conditions x1(t0) = [0.5 + sin(t), cos(t)
− 0.5]T, x2(t0) = [sin(t) − 0.5, 0.5 + cos(t)]T, x3(t0) = [sin(t), cos(t)]T and response system (19) with initial conditions

y1(t0) = [0.1 + sin(t), cos(t) − 0.1]T, y2(t0) = [sin(t) − 0.1, 0.1 + cos(t)]T, y3(t0) = [0.5 + sin(t), cos(t) − 0.5]T when no

controller (8).

https://doi.org/10.1371/journal.pone.0191473.g001
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Fig 2. The second dimensional trajectories of the drive system (18) with initial conditions x1(t0) = [0.5 + sin(t),

cos(t) − 0.5]T, x2(t0) = [sin(t) − 0.5, 0.5 + cos(t)]T, x3(t0) = [sin(t), cos(t)]T and response system (19) with initial

conditions y1(t0) = [0.1 + sin(t), cos(t) − 0.1]T, y2(t0) = [sin(t) − 0.1, 0.1 + cos(t)]T, y3(t0) = [0.5 + sin(t), cos(t) − 0.5]T

when no controller (8).

https://doi.org/10.1371/journal.pone.0191473.g002

Fig 3. The phase diagram of the first neuron(x11 − x12) of the drive system (18) with initial conditions x1(t0) = [0.5

+ sin(t), cos(t) − 0.5]T, x2(t0) = [sin(t) − 0.5, 0.5 + cos(t)]T, x3(t0) = [sin(t), cos(t)]T when no controller (8).

https://doi.org/10.1371/journal.pone.0191473.g003
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Fig 4. The phase diagram of the first neuron (y11 − y12) of the response system (19) with initial conditions y1(t0) =

[0.1 + sin(t), cos(t) − 0.1]T, y2(t0) = [sin(t) − 0.1, 0.1 + cos(t)]T, y3(t0) = [0.5 + sin(t), cos(t) − 0.5]T when no controller

(8).

https://doi.org/10.1371/journal.pone.0191473.g004

Fig 5. The the first dimensional trajectories of drive-response systems (18) and (19) with initial conditions x1(t0) =

[0.5 + sin(t), cos(t) − 0.5]T, x2(t0) = [sin(t) − 0.5, 0.5 + cos(t)]T, x3(t0) = [sin(t), cos(t)]T and response system (19) with

initial conditions y1(t0) = [0.1 + sin(t), cos(t) − 0.1]T, y2(t0) = [sin(t) − 0.1, 0.1 + cos(t)]T, y3(t0) = [0.5 + sin(t), cos(t)
− 0.5]T under the controller (8).

https://doi.org/10.1371/journal.pone.0191473.g005

Fixed-time synchronization of coupled neutral-type neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0191473 January 25, 2018 14 / 22

https://doi.org/10.1371/journal.pone.0191473.g004
https://doi.org/10.1371/journal.pone.0191473.g005
https://doi.org/10.1371/journal.pone.0191473


Fig 6. The second dimensional trajectories of with initial conditions x1(t0) = [0.5 + sin(t), cos(t) − 0.5]T, x2(t0) =

[sin(t) − 0.5, 0.5 + cos(t)]T, x3(t0) = [sin(t), cos(t)]T and response system (19) with initial conditions y1(t0) = [0.1 +

sin(t), cos(t) − 0.1]T, y2(t0) = [sin(t) − 0.1, 0.1 + cos(t)]T, y3(t0) = [0.5 + sin(t), cos(t) − 0.5]T under the controller (8).

https://doi.org/10.1371/journal.pone.0191473.g006

Fig 7. The first dimensional error curves (ei1, i = 1, 2, 3) of drive-response systems (18) and (19) with the

controller (8).

https://doi.org/10.1371/journal.pone.0191473.g007
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and the response system as

_yðtÞ ¼ D _yðt � t1ðtÞÞ � CyðtÞ þ Af ðyðtÞÞ þ Bgðyðt � t2ðtÞÞÞ ð21Þ

where τ1(t) = 0.2 + 0.5|sin(t)|, τ2(t) = 0.3 + 0.6|cos(t)|, f(x) = tanh(x), g(x) = 0.5(|x + 1| − |x − 1|).

Other parameters in the model (20) are chosen as follows:

D ¼ diagf0:2;0:2g;C ¼ diagf3:6; 3:6g;A ¼
0:1 0:2

0:3 1

2

4

3

5;B ¼
1:2 0:1

0:1 1:2

2

4

3

5;

According to the conditions (16) in Corollary 4, the parameters of controller (15) are set as

follows:

X ¼ diagf1; 1g;O1 ¼ diagf1; 1g;O2 ¼ diagf1; 1g;

K ¼ diagf2; 2g;R ¼ diagf3; 3g; a ¼ 1:5; b ¼ 0:5:

The initial conditions of (20) and (21) are x(t0) = [3 + sin(t), 2 − cos(t)]T, y(t0) = [1 − 2sin(t),
1 + cos(t)]T.

The corresponding results are shown in Figs 9 and 10.

Similarly, we can calculate the settling-time Tmax� 1.6667 from the Eq (11).

Remark 9. The synchronization of nonlinear systems, including neural networks, has many

potential practical applications, such as synchronization-based secure communication, signal

transmission, automatic control, pattern recognition, etc. In these applications, it is sometimes

necessary to accomplish a certain task within a finite/fixed time. For example, in robotics con-

trol, we need to drive the robot to reach a specified position at a given time [72]; in a traffic

Fig 8. The second dimensional error curves (ei2, i = 1, 2, 3) of drive-response systems (18) and (19) with the

controller (8).

https://doi.org/10.1371/journal.pone.0191473.g008
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Fig 9. The trajectories of drive-response systems (20) and (21) with initial conditions x(t0) = [3 + sin(t), 2 −
cos(t)]T, y(t0) = [1 − 2sin(t), 1 + cos(t)]T under the controller (15).

https://doi.org/10.1371/journal.pone.0191473.g009

Fig 10. The error curves of drive-response systems (20) and (21) under the controller (15).

https://doi.org/10.1371/journal.pone.0191473.g010
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dynamics of signalized intersections network, the intersections must be automatically regu-

lated in a fixed time [73]. Therefore, the study of this paper has some practical significance.

Conclusion

In this paper, the globally fixed-time synchronization problem of a class of coupled neutral-

type neural networks with mixed time-varying delays is studied. The proposed network model

is more general than the model of earlier publications. A general discontinuous feedback con-

troller is designed to guarantee the drive-response systems to achieve fixed-time synchroniza-

tion. By virtue of the definition of fixed-time synchronization, some lemmas, the upper right-

hand derivative of discontinuous function, and a simple Lyapunov function, some fixed-time

synchronization criteria are obtained through mathematical derivation. Some corollaries

about the fixed-time synchronization and some special cases of proposed model have been

also given. Finally, the effectiveness of the proposed theorem and corollaries has been validated

by two numerical examples. For future research topics, (1) more simple controllers and more

easily validated conditions will be studied to guarantee the fixed-time synchronization of neu-

tral-type neural networks or other complex dynamics networks; (2) based on some existing lit-

eratures [74], we will consider the problem of fixed-time synchronization of neural-type

neural networks with stochastic factors or Markovian jump; (3) considering that the neuron

model studied in this paper is to artificial, we will investigate some classical physical-biological

models, as shown in Refs. [75, 76].
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42. Yu W, Chen G, Lü J. On pinning synchronization of complex dynamical networks. Automatica. 2009; 45

(2):429–435. https://doi.org/10.1016/j.automatica.2008.07.016

43. Lin W, He Y. Complete synchronization of the noise-perturbed Chuaś circuits. Chaos: An Interdisciplin-

ary Journal of Nonlinear Science. 2005; 15(2):023705. https://doi.org/10.1063/1.1938627

44. Lopes LM, Fernandes S, Grácio C. Complete synchronization and delayed synchronization in cou-

plings. Nonlinear Dynamics. 2015; 79(2):1615–1624. https://doi.org/10.1007/s11071-014-1764-8

45. Gu C, Wang J, Wang J, Liu Z. Mechanism of phase splitting in two coupled groups of suprachiasmatic-

nucleus neurons. Physical Review E Statistical Nonlinear & Soft Matter Physics. 2011; 83(2):046224.

https://doi.org/10.1103/PhysRevE.83.046224

46. Totz JF, Snari R, Yengi D, Tinsley MR, Engel H, Showalter K. Phase-lag synchronization in networks of

coupled chemical oscillators. Physical Review E. 2015; 92(2):022819. https://doi.org/10.1103/

PhysRevE.92.022819

47. Al-mahbashi G, Noorani MM, Bakar S, Al-sawalha MM. Robust projective lag synchronization in drive-

response dynamical networks via adaptive control. The European Physical Journal Special Topics.

2016; 225(1):51–64. https://doi.org/10.1140/epjst/e2016-02620-1

48. Ouannas A, Odibat Z. Generalized synchronization of different dimensional chaotic dynamical systems

in discrete time. Nonlinear Dynamics. 2015; 81(1-2):765–771. https://doi.org/10.1007/s11071-015-

2026-0

Fixed-time synchronization of coupled neutral-type neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0191473 January 25, 2018 20 / 22

https://doi.org/10.1103/PhysRevE.93.032414
https://doi.org/10.1103/PhysRevE.93.032414
http://www.ncbi.nlm.nih.gov/pubmed/27078397
https://doi.org/10.1038/srep21412
http://www.ncbi.nlm.nih.gov/pubmed/26898574
https://doi.org/10.1126/science.aaa3245
https://doi.org/10.1126/science.aaa3245
http://www.ncbi.nlm.nih.gov/pubmed/25931556
https://doi.org/10.1016/j.tins.2015.11.004
https://doi.org/10.1016/j.tins.2015.11.004
http://www.ncbi.nlm.nih.gov/pubmed/26763659
https://doi.org/10.1103/PhysRevLett.64.821
http://www.ncbi.nlm.nih.gov/pubmed/10042089
https://doi.org/10.1038/srep28878
http://www.ncbi.nlm.nih.gov/pubmed/27358024
https://doi.org/10.1038/srep37661
https://doi.org/10.1038/srep37661
http://www.ncbi.nlm.nih.gov/pubmed/27869182
https://doi.org/10.1063/1.4989385
https://doi.org/10.1063/1.4989385
http://www.ncbi.nlm.nih.gov/pubmed/28679229
https://doi.org/10.1016/S0096-3003(01)00318-6
https://doi.org/10.1109/81.633887
https://doi.org/10.1063/1.3071933
https://doi.org/10.1063/1.3071933
https://doi.org/10.1016/j.physa.2007.08.039
https://doi.org/10.1016/j.physa.2007.08.039
https://doi.org/10.1016/j.automatica.2008.07.016
https://doi.org/10.1063/1.1938627
https://doi.org/10.1007/s11071-014-1764-8
https://doi.org/10.1103/PhysRevE.83.046224
https://doi.org/10.1103/PhysRevE.92.022819
https://doi.org/10.1103/PhysRevE.92.022819
https://doi.org/10.1140/epjst/e2016-02620-1
https://doi.org/10.1007/s11071-015-2026-0
https://doi.org/10.1007/s11071-015-2026-0
https://doi.org/10.1371/journal.pone.0191473


49. Wang S, Wang X, Han B. Complex Generalized Synchronization and Parameter Identification of Non-

identical Nonlinear Complex Systems. PloS one. 2016; 11(3):e0152099. https://doi.org/10.1371/

journal.pone.0152099 PMID: 27014879

50. Vaidyanathan S, Azar AT. Anti-synchronization of Identical Chaotic Systems Using Sliding Mode Con-

trol and an Application to Vaidyanathan–Madhavan Chaotic Systems. In: Advances and Applications in

Sliding Mode Control systems. Springer; 2015. p. 527–547.

51. Wu W, Zhou W, Chen T. Cluster synchronization of linearly coupled complex networks under pinning

control. Circuits and Systems I: Regular Papers, IEEE Transactions on. 2009; 56(4):829–839. https://

doi.org/10.1109/TCSI.2008.2003373

52. Liu X, Yu X, Xi H. Finite-time synchronization of neutral complex networks with Markovian switching

based on pinning controller. Neurocomputing. 2015; 153:148–158. https://doi.org/10.1016/j.neucom.

2014.11.042

53. Xu Y, Zhou W, Fang J, Xie C, Tong D. Finite-time synchronization of the complex dynamical network

with non-derivative and derivative coupling. Neurocomputing. 2016; 173:1356–1361. https://doi.org/10.

1016/j.neucom.2015.09.008

54. He P, Ma SH, Fan T. Finite-time mixed outer synchronization of complex networks with coupling time-

varying delay. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2012; 22(4):043151. https://

doi.org/10.1063/1.4773005

55. Li D, Cao J. Finite-time synchronization of coupled networks with one single time-varying delay cou-

pling. Neurocomputing. 2015; 166:265–270. https://doi.org/10.1016/j.neucom.2015.04.013

56. Wan Y, Cao J, Wen G, Yu W. Robust fixed-time synchronization of delayed Cohen–Grossberg neural

networks. Neural Networks. 2016; 73:86–94. https://doi.org/10.1016/j.neunet.2015.10.009 PMID:

26575975

57. Zhou Y, Sun C. Fixed time synchronization of complex dynamical networks. In: Proceedings of the

2015 Chinese Intelligent Automation Conference. Springer; 2015. p. 163–170.

58. Cruz-Zavala E, Moreno JA, Fridman LM. Uniform robust exact differentiator. Automatic Control, IEEE

Transactions on. 2011; 56(11):2727–2733. https://doi.org/10.1109/TAC.2011.2160030

59. Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. Automatic

Control, IEEE Transactions on. 2012; 57(8):2106–2110. https://doi.org/10.1109/TAC.2011.2179869

60. Polyakov A, Efimov D, Perruquetti W. Finite-time and fixed-time stabilization: Implicit Lyapunov function

approach. Automatica. 2015; 51:332–340. https://doi.org/10.1016/j.automatica.2014.10.082

61. Polyakov A, Efimov D, Perruquetti W. Robust stabilization of MIMO systems in finite/fixed time. Interna-

tional Journal of Robust and Nonlinear Control. 2016; 26(1):69–90. https://doi.org/10.1002/rnc.3297

62. Lu W, Liu X, Chen T. A note on finite-time and fixed-time stability. Neural Networks. 2016; 81:11–15.

https://doi.org/10.1016/j.neunet.2016.04.011 PMID: 27239892

63. Dai Y, Cai Y, Xu X. Synchronization criteria for complex dynamical networks with neutral-type coupling

delay. Physica A: Statistical Mechanics and its Applications. 2008; 387(18):4673–4682. https://doi.org/

10.1016/j.physa.2008.03.024

64. Zhu Q, Zhou W, Zhou L, Wu M, Tong D. Mode-dependent projective synchronization for neutral-type

neural networks with distributed time-delays. Neurocomputing. 2014; 140:97–103. https://doi.org/10.

1016/j.neucom.2014.03.032

65. Xu Y, Xie C, Tong D. Adaptive synchronization for dynamical networks of neutral type with time-delay.

Optik-International Journal for Light and Electron Optics. 2014; 125(1):380–385. https://doi.org/10.

1016/j.ijleo.2013.08.002

66. Liu Y, Wang Z, Liang J, Liu X. Synchronization of coupled neutral-type neural networks with jumping-

mode-dependent discrete and unbounded distributed delays. Cybernetics, IEEE Transactions on.

2013; 43(1):102–114. https://doi.org/10.1109/TSMCB.2012.2199751

67. Wang W, Li L, Peng H, Wang W, Kurths J, Xiao J, et al. Anti-synchronization of coupled memristive neu-

tral-type neural networks with mixed time-varying delays via randomly occurring control. Nonlinear

Dynamics. 2016; 83(4):2143–2155. https://doi.org/10.1007/s11071-015-2471-9

68. Parsegov S, Polyakov A, Shcherbakov P. Nonlinear fixed-time control protocol for uniform allocation of

agents on a segment. In: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE;

2012. p. 7732–7737.

69. Khalil HK, Grizzle J. Nonlinear systems. vol. 3. Prentice hall New Jersey; 1996.

70. Wang L, Shen Y. Finite-time stabilizability and instabilizability of delayed memristive neural networks

with nonlinear discontinuous controller. Neural Networks and Learning Systems, IEEE Transactions on.

2015; 26(11):2914–2924. https://doi.org/10.1109/TNNLS.2015.2460239

Fixed-time synchronization of coupled neutral-type neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0191473 January 25, 2018 21 / 22

https://doi.org/10.1371/journal.pone.0152099
https://doi.org/10.1371/journal.pone.0152099
http://www.ncbi.nlm.nih.gov/pubmed/27014879
https://doi.org/10.1109/TCSI.2008.2003373
https://doi.org/10.1109/TCSI.2008.2003373
https://doi.org/10.1016/j.neucom.2014.11.042
https://doi.org/10.1016/j.neucom.2014.11.042
https://doi.org/10.1016/j.neucom.2015.09.008
https://doi.org/10.1016/j.neucom.2015.09.008
https://doi.org/10.1063/1.4773005
https://doi.org/10.1063/1.4773005
https://doi.org/10.1016/j.neucom.2015.04.013
https://doi.org/10.1016/j.neunet.2015.10.009
http://www.ncbi.nlm.nih.gov/pubmed/26575975
https://doi.org/10.1109/TAC.2011.2160030
https://doi.org/10.1109/TAC.2011.2179869
https://doi.org/10.1016/j.automatica.2014.10.082
https://doi.org/10.1002/rnc.3297
https://doi.org/10.1016/j.neunet.2016.04.011
http://www.ncbi.nlm.nih.gov/pubmed/27239892
https://doi.org/10.1016/j.physa.2008.03.024
https://doi.org/10.1016/j.physa.2008.03.024
https://doi.org/10.1016/j.neucom.2014.03.032
https://doi.org/10.1016/j.neucom.2014.03.032
https://doi.org/10.1016/j.ijleo.2013.08.002
https://doi.org/10.1016/j.ijleo.2013.08.002
https://doi.org/10.1109/TSMCB.2012.2199751
https://doi.org/10.1007/s11071-015-2471-9
https://doi.org/10.1109/TNNLS.2015.2460239
https://doi.org/10.1371/journal.pone.0191473


71. Cao J, Li R. Fixed-time synchronization of delayed memristor-based recurrent neural networks. Science

China Information Sciences. 2017; 60(3):032201. https://doi.org/10.1007/s11432-016-0555-2

72. Haimo VT. Finite Time Controllers. Siam Journal on Control & Optimization. 2014; 24(4):760–770.

https://doi.org/10.1137/0324047

73. Muralidharan A, Pedarsani R, Varaiya P. Analysis of fixed-time control. Transportation Research Part

B. 2015; 73:81–90. https://doi.org/10.1016/j.trb.2014.12.002

74. Zhu Q, Rakkiyappan R, Chandrasekar A. Stochastic stability of Markovian jump BAM neural networks

with leakage delays and impulse control. Neurocomputing. 2014; 136:136–151. https://doi.org/10.1016/

j.neucom.2014.01.018

75. Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI. Dynamical principles in neuroscience.

Reviews of Modern Physics. 2006; 78(4):1213–1265. https://doi.org/10.1103/RevModPhys.78.1213

76. Dhamala M, Jirsa VK, Ding M. Enhancement of Neural Synchrony by Time Delay. Physical Review Let-

ters. 2004; 92(7):074104. https://doi.org/10.1103/PhysRevLett.92.074104 PMID: 14995856

Fixed-time synchronization of coupled neutral-type neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0191473 January 25, 2018 22 / 22

https://doi.org/10.1007/s11432-016-0555-2
https://doi.org/10.1137/0324047
https://doi.org/10.1016/j.trb.2014.12.002
https://doi.org/10.1016/j.neucom.2014.01.018
https://doi.org/10.1016/j.neucom.2014.01.018
https://doi.org/10.1103/RevModPhys.78.1213
https://doi.org/10.1103/PhysRevLett.92.074104
http://www.ncbi.nlm.nih.gov/pubmed/14995856
https://doi.org/10.1371/journal.pone.0191473

