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Abstract

In this paper, a support vector machine (SVM) model which can be used to predict the com-

pressive strength of mortars exposed to sulfate attack was established. An accelerated cor-

rosion test was applied to collect compressive strength data. For predicting the compressive

strength of mortars, a total of 638 data samples obtained from experiment was chosen as a

dataset to establish a SVM model. The values of the coefficient of determination, the mean

absolute error, the mean absolute percentage error and the root mean square error were

used for evaluating the predictive accuracy. The main factors affecting the predicted com-

pressive strength were obtained by sensitivity analysis. A SVM model was calibrated, vali-

dated, and finally established. Moreover, the performance of the SVM model was compared

to an artificial neural network (ANN) model. Results show that the prediction values from the

SVM model were close to the experimental values; the main factors sensitive to concrete

compressive strength were exposure time, water-cement ratio and sulfate ions; the perfor-

mance of the SVM model was better than the ANN model. The SVM model developed in

this study can be potentially used for predicting the compressive strength of cement-based

materials servicing in harsh environments.

Introduction

Concrete is an important structural material being used in civil engineering and industrial

facilities. The strength of concrete is considered as one of the most important property for a

given concrete mix design. Besides the constituent of materials, the strength is also affected by

environmental exposure and extreme working conditions [1]. In harsh environments, espe-

cially the areas with abundant sulfate ions, the properties of concrete materials can easily dete-

riorate, which could affect the safety of engineering structures [2]. For the safety assessment of

existing structures, compressive strength is often considered as the most important indicator

of concrete quality [3, 4]. Monitoring concrete strength during service can give an idea about

the time for concrete quality control and performance maintenance [5]. In addition, predicting

concrete strength can be helpful in assessing the deterioration of concrete structures and
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increasing their safety [6]. Thus, methods for predicting and estimating real-time concrete

strength are important. Unfortunately, due to the complex degradation mechanisms and mul-

tiple influencing parameters [7], there is no effective method to predict compressive strength

of cement-based materials in harsh environments.

To date, there are two categories about the prediction of concrete compressive strength [8].

The first category is traditional mathematics statistical forecasting methods. It needs a huge

amount of data. When the sample data tends to infinity, it tends to predict real results, but the

actual number of samples is often limited. The second category, nonlinear prediction methods,

lacks a unified mathematical theory. The predicted results are often a partial optimal solution,

rather than a global optimal solution. For conventional concrete, the above categories can all

be used to predict the values of compressive strength, but for concrete exposed to sulfate attack

as the number of input factor increases, the relationship between the input factors and the

compressive strength becomes highly nonlinear and complex. Hence, the regression models

are not suitable for predicting the values of compressive strength of concrete in harsh environ-

ments. Therefore, more attentions have been paid to models based on artificial intelligence.

Machine learning techniques, such as artificial neural network (ANN) is increasingly used to

simulate the strength of concrete materials and has become an important research area [9–12].

An ANN model is usually consisted of inputs, weights, sum function, activation function

and outputs. The related algorithms require setting up of different learning parameters, the

optimal number of nodes in the hidden layer and the number of hidden layers. Until now,

back-propagation (BP) algorithm, which adjusts connection weights and bias values during

training, has been widely used for training an ANN model. However, ANN models still have

disadvantages: (1) The information about the relative significance of the various parameters

cannot be provided [13]; (2) A reasonable interpretation of the overall structure of the network

is hard to be established [14]. In addition, ANN models have some intrinsic disadvantages

such as slow convergence speed, less generalizing effectiveness, arriving at local minimum and

over-fitting problems [15]. To overcome those limitations, in recent years, researchers have

explored the potential of support vector machine (SVM) in performance of cement-based

materials.

SVM, a nonlinear modeling approach, proposed based on the statistical theory by Vapnik

[16] is being applied in the field of civil engineering. Unlike ANN models, a SVM model has

the advantage of reducing training error and being a unique and globally optimum [17]. The

method has excellent generalization capability when solving non-linear problems. It can also

overcome the problem of small sample size. For example, Yan and Shi [18] used SVM to pre-

dict the elastic modulus of normal and high strength concrete. The analytical results showed

that the SVM outperformed other models. Chou et al. [19] predicted the compressive strength

of high performance concrete by using the SVM technique, and the behavior simulation capa-

bility of SVM was investigated using concrete data from several countries. Cheng et al. [20]

proposed an advanced hybrid AI model that fused fuzzy logic, weight SVM and fast messy

genetic algorithms to predict compressive strength of concrete. Gupta [21] investigated the

potential use of SVM for predicting CCS by combining radial basis function with SVM.

There have been few studies on the prediction of the compressive strength of cement-based

materials exposed to sulfate attack using SVM. Most of these studies established the prediction

models of concrete compressive strength mainly based on the material factors (e.g., water-

binder ratio, water content and aggregate content) and curing age [9–12, 18–20]. However, for

concrete subjected to service in a harsh environment, environmental factors are of great

importance to the compressive strength and should be considered in the compressive strength

prediction models.

Approach for predicting the compressive strength of cement-based materials
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To accurately predict the concrete compressive strength using SVM, a data set with a large

amount of experimental data is required. Compared to field testing, the indoor accelerated

corrosion testing can be performed with a controlled environment and thus has been widely

applied to quickly obtain the compressive strength of concrete [22, 23].

In this study, support vector machine was applied to predict the compressive strength of

cement-based materials exposed to sulfate attack. To establish a SVM model for predicting

compressive strength, the accelerated corrosion test of mortars with different water-cement

(w/c) ratios was carried out, and 638 sets of data from our experiment was collected. The SVM

model was first calibrated and then validated. The values of the coefficients of determination

(R2), the mean absolute error (MAE), and the mean absolute percentage error (MAPE) and

the root mean square error (RMSE) were used for evaluating the predictive accuracy. Further-

more, the main factors that influence the predicted compressive strength were obtained by

sensitivity analysis. Finally, the performance of the SVM model was further evaluated by com-

parison with an ANN model.

Methodology

2.1 Theory of SVM

The essence of SVM is to map data samples with highly nonlinear relationships in the low-

dimensional space onto a high-dimensional space. The data samples are classified according to

the principle of risk structure optimization. The regression function f (x, w) is expressed by the

following equation:

f ðx;oÞ ¼
Xn

j¼1
oj � gjðxÞ þ b ð1Þ

where gj(x) is a mapping function, ωj is the weight coefficient, b is the threshold.

According to the principle of structural risk minimization, regression optimization con-

straints can be expressed as:

min
1

2
kok

2
þ c
Xn

i¼1
ðεi þ εjÞ ð2Þ

subject to

yi � f ðxi;oÞ � εþ ε
�
i

f ðxi;oÞ � yi � εþ ε
�
i

εi; ε
�
i � 0; i ¼ 1 . . . . . . . . . n

8
><

>:

where c is the penalty parameter, εi and ε�i are the slack variables, ε is the insensitive loss

function.

Then, the optimization problem can be transformed into a dual problem and the regression

function can be written as:

f ðx; wÞ ¼
Xnsv

i¼1
ðai � a�i Þkðx; xiÞ þ b ð3Þ

subject to : 0 � a�i � c; 0 � ai � c

where nsv is the number of support vectors; k(x, xi) is the kernel function; αi and a�i are the

Lagrange multipliers; c is the penalty parameter. a�i can be obtained by solving the above con-

strained optimization problem. Threshold value b can be calculated by a�i .
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2.2 Calculation process

The MATLAB software was used to implement the SVM model. The calculation process of the

SVM model is shown in Fig 1.

1. Determine the training dataset

T ¼ fðx1; y1Þ; � � � ; ðxl; ylÞg 2 ðX� YÞl ð4Þ

where, {xi, yi}i = 1, xi 2 Rn is the factor of influencing the compressive strength of group

i; yi 2 Rn is the expected output intensity value of group i from the training data.

2. Choose the appropriate kernel function and solve the optimization problem

In this study, radial basis function (RBF) is chosen for the kernel function:

Kðx; xiÞ ¼ expð� gammakx � xik
2
Þ ð5Þ

According to the principle of structure optimization, the regression optimization goal is

expressed as:

mina 1

2

Xj

i¼1

Xl

j¼1
yiyjaiajexpð� gammakxi � xjk

2
Þ �

Xl

j¼1
aj ð6Þ

subject to
Xl

i¼1

yiai ¼ 0; 0 � ai � c; i ¼ 1; 2; . . . ; l

Fig 1. Calculation process of SVM.

https://doi.org/10.1371/journal.pone.0191370.g001
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Then, the optimal solution can be calculated as:

a� ¼ ða�
1
; . . . ; a�l Þ

T
ð7Þ

where c is the penalty parameter; -gamma (g) is the kernel function parameter.

3. Optimize the parameter

The punishing of parameter c and kernel function parameter g would directly affect the pre-

diction results. However, there is so far no a best way to determine the c and g. In this study,

the parameters c and g were obtained by a K-fold crossover algorithm [24]. All the average

prediction accuracy is CV. When CV achieves the best accuracy, c and g are the optimum

parameters. Then the optimal solution a� was solved according to the type of the optimal

constraint.

4. Calculate the threshold value

The threshold b� is calculated by the equation as follow:

b� ¼ yj �
Xl

i¼1
yia
�

i Kðxi � xjÞexpð� gammakxi � xjk
2
Þ ð8Þ

5. Construct decision function

After parameters a�, b� and g having been determined, further calculation is carried out as

follow:

f ðxÞ ¼ sgnð
Xl

i¼1
oiexpðgkxi � xk2

Þ þ b�Þ ð9Þ

where x is the prediction data.

2.3 Performance evaluation methods

The R2, MAE, MAPE and RMSE were used to evaluate the prediction accuracy of the SVM

model [25]. R2 is a measure of how well the independent variables approximate the measured

dependent variable, while MAE, MAPE and RMSE are used as a measure of differences

between the values predicted by the model. Low values of MAE, MAPE and RMSE, and high

values of R2 are generally indicative of a good performance. They are defined as follows:

R2 ¼
ðn
P

yiy �
P

yi

P
yÞ2

ðn
P

yi
2 � ð

P
yi

2ÞÞ ðn
P

y2 � ð
P

yÞ2Þ
ð10Þ

MAE ¼
1

n

Xn

i¼1
jy � yij ð11Þ

MAPE ¼
1

n

Xn

i¼1
j
y � yi

y
j ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðy � yiÞ

2

r

ð13Þ

where y and yi are the actual value and predicted value, respectively; n is the number of data

samples.
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Experimental program

3.1 Materials

Type II ordinary Portland (P II 52.5) cement purchased from China United Cement Corpora-

tion was used in this study. The chemical composition and mineral original composition of

cement are shown in Tables 1 and 2, respectively. ISO standard sand with a density of 2.58 g/

cm3 obtained from Xiamen standard sand Co., Ltd. was used as fine aggregate. The maximum

sizes of the sands were 4.75 mm. A superplasticizer (SP) with 36.8 wt% solid content was pur-

chased from Jiangsu Sobute New materials Co. Ltd. and its water-reducing ratio was 29.8%.

Tap water was used in concrete mixtures and curing application in this study. Na2SO4, analyti-

cally pure, obtained from China Guoyao Chemical Company, is used to prepare different con-

centrations of sodium sulfate solutions.

3.2 Mix proportion and specimens preparation

Three types of mortar (M65, M50, M28) with respective w/c ratio of 0.65, 0.50 and 0.28 were

designed and the compositions is shown in Table 3. After the fresh concrete was prepared, the

mixtures were cast into 40 × 40 × 160 mm steel moulds and compacted on a vibrating table.

The samples were demoulded 24 hours after casting. After demoulding, the specimens were

cured in a curing room (Temperature = 20 ± 2˚C, RH > 95%) for 90 days.

3.3 Accelerated deterioration test

After curing for 90 days, the specimens were degraded in a constant temperature and constant

humidity box (Shanghai Jinghong Experimental Equipment Co., Ltd.), which temperature

range is from 20˚C to 80˚C, and humidity range is from 50% to 95%. Three different

Table 1. The chemical composition of cement (%).

Type CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O other Loss on ignition

Cement 64.47 20.34 4.83 3.41 2.09 2.01 0.75 1.34 0.76 1.03

https://doi.org/10.1371/journal.pone.0191370.t001

Table 2. The mineral original composition of cement (%).

C3S C2S C3A C4AF Gypsm other

55.8 19.2 6.7 10.4 5.3 2.6

https://doi.org/10.1371/journal.pone.0191370.t002

Table 3. Mixing proportions of mortar and corrosion solutions.

Type w/c Cement/g Water/g Sand/g SP/g Sulfate/wt%

M65-S1 0.65 385 250 1500 0 2%

M65-S2 0.65 385 250 1500 0 10%

M65-S3 0.65 385 250 1500 0 16.3%

M50-S1 0.50 450 225 1450 0 2%

M50-S2 0.50 450 225 1450 0 10%

M50-S3 0.50 450 225 1450 0 16.3%

M28-S1 0.28 680 190 1350 1.8 2%

M28-S2 0.28 680 190 1350 1.8 10%

M28-S3 0.28 680 190 1350 1.8 16.3%

https://doi.org/10.1371/journal.pone.0191370.t003
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concentrations of sodium sulfate (2%, 10%, 16.3%) were used for the corrosion solutions. To

accelerate the deterioration process, a dry-wet circulation method was also adopted. According

to Chinese national standard GB/T 749–2008 [26], the dry-wet circulation test is that all the

cured concrete specimens were fully immersed in the corrosion solutions for 8 hours at

20±2˚C and then dried for 16 hours at 50±2˚C in a relative humidity of 60%.

3.4 Measurement of compressive strength

A uniaxial compression test was carried out to measure the compressive strength of specimens.

The test was carried out according to the Chinese national standard GB/T 50081–2002 [27]. It

was performed by using a Material Testing Simulation machine (Wuxi Jianyi Instrument and

Equipment Co., Ltd.) press with a capacity of 300 kN in compression and was carried out at a

rate of 2.4 kN/s using three specimens for each deterioration age.

Results and discussion

4.1 Compressive strength after deterioration

The compressive strengths of mortars exposed to sulfate attack are shown in Fig 2. The results

show that the compressive strength values of all specimens gently increased in the early stages.

This increase is probably because sulfate ions diffuse slowly into specimens, and the specimens

have not been corroded by the sulfate ions. When sulfate ions start to react with cement hydra-

tion products to form expanded products (gypsum and ettringite) with larger volumes than

Fig 2. Relationship between the compressive strength and cyclic numbers.

https://doi.org/10.1371/journal.pone.0191370.g002
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the reactants, the pore structures become denser due to the increasing volume of the expanded

products in the early stage of deterioration [28]. With the increasing amounts of expanded

products, the compressive strength values decreased gradually. Fig 2 also shows that, the

greater the w/c ratios, the larger the descent rates of compressive strength. These different

decreasing rates of compressive strength can be caused by the different sulfate resistances of

specimens with different micro-pores characteristics and porosity values. The sulfate resistance

is higher with a lower w/c ratio. For mortar with a lower w/c ratio, the pore structure is much

denser, and the ion diffusivity is lower, and thus the amounts of sulfate ions reacting with the

hydration products are smaller.

4.2 Data preprocessing

To successfully develop a SVM model to predict the compressive strength, sufficient experi-

mental data is needed. In this study, the experimental data set was collected from laboratory

test and 638 sample data were prepared. A total of 550 sample data were used for model train-

ing, and 88 sample data were used for model testing. The database examples are shown in

Table 4.

The training data set was used to calibrate the model with 10 input variables, and the testing

data set was used to estimate the model’s performance. As shown in Table 4, the following

input variables were used: w/c ratio, cement content (C, %), water content (W, %), sand

content (S, %), sulfate ions concentration (SO4
2-, wt%), wetting temperature (Wet-T, ˚C), wet-

ting time (Wet-t, hours), drying temperature (Dry-T, ˚C), drying time (Dry-t, hours), and

exposure time (Exp-t, days). Ultimate compressive strength (Fm, MPa) was used as the output

parameter.

Table 4. Database examples.

w/c C/% W/% S/% SO4
2-/wt% Wet-T/˚C Wet-t/h Dry-T/˚C Dry-t/h Exp-t/d Fm/MPa

0.65 18 12 70 2 20 8 50 16 0 36.51

0.65 18 12 70 2 20 8 50 16 180 29.59

0.65 18 12 70 10 20 8 50 16 60 34.53

0.65 18 12 70 10 20 8 50 16 240 15.76

0.65 18 12 70 16.3 20 8 50 16 90 25.97

0.65 18 12 70 16.3 20 8 50 16 180 15.54

0.50 21.18 10.59 68.23 2 20 8 50 16 60 57.18

0.50 21.18 10.59 68.23 2 20 8 50 16 240 47.13

0.50 21.18 10.59 68.23 10 20 8 50 16 90 53.18

0.50 21.18 10.59 68.23 10 20 8 50 16 300 34.52

0.50 21.18 10.59 68.23 16.3 20 8 50 16 10 57.02

0.50 21.18 10.59 68.23 16.3 20 8 50 16 150 45.11

0.28 30.63 8.55 60.81 2 20 8 50 16 50 90.36

0.28 30.63 8.55 60.81 2 20 8 50 16 210 84.58

0.28 30.63 8.55 60.81 10 20 8 50 16 110 85.21

0.28 30.63 8.55 60.81 10 20 8 50 16 290 72.87

0.28 30.63 8.55 60.81 16.3 20 8 50 16 160 80.52

0.28 30.63 8.55 60.81 16.3 20 8 50 16 330 58.47

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notes: w/c: water-cement ratio, C: cement content, %; W: water content, %; S: sand content, %; SO4
2-, sulfate concentration, wt%; Wet-T, wetting temperature, ˚C; Wet-

t: wetting time, h; Dry-T, drying temperature, ˚C; Dry-t: drying time, h; Exp-t: exposure time, days; Fm: ultimate compressive strength, MPa.

https://doi.org/10.1371/journal.pone.0191370.t004
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4.3 Optimum parameters determining

As shown in Fig 3, the mean square error (MSE) was calculated by crossover operation train-

ing in the search range of c and g (search range: 2−8 ~ 28). When the CVmse achieved 0.0038,

the optimal penalty parameter c was 1, and the optimum parameter of the radial basis kernel g
was 0.3299. According to the report of Yassi and Moattar [24], a smaller c and g will cause

under-fitting, while a bigger c and g will cause over-fitting. Both of them will affect the general-

ization ability of the model.

4.4 Prediction performance

Based on the experimental data, a SVM model was established to learn the complicated inter-

relationships between compressive strength and varied input variables. For convenient com-

parison purposes, the scatter diagrams of the experimental and predicted results are plotted in

Figs 4 and 5. It can be seen that most predicted points are close to the experimental values.

Fig 3. Results of parameter optimization.

https://doi.org/10.1371/journal.pone.0191370.g003

Fig 4. Comparison of experimental results to predicted results of SVM (Training dataset).

https://doi.org/10.1371/journal.pone.0191370.g004
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Figs 6 and 7 show the observed versus predicted compressive strength produced by the SVM

model. Results show that both the computational values of training data and testing data fitted

well with their corresponding experimental values. Moreover, the R2, MAE, MAPE and RMSE

between the experimental and computational results can be calculated by Eqs (10), (11), (12)

and (13). The coefficient of determination of training data was 0.9994, while the coefficient of

determination of testing data was 0.9991. The MAE were all less than 3.1 MPa, the MAPE

were all less than 3.8%, and the RMSE of training data and testing data were less than 3.6 MPa.

These results indicate that the SVM model has a good performance in predicting compressive

strength of mortars exposed to sulfate attack.

4.5 Sensitivity analysis

To assess the changes in the output caused by the input changes of the SVM model, a sensitiv-

ity analysis was performed. According to the calculation method developed by Liong et al., the

sensitivity of an input parameter can be calculated by the following formula [29].

S %ð Þ ¼
1

n

Xn

j¼1

%change in output
%change in input

� �

j

ð14Þ

Fig 5. Comparison of experimental results to predicted results of SVM (Testing dataset).

https://doi.org/10.1371/journal.pone.0191370.g005

Fig 6. Observed versus predicted compressive strength produced by the SVM model (Training dataset).

https://doi.org/10.1371/journal.pone.0191370.g006
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where n is the number of data points. The sensitivity analysis was carried out on the model by

varying each of input parameters, one at a time, at a constant rate of 20%, while the other

input parameters were maintained. The greater the variation that is observed in the output

means that greater sensitivity is presented with respect to the input value. The sensitivity analy-

sis results are shown in Fig 8. Results show that the exposure time, w/c ratio and sulfate con-

centration were found to be sensitive to the predicted compressive strength. Within these

factors, the exposure time was the most sensitive factor that affects the predicted compressive

strength.

4.6 Comparison with ANN model

4.6.1 Training of ANN. A comparative study between the SVM model and ANN model

was carried out. An ANN is composed of many artificial neurons which are linked together via

network of weights and biases, carrying the output of one neuron as input to another neuron.

The training procedure of ANN is consisted of finding the optimum values of these weights

and biases. One of the most useful algorithms for training a multilayer perceptron neural net-

work is BP algorithm [30–33]. This method calculates the error between the network outputs

and desired targets and propagates back to the network through a learning mechanism. As a

result, the weights and biases (thresholds) are updated until the network reaches a predefined

performance goal.

In this study, a BP algorithm was used to establish the ANN model. The whole operation is

demonstrated in Fig 9. It can be divided into six steps. Step 1: Input training factors. Ten influ-

encing factors are inputted into the model; Step 2: Hidden nodes calculate the output. This is a

quite complex process that detailed calculated algorithm is invisible; Step 3: Output nodes cal-

culate outputs. Step 4: Comparison of the outputs with targets and figure out the difference;

Step 5: Adjust the model parameters on the basis of training rule using the results of Step 4.

Calculate every values in hidden nodes in this step; Step 6: The results of step 5 are used to

carry on a second training until the error is suitably small. The specific parameters are as fol-

lows:

net:trainParam:show ¼ 10;

net:trainParam:lr ¼ 0:01;

Fig 7. Observed versus predicted compressive strength produced by the SVM model (Testing dataset).

https://doi.org/10.1371/journal.pone.0191370.g007
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net:trainParam:mc ¼ 0:9;

net:trainParam:epochs ¼ 10000;

net:trainParam:goal ¼ 0:0001:

As shown in Fig 10, the training errors decreased to planned target (0.0001) at 12th epoch

and it converged at that epoch.

4.6.2 Results comparison between SVM and ANN. The observed versus predicted com-

pressive strength calculated by the ANN model are shown in Figs 11 and 12, and the perfor-

mance measurement results of the two models are shown in Table 5. For the ANN model, the

R2 of training data and testing data were 0.9982 and 0.9975, respectively. The MAE of training

data and testing data were less than 5.2 MPa. The MAPE of training data and testing data were

less than 5.9%. The RMSE of training data and testing data were less than 6.6 MPa. These

results indicate that the ANN model is also in the good prediction of concrete compressive

strength. The R2 is lower, while the RMSE, MAE and MAPE are higher for ANN model com-

pared to the SVM model, indicating that the performance of the SVM model is better than

Fig 8. The sensitivity of the input factors. w/c: water-cement ratio, C: cement content, %; W: water content, %; S: sand

content, %; SO4
2-, sulfate concentration, wt%; Wet-T, wetting temperature, ˚C; Wet-t: wetting time, h; Dry-T, drying

temperature, ˚C; Dry-t: drying time, h; Exp-t: exposure time, days.

https://doi.org/10.1371/journal.pone.0191370.g008
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ANN model. The reason is that BP algorithm was used in this study to find suboptimal solu-

tions being trapped in local minimums. Moreover, the number of hidden layer neurons is esti-

mated by the trial and error procedure, and number of neurons in input layer is equal to the

number of input variables. Thus, the training iterations may force ANN model to over train,

and then affect the predicting capabilities. But for the SVM model, which objective is to con-

struct a hyper plane that lies ‘‘close” to as many of the data points as possible, it can achieve

good generalization ability by minimizing the regularized risk function as the main parameters

c and g were obtained by a K-fold crossover algorithm.

4.7 Prediction performance for corroded samples

The SVM model was further verified by testing it using the experimental data of the compres-

sive strength of cement-based materials deteriorated in sulfate and seawater. A group of

Fig 9. A multi-layer ANN schematic.

https://doi.org/10.1371/journal.pone.0191370.g009

Fig 10. The neural network training process.

https://doi.org/10.1371/journal.pone.0191370.g010
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experimental data from the accelerated degradation test in this study and reference in the liter-

ature [34, 35] were used. Fig 13 shows the comparison between the predicted and experimental

compressive strength results. M50-S2 means cement mortar with w/c ratio of 0.50 in the accel-

erated degradation test; OPC-55 means ordinary Portland cement mortar with w/c ratio of

0.55; Concrete-A 5N means the concrete of Type A exposed to artificial sea water with concen-

tration of 5 times of normal simulated sea water.

Results show that the predicted compressive strength of concrete from the SVM model

matched well with the experimental values of reference [35], while the predicted compressive

strengths of mortars from the SVM model matched much better with the experimental values

of the accelerated degradation test in this study and reference [34], indicating that SVM can be

Fig 11. Observed versus predicted compressive strength produced by ANN method (Training dataset).

https://doi.org/10.1371/journal.pone.0191370.g011

Fig 12. Observed versus predicted compressive strength produced by ANN method (Testing dataset).

https://doi.org/10.1371/journal.pone.0191370.g012

Table 5. Performance measurement results of models.

Model Training dataset Testing dataset

R2 MAE(MPa) MAPE(%) RMSE(MPa) R2 MAE(MPa) MAPE(%) RMSE(MPa)

SVM 0.9994 2.16 3.32 2.68 0.9991 3.02 3.71 3.56

ANN 0.9982 4.25 5.06 5.32 0.9975 5.19 5.87 6.53

https://doi.org/10.1371/journal.pone.0191370.t005
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potentially used as an effective method to predict the compressive strength of cement-based

materials in harsh environment. The performance of these predicted compressive strengths is

different, the reason is that, besides the exposure time, w/c ratio and sulfate ions, the predicted

compressive strength of Concrete-A 5N would also be affected by aggregate content and mag-

nesium ions content.

Conclusions

In this study, a prediction model of mortar compressive strength was established by SVM. A

total of 638 sample data collected from the experimental test were used to develop the SVM

model for predicting compressive strength. The SVM model was first calibrated and then veri-

fied using the experimental data from corroded concrete samples. Conclusions can be drawn

as follows:

1. The compressive strength values of all mortar specimens increased and then decreased

gradually when the specimens were degraded by sodium sulfate solutions. The experimen-

tal results show that, after degraded by the same concentration of solution, the greater the

w/c ratios, the larger the descent rate of compressive strength.

2. The sensitivity analysis results show that the main factors influencing the prediction of

mortar compressive strength were exposure time, w/c ratio and sulfate concentration.

Fig 13. Comparison between predicted values and experimental results. M50-S2: cement mortar with w/c ratio of 0.50 in the

accelerated degradation test; OPC-55: ordinary Portland cement mortar with w/c ratio of 0.55; Concrete-A 5N: concrete of Type A

exposed to artificial sea water.

https://doi.org/10.1371/journal.pone.0191370.g013
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3. The predicted compressive strengths from the developed SVM model matched well with

the experimental values, indicating that the SVM model can be potentially used to for pre-

dicting the compressive strength of cement-based materials servicing in harsh environ-

ments. Compared to the ANN model, the performance of SVM model is better.

Supporting information

S1 File. Experimental dataset. w/c: water-cement ratio, C: cement content, %; W: water con-

tent, %; S: sand content, %; SO4
2-, sulfate concentration, wt%; Wet-T, wetting temperature, ˚C;

Wet-t: wetting time, h; Dry-T, drying temperature, ˚C; Dry-t: drying time, h; Exp-t: exposure

time, days; Fm: ultimate compressive strength, MPa.
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