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Abstract

Stem-borers in the genus Papaipema (Lepidoptera: Noctuidae) range from highly polypha-

gous agricultural pests to specialists on more than 20 families of flowering plants, many of

them highly toxic. Papaipema is the largest genus of noctuids endemic to North America

and provides an excellent study system for the evolution of noctuid host plant use. To

improve the availability of genomic resources for such investigations, we performed de novo

transcriptome sequencing and assembly for two specialist Papaipema with unusual larval

hosts: P. speciosissima, which is associated with ferns, and the undescribed P. “sp. 4,”

which is associated with bamboo. The resulting transcriptomes were similar in terms of com-

pleteness, gene count, and gene identity, but we identified some 8,000 genes (~17% of

each transcriptome) not shared between the two species. While some of these have identifi-

able orthologs in other Lepidoptera, ~5% of each transcriptome consists of species-specific

genes. We examine the function of these genes and find that almost half have retrotranspo-

son-related functional domains. The potential role of species-specific genes is discussed,

and the expansion of certain retrotransposon families in Papaipema is examined.

Introduction

The majority of available lepidopteran transcriptomic data are from agricultural pests and

most in the Noctuoidea, which comprises the most species-rich and economically important

lepidopteran superfamily [1]. Although pest species represent a small fraction of the taxo-

nomic, ecological, and behavioral diversity of Noctuoidea, our understanding of their biology

is enhanced by transcriptomic data from related species. The use of modern genomics tools to

address longstanding questions about the evolution of insect host plant use [2–8] depends crit-

ically on sampling the spectrum of host use behaviors and syndromes represented throughout

the order. In particular, greater sampling of species with internal feeding habits (endophagy) is
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needed, as it represents the condition of the first (lower glossatan) large radiation of moths [9],

and has re-evolved independently in only a few more recently derived groups of larger moths.

Papaipema (Noctuidae: Noctuinae: Apameini) is a genus of stem- and rhizome-borers and

the most species-rich noctuid genus endemic to North America. They include both highly

polyphagous species, including the stalk borer P. nebris (Guenée) and specialists on an unusu-

ally diverse array of host plant families [10]. Several species of Papaipema are associated with

chemically defended plants, including ferns (Pteridophyta), sometimes considered to have low

herbivore loads, pipevines (Aristolochiaceae) [11], and umbels (Apiaceae), all of which figure

prominently in the literature regarding co-evolutionary “arms race” scenarios [12]. As a

whole, the noctuid tribe Apameini, to which Papaipema and its relatives belong, exhibits an

array of larval feeding habits that correspond at least in part to variation in feeding habit and

diapause [10].

As borers in the roots, rhizomes, and stems of their host plants, Papaipema caterpillars

exemplify habits that coincide with graminivory (grass-feeding) in numerous insect groups

(9). Pinpointing independent origins of internal feeding bears on our understanding of diet

breadth to the extent such behaviors reflect either an escape from natural enemies or an avoid-

ance of toxic plant defensive compounds (allelochemics) that are more concentrated in exter-

nal tissues [13, 14].

As a step towards developing annotated genomic data for apameine noctuids, we generated

transcriptome profiles of two Papaipema species. Our goal was not to compare expression lev-

els, but rather to begin compiling a catalog of the genes present in each species. We selected

two Papaipema species associated with plants relevant to the chemical ecology of plants and

insect herbivores: The fern specialist Papaipema speciosissima, and an undescribed Poaceae

(grass) specialist, Papaipema “sp. 4,” associated with native bamboo (Arundinaria gigantea
(Walter) Muhl.). Fern feeders are of interest because strict stepwise co-evolution (sensu Ehrlich

& Raven (1964)) is unlikely to have occurred among their herbivore specialists and because it

has been asserted that, in ecological terms, ferns bear low herbivore loads relative to associates

of other commonly encountered plant groups. Given the age and apparent evolutionary stasis

of ferns [15], pteridivorous insects can only have colonized ferns well after their underlying

chemical architecture was in place [16]. Grass feeding, in contrast, is prominent in most of the

major groups of borers within the higher Lepidoptera (Goldstein et al., in prep.). Although

much younger than ferns, Poaceae species (including sugarcane, maize, rice, wheat, barley,

sorghum, oats, and millet) not only dominate numerous terrestrial landscapes but were

among the first plants to be domesticated by humans [17] and currently account for the major-

ity of agricultural crops by volume, acreage, and economic value. Examining the rapid diversi-

fication of specialized feeding habits will ultimately shed light on the molecular genetic bases

of diet breadth, and the degree to which its modulation results in origins of pest species and

outbreak behaviors.

The use of genomic data to address questions about the evolution of lepidopteran host use

is hampered by the available pool of annotated genes with known functions. The evolutionary

distance between model organisms with well-annotated genomes and any given species of

interest to evolutionary biologists can be vast, hence many newly-sequenced genes lack readily

identifiable homologs. The abundance of so-called orphan genes (sequences with no signifi-

cant similarity to known proteins [18]) further complicates de novo analyses. In the early days

of high-throughput sequencing, the occurrence of orphan genes was thought to reflect the lim-

ited taxonomic coverage of available genomes, and some previously orphan genes have indeed

been “de-orphanized” as more taxa are sequenced. However, even as the number of sequenced

organisms has grown, so has the number of orphan genes [18]. One of the goals of comparative

genomics is to identify the genes that differ between closely related species, but identifying and
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annotating orphan genes found in a single species (species-specific genes, SSGs), is challeng-

ing. In this report, we use phylogenetic clustering to identify SSGs in two Papaipema species

and compare the functions of these genes to those of orthologous common to both species.

Because gene disruption and duplication via retrotransposition is an important mechanism in

the emergence of orphan genes [19–21], we also examine the abundance of transposable ele-

ment signatures in SSGs and orthologs.

Materials and methods

Transcriptome sequencing and assembly

Total RNA was extracted from a single adult moth of each species. Adult moths were collected

at UV light and frozen live and without buffer in liquid nitrogen vapor. The Papaipema specio-
sissima specimen was collected on October 3, 2014 in Dukes County, MA; the P. “sp. 4” speci-

men was collected on October 3, 2013 in Union County, IL. RNA extraction was undertaken

immediately upon removal from LN storage, with a brief interruption during which samples

were maintained in a -80C freezer. Following dissection on a cryo-cooled work surface, we

used half a thorax for each extraction. RNA was isolated using a standard Trizol protocol

(https://tools.thermofisher.com/content/sfs/manuals/trizol_reagent.pdf), then processed on

RNAEasy columns (Qiagen) to remove salts and other contaminants. We employed the Agi-

lent RNA 6000 Nano assay on a BioAnalyzer to assess the overall quality of the extracted RNA

and generate RIN values, and obtained accurate quantitation with the Qubit RNA BR (broad

range) Assay. Total RNA was delivered to the New York Genome Center, where sequencing

libraries were prepared using Illumina’s TruSeq stranded mRNA kit. Paired-end, 125bp cDNA

libraries were sequenced on an Illumina HiSeq 2500, generating ~90 million reads per library.

Raw sequencing reads were visualized with FastQC (http://www.bioinformatics.babraham.

ac.uk/projects/fastqc/) to determine the necessary quality filtering steps. We used Kraken [22]

to eliminate any potential bacterial or viral contamination, and SortMe [23] to remove reads

that were rRNA rather than mRNA to avoid misannotation of rRNAs as proteins [24]. Low

quality reads and adapter sequences were eliminated with Trimmomatic [25].

We assembled the clean read set with Trinity [26] (v2.2.0), using the SS_lib_type RF option

to generate strand-specific assemblies; see Fig 1 for a summary of the assembly pipeline. Sum-

mary statistics for each assembly were generated with TrinityStats.pl. The quality of the result-

ing assemblies was evaluated by mapping reads back to the assembly and by analyzing

transcriptome completeness.

We evaluated the quality of the assembled transcriptomes by mapping the reads back to the

assemblies and by examining the relationship between read coverage ("expression level") and

contig length to determine the E90 N50 value. This measure is equivalent to the N50 for tran-

scripts that represent 90% of the total normalized expression data, and we consider it a more

reliable measure of assembly quality than the traditional N50 because it excludes contigs of

reads with low expression levels. Such contigs are typically short because low read coverage

impedes assembly [26]. We used BUSCO [27] to analyze transcriptome completeness accord-

ing to conserved ortholog content.

Identification and annotation of protein coding genes

We used TransDecoder’s 2-step prediction procedure for structural annotation (Haas & Papa-

nicolaou et al., manuscript in prep. http://transdecoder.github.io). After identifying likely

open reading frames (ORFs) with TransDecoder.LongOrfs, we used the amino acid sequence

of the predicted ORFs as query sequences in (i) BLASTp searches against a custom database of

all the Lepidoptera protein sequences from NCBI’s RefSeq database [28] (RefSeq sequences
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downloaded on February 23, 2016), and (ii) hmmscan searches against the Pfam-A database of

protein family HMMs (hidden Markov models) [29]. ORF predictions and database search

results were combined for the prediction of protein coding genes using Transdecoder.Predict,

which allows for the retention of regions that contain ORFs longer than 900 bp (even if they

lack database hits), and sequences that have BLAST hits or matches to Pfam HMM profiles

(even if they lack complete ORFs). The resulting sets of putative protein coding genes for each

species was used in all downstream analyses.

Annotation of the identified genes was performed with BLASTp and InterProScan 5 [30]

searches. BLAST and InterProScan results were imported to Blast2GO [31] and mapped to

GO terms with an annotation score cutoff of 35. Annotations were filtered to retain only those

corresponding to annotated arthropod genes (taxa: 6656, Arthropoda). Sequences lacking GO

terms at this stage were subjected to additional analysis using FFPred 2.0, a “homology-

Fig 1. Summary of methods used.

https://doi.org/10.1371/journal.pone.0191061.g001
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independent” tool for GO term prediction [32]. The reliability of FFPred predictions is mea-

sured by the Matthews Correlation Coefficient (MCC) in the underlying support vector regres-

sion model, with values close to 1 considered highly reliable [32]. The FFPred results were

filtered to include only GO predictions whose posterior probabilities were� 0.9 and whose

support vector regression models were classified as highly reliable.

To evaluate the representation of full-length protein-coding genes, we used BLASTp to

search our custom database, using the translated peptide sequences as a query.

Ortholog identification and SSGs

To determine orthology between protein coding genes from P. sp. 4 and P. speciosissima, we

used OrthoPipe, a stand-alone pipeline version of OrthoDB 2.3.1 [33]. Default parameters

were modified to increase stringency by setting MIN_OVERLAP = 50 and MAX_EVALUE =

1.0e-5.

Because SSGs are at greater risk of being misassembled than genes for which orthologs are

known from multiple species, we conducted additional quality checks on SSGs, beginning

with TransRate [34], a tool for evaluating de novo transcriptome assemblies, to compare the

contig scores for orthologous (shared) versus species-specific genes. The TransRate contig

score, which is not weighted by expression level, reflects how well a given contig is supported

by read evidence [34], and those sequences whose underlying contig score was below the

TransRate cutoff (the minimum acceptable contig score that maximizes the overall assembly

score) were excluded from further analysis. Because an absence of orthologs detected between

P. sp. 4 and P. speciosissima need not imply that a gene is truly species-specific (merely that no

orthologs were identified in our dataset), we conducted an additional set of BLASTp searches

against NCBI’s nr database [35] to determine whether putative SSGs had orthologs in any

other species.

Transposable element evaluation

Endogenous transposable elements (TEs or “jumping genes”) are DNA sequences that can

shift positions on the genome [36]. Genes with InterPro signatures related to TEs were

assessed for the presence of IPR000477 (Reverse transcriptase domain), which is the only

domain shared by all retrotransposons [37]. Functional retrotrotransposons are defined by the

co-occurrence of multiple domains, specifically a GAG-pre-integrase domain, a peptidase

domain, a reverse transcriptase domain, a ribonuclease H-like domain, and an integrase

domain. To examine the characteristics of TE-related signatures in Papaipema genes, we

selected those with InterPro signatures corresponding to at least two of these domains for fur-

ther analysis. The resulting set of genes was analyzed first with NCBI’s CD-Search, which uses

position-specific scoring matrices to compare a query sequence to the Conserved Domain

Database (a collection of multiple sequence alignment models for conserved, well-annotated

protein domains) [38]. We then compared the domain architecture of these genes to known

retrotransposon families [39] to determine likely identities and assign them to TE families.

Ty1/Copia is one of the oldest and most representative families of LTR retroelements in

eukaryotes and probably predates the origin of plants [37]. To examine the relationship

between Ty1/Copia elements from Papaipema and those of other insects, we first conducted a

PSI-BLAST (position-specific iterated BLAST [40]) search against all RefSeq Endopterygota

proteins. We collected the highest-scoring hit sequences from lepidopteran species and holo-

metabolous insects outside Lepidoptera, and used MUSCLE [41] to generate a multiple

sequence alignment that included Papaipema Ty1/Copia genes. We then used FastTree 2.1

[42] to infer a maximum-likelihood phylogram, visualized with FigTree v4.1.3 [43].
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Results

Transcriptome assemblies

Assembly metrics were similar for the two Papaipema species (Table 1). We detected little

exogenous content (as determined by Kraken assessment) and read qualities were uniformly

high. The read quality and contaminant filtering steps removed less than 1% of the reads; since

we have observed significantly higher proportions of “bad” reads in other data sets, it is not

our intention to discourage filtering.

Almost 90% of the raw reads were represented in each assembly, and more than 70% of the

reads mapped to each assembly in proper pairs. For both species, the E90 N50 (the N50 for

transcripts that represent 90% of the total normalized expression data) was greater than the

traditional N50: 2,365 bp versus 1,737 bp for P. sp. 4 and 2,411 versus 2,159 for P. speciosissima
(S1 Fig).

The initial Trinity assemblies contained more putative genes (77,000 for P. sp. 4, 45,000 for

P. speciosissima) than are found in a typical lepidopteran genome. Such inflation is characteris-

tic of de novo transcriptome assemblies and is thought to result from the assembly of incom-

plete reads [44]. After TransDecoder analysis and the removal of redundant sequences (those

with 100% sequence similarity), a final set of 23,278 putative protein-coding genes in P. sp. 4

and 23,964 in P. speciosissima was retained.

BUSCO [27] analysis of transcriptome completeness showed that ~87% of the expected

Arthropod single-copy orthologs were present for both P. sp. 4 and P. speciosissima. BLASTp

searches to evaluate the representation of full-length protein-coding genes showed that almost

40% of the query sequences covered 100% of their top BLAST hits (S2 Fig), while the rest were

distributed evenly across lower coverage bins ranging from 10–90%. E-values were generally

significant at a level beyond the default 1e-5 cutoff (S3 Fig), with the majority of hits having E-

values� 1e-180.

Table 1. Summary of transcriptome sequencing and assembly results.

Source Metric P. sp.4 P. speciosissima
Raw data Number of 125bp reads 90.2 M 90.5 M

Total bp of sequence data 11.3 Gbp 11.3 Gbp

Clean up Percent of reads removed by Kraken 0.2 0.3

Percent of reads removed by SortMeRNA 0.4 0.4

Percent of reads removed by Trimmomatic 0.000005 0

Percent of reads remaining after clean up 99.4 99.3

Assembly Total assembly length 85.5 kbp 97.2 kbp

Contig N50 1.7 kbp 2.2 kbp

Expression 90 N50 2.4 kbp 2.4 kbp

Number of Trinity "genes" 77 K 45 K

Number of Trinity "isoforms" 95 K 69 K

Percent GC 39.1 39.2

Percent of reads aligned to assembly 87.2 88.1

Percent of aligned reads in proper pairs 72.7 73.3

Percent of arthropod core genes missing (BUSCO) 13.3 13.1

Putative protein coding genes Number of putative genes 26.6 K 31.9 K

Percent GC 46.3 46

Percent of arthropod core genes missing (BUSCO) 13 13.4

https://doi.org/10.1371/journal.pone.0191061.t001
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Annotation

Following the BLASTp searches, there were 4,533 sequences from P. sp. 4, and 2,436 from P.

speciosissima that had no BLAST hit. InterPro annotations were assigned to ~77% of the genes

in each species (Table 2). The most commonly identified InterPro signatures, which were simi-

lar in the two species, are summarized in S1 Table.

GO term mapping based on the results of BLAST, InterPro, and FFPred searches resulted

in GO annotation for ~80% of the genes from each species. See S4 Fig for summaries of the

most common GO terms in each species, and S5 Fig for the distribution of GO annotation

scores As expected for non-model organisms, most GO annotations were “Inferred from Elec-

tronic Annotation” (IEA), meaning they result from computational annotation and have not

yet been reviewed by a GO curator [45]. See S2 Table for a summary of GO evidence codes.

Ortholog identification and SSGs

Genes were classified into 10,207 clusters, each with 2 to 110 genes (average cluster size 3.3). A

narrow majority of clusters (51%) were single-copy orthologs containing one gene from each

species. Some 8,000 genes, representing about 17% of each transcriptome, failed to cluster as

orthologs. These were provisionally designated species-specific genes (SSGs), having been

found only in one of the two Papaipema species. The support scores for contigs containing

putative SSGs were similar to those containing identifiable orthologs (Fig 2). After BLASTP

searches against the nr database, 30% of these putative SSGs had no hit, and these were treated

as legitimate SSGs.

Assessment of functional divergence

In comparing the InterPro signatures of orthologous versus species-specific genes, we noted

numerous InterPro signatures more abundant among orthologs than among SSGs (Fig 3). The

majority of these were related to energy metabolism (P-loop NTPases), protein production

and integrity (peptidases and protein kinases), and cross-membrane transport of small solutes

(the major facilitator superfamily of sugar transporters). Other signatures common in shared

orthologs included detoxification (Cytochrome P450s) and DNA modification (helicases and

methyltransferases).

More than fifty InterPro signatures appeared exclusively in species-specific genes (Fig 4),

and others were far more common in SSGs than in shared orthologs (S3 Table). Some of the

SSG signatures were present in genes from both Papaipema species, while others occurred in

only one. The most common signatures among SSGs involved DNA-mediated transposition,

with 45% containing a transposable element domain. Other notable signatures included che-

mosensory receptors from Drosophila and Lepidoptera and glycoside hydrolases involved in

carbohydrate metabolism.

Table 2. Annotation results.

Taxa N With Blast hit With InterPro signature With GO annotation Not Shared1 Species specific2

P. sp.4 23,278 18,745 18,227 18,739 2,677 1,285

P. speciosissima 23,964 21,528 18,494 19,564 2,918 1,144

1Has Blast hit to Lepidoptera, but has no ortholog in the other Papaipema species
2No Blast hit to Lepidoptera, and no ortholog in the other Papaipema species

https://doi.org/10.1371/journal.pone.0191061.t002
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Transposable element evaluation

InterPro signature analysis showed that TE-related domains and families were abundant

among SSGs. Although the total number of genes with TE-related signatures was higher

among shared orthologs (Fig 5), the relative abundance of TE-related signatures was much

greater in SSGs. In the most extreme case, 16% of all InterPro annotated SSGs had signatures

for IPR000477 (Reverse transcriptase domain) versus 1.4% of shared genes. Using NCBI’s

CD-Search to compare the domain architecture of SSGs to known retrotransposon families

[39], we found 68 SSGs that grouped into three TE families: BEL/Pao, Ty1/Copia, and Ty3/

Gypsy, all of which are LTR (long terminal repeat) retrotransposons (S6 Fig). While all three

families occur in both Papaipema species, the frequency of each family differed between them

(Table 3).

The pairwise similarity between Ty1/Copia elements from Papaipema SSGs and those from

other insects ranged from 30–40%. In the maximum-likelihood phylogram of Ty1/Copia rela-

tionships (Fig 6), most of the genes from other lepidopteran species grouped into taxonomi-

cally diverse clusters (containing members of Spodoptera, Bombyx, Amyelois, and Plutella),

while the Papaipema genes displayed more taxon-specific differentiation and shared a node

only with Sesamia, a closely related stem-borer in the sister subtribe of the Apameini.

Discussion

Despite their disparate life histories and specialization on unrelated hosts, de novo comparison

of two Papaipema transcriptomes revealed substantial similarity in gene content, no doubt

Fig 2. TransRate contig support scores for species-specific Papaipema genes versus those with identifiable orthologs in both species.

https://doi.org/10.1371/journal.pone.0191061.g002
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reflecting the recency of this North American radiation. More than 19,000 genes were identifi-

able as shared orthologs, and were associated primarily with basic protein and energy metabo-

lism. Other shared genes, such as detoxification enzymes in the Cytochrome P450 group, bear

directly on the chemical ecology of plants and insect herbivores. However, almost 20% of each

species’ genes lacked orthologs in the other species. While many of these unshared genes had

orthologous counterparts in other insects, almost a third of them (more than 1,000 genes in

each species) appear to be species-specific genes without orthologs among previously

sequenced genes.

It is now generally recognized that as many as a third of the genes in a given genome lack

recognizable homologs in other species [46]. Putative species-specific genes share several char-

acteristics that raise doubts about their status, namely: shorter ORFs, fewer exons, lower

expression levels and higher tissue specificity levels than genes with identified orthologs [47].

The most convincing evidence that species-specific genes are “real” comes from functional val-

idation studies demonstrating that many of them are essential to normal development in

model organisms [48, 49].

Two of the InterPro signatures found only in species-specific Papaipema genes are directly

relevant to the evolution of diet breadth: olfactory receptors and aspartic peptidases. Olfactory

receptors are involved in the detection of volatile odorant cues from plants, and can determine

the range of plant species that herbivores accept as hosts [50]. Aspartic peptidases, which break

down the peptide bonds in dietary proteins, are essential to the survival of plant feeding insects

[51]. Lineage-specific evolution of aspartic peptidases appears to be common in insects with

different feeding habits [52]. Within Papaipema, the presence of species-specific genes in these

Fig 3. Most frequent InterPro signatures in orthologous Papaipema genes. Summary functions shown—see S3 Table for full information.

https://doi.org/10.1371/journal.pone.0191061.g003
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two categories suggests they may contribute to sensory and digestive adaptations to endopha-

gous feeding.

Several processes contributing to the emergence of species-specific genes have been identi-

fied [53]; at this writing, it appears that gene duplication (including duplication via retrotran-

sposition) and TE “domestication” are major creative forces in the emergence of species-

specific genes [19–21]. TEs are an abundant source of biochemically active elements such as

transcription factor-binding sites, and TE insertions generate genomic rearrangements that

can foster the emergence of species-specific genes [19, 54–56].

The high frequency of TE-related InterPro signatures in the species-specific genes identified

in this study is noteworthy. In D. melanogaster, TE insertion rates typically range from 0.005 to

0.00005 insertions per-copy per-generation [57], but their potential impact on fitness is greater

than these low numbers suggest. Transposition events can cause recessive lethal mutations and

reduce viability [58], and purifying selection is inefficient at eliminating them because transpo-

sons can propagate within a genome to exceed the Mendelian segregation ratios imposed by

meiosis [59]. Though the mechanisms that prevent TEs from dominating the genome are not

yet known, it is clear that host species, including insects, have evolved a variety of TE-silencing

strategies, including DNA methylation, chromatin remodeling, and microRNAs [60–63].

There is growing evidence, however, that the net impact of transposition events may be

neutral or even positive. Transposon insertions increase genetic diversity by translocating

genomic sequences and reshuffling exons, potentially creating novel gene products in a single

step [64], and can alter gene expression patterns by inserting into regulatory regions [65].

While the results of most of these genomic “experiments” are likely to be deleterious, several

Fig 4. InterPro signatures found only in species-specific genes.

https://doi.org/10.1371/journal.pone.0191061.g004
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well-documented examples demonstrate that TEs are an important source of adaptive innova-

tion. In D. melanogaster, for example, upregulation of the Cytochrome P450 gene cyp6g1,

caused by an upstream retrotransposon insertion, confers resistance to several insecticides

[66]. Other examples of host co-option of TEs for regulation of host genes are widespread [62],

and suggest that TE insertions can contribute to rapid transcriptional rewiring [67]. Many TEs

become more active in stressful conditions [68, 69], and their ability to create new genetic vari-

ability when conditions are challenging may serve their hosts as an inducible stress response

mechanism [70, 71].

In the present study, the over-representation of TE-related signatures among species-spe-

cific genes suggests that the dynamics underlying the evolution of “new” genes may have

played a role in the rapid diversification of host plant range and feeding habits in endophagous

herbivores. Currently we are unable to say whether the TE-like genes we identified are fully

Fig 5. Retrotransposon-related InterPro signatures in orthologs and species-specific genes. Number of genes shown at top of each bar.

https://doi.org/10.1371/journal.pone.0191061.g005

Table 3. Retrotransposon families identified in species-specific genes.

Ty1/Copia Ty3/Gypsy BEL/Pao

P. sp.4 2 23 6

P. speciosissima 6 17 14

https://doi.org/10.1371/journal.pone.0191061.t003
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functional transposable elements or if they represent domestication events. One set of appar-

ently functional TEs (from the Ty1/Copia family of LTR retrotransposons) displayed elevated

rates of differentiation in Papaipema, but this may simply reflect the limited taxonomic diver-

sity of available transcriptome data. Future comparative studies that include a mixture of inter-

nal and external feeders from a range of taxonomic levels within the Lepidoptera will show

whether TEs and TE-related sequences are equally common in all species-specific genes or if

their abundance is particular to Papaipema and other endophages. Analysis of a broader data

set would also allow for a comparison of the rates of orphan gene emergence in different taxa,

and whether duplication, transposition, or other mechanisms are prevalent. It is our hope that

continued comparative work towards understanding the evolutionary origins of endophagy

will help to illuminate the rapid diversification of lepidopteran feeding habits that simulta-

neously exemplifies the ability of insects to respond to natural selection and explains the ori-

gins of agricultural pests that threaten worldwide food security.

Fig 6. Phylogram of retrotransposons from Hymenoptera, Diptera, and Lepidoptera, including putative Ty1/Copia genes identified in this study.

https://doi.org/10.1371/journal.pone.0191061.g006
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