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Abstract

Jasmonic acid (JA), its derivatives and its precursor cis-12-oxo phytodienoic acid (OPDA)

form a group of phytohormones, the jasmonates, representing signal molecules involved in

plant stress responses, in the defense against pathogens as well as in development. Ele-

vated levels of JA have been shown to play a role in arbuscular mycorrhiza and in the induc-

tion of nitrogen-fixing root nodules. In this study, the gene families of two committed

enzymes of the JA biosynthetic pathway, allene oxide synthase (AOS) and allene oxide

cyclase (AOC), were characterized in the determinate nodule-forming model legume Lotus

japonicus JA levels were to be analysed in the course of nodulation. Since in all L. japonicus

organs examined, JA levels increased upon mechanical disturbance and wounding, an

aeroponic culture system was established to allow for a quick harvest, followed by the analy-

sis of JA levels in whole root and shoot systems. Nodulated plants were compared with non-

nodulated plants grown on nitrate or ammonium as N source, respectively, over a five week-

period. JA levels turned out to be more or less stable independently of the growth conditions.

However, L. japonicus nodules formed on aeroponically grown plants often showed patches

of cells with reduced bacteroid density, presumably a stress symptom. Immunolocalization

using a heterologous antibody showed that the vascular systems of these nodules also

seemed to contain less AOC protein than those of nodules of plants grown in perlite/vermic-

ulite. Hence, aeroponically grown L. japonicus plants are likely to be habituated to stress

which could have affected JA levels.
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Introduction

Jasmonates—jasmonic acid (JA) and its derivatives, such as its methyl ester (MeJA) and amino

acid conjugates—are plant signalling compounds synthesized via the oxylipin pathway [1,2].

This pathway is initiated by the oxygenation of linoleic or α-linolenic acid by lipoxygenases

(LOXs), leading to the formation of (9S)-hydroperoxy linoleic or α-linolenic acid (9-HPOD/

9-HPOT) or (13S)-hydroperoxy linoleic or α-linolenic acid (13-HPOD/13-HPOT) [3]. Only

the α-linolenic acid-derived product 13-HPOT can be converted to jasmonates [2]. The first

committed step of JA biosynthesis is catalyzed by allene oxide synthase (AOS) which converts

13-HPOT to a highly reactive allene oxide, which in the second committed step is converted to

cis-12-oxo phytodienoic acid (OPDA) by allene oxide cyclase (AOC). OPDA is converted to

the corresponding 3-2(2’(Z)-pentenyl) cyclopentane-1-octanoic acid (OPC-8:0) stereoisomer

by 12-oxophytodienoate reductase 3 (OPR3); OPC-8:0 is then converted to JA by three rounds

of β-oxidation. This part of the JA biosynthetic pathway occurs in plastids, whereas the conver-

sion of OPDA to JA takes place in peroxisomes [2].

JA signaling is involved in plant-pathogen interactions and wound signaling and has also

been linked to developmental processes, such as root and flower development and the regula-

tion of nitrogen storage [1,4,5]. It also plays a role in arbuscular mycorrhizal (AM) symbioses,

where it is produced in the arbuscule-containing root cortical cells (reviewed by Hause and

Schaarschmidt [6], Jung et al. [7]). Studies onMedicago truncatula have shown that a reduc-

tion in JA biosynthetic capacity interferes with the development of an arbuscular mycorrhizal

symbiosis [8]. Interestingly, during the colonization of Nicotiana attenuata with the AM fun-

gus Rhizophagus irregularis, root JA levels did not increase in response to AM colonization,

and a defect in JA signaling had no effect on the interaction with the AM fungus [9]. Jasmo-

nates have been implicated in the control of nodulation in root nodule symbioses

[10,11,12,13], and also in nodule senescence [14]. However, in spite of the fact that the forma-

tion of the apparatus for jasmonate signaling seems to be induced early inM. truncatula nod-

ule development [15], studies onM. truncatula plants with transgenic hairy roots with reduced

JA biosynthetic capacity showed no effect on nodule frequency or -development [16].

M. truncatula forms indeterminate nodules; i.e., the cells in the inner tissue are arranged in

a developmental gradient. For biochemical analyses of potential changes of jasmonate levels in

the course of nodule development, determinate nodules are needed where the spatial develop-

mental gradient is replaced by a temporal one and all infected cells in the inner tissue are more

or less at the same developmental stage. The model legume Lotus japonicus forms determinate

nodules. Thus, in order to analyse the role of jasmonates in the development of determinate

nodules, we set about comparing the JA biosynthetic capacity by characterizing the enzymes

involved in the two first committed steps of JA biosynthesis, AOS and AOC, in L. japonicus.
Furthermore, the levels of JA were analysed in root and shoot systems of nodulated vs. non-

nodulated L. japonicus in a time course experiment. In parallel, the cell-specific localization of

AOC in nodules was followed.

Materials and methods

Plant and bacterial growth conditions

For transcriptional analyses, Lotus japonicus cv. Gifu plants were grown on a perlite/vermicu-

lite mixture (1:1) wetted with ¼ strength Hoagland’s medium either supplemented with 10 m

KNO3 or without N-source for nodulation [17]. Perlite and vermiculite were purchased from

Weibull Trädgard AB (Hammenhog, Sweden). Greenhouse conditions were 150–300 μEm-1s-1

light intensity and ca. 23˚C at 13 h light/11 h dark. For nodulation, plantlets were inoculated
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withMesorhizobium loti strain TONO grown in TY medium [18], washed with and resus-

pended in double-distilled H2O, when they had developed primary leaves. Roots for transcrip-

tional analyses were harvested from plants grown with KNO3 as N-source. Nodules were

harvested three weeks after inoculation. For immunolocalization experiments, plants were

watered with Fåhraeus medium without N source [19]; inoculation with strain TONO took

place as described above, and nodules were harvested three weeks after inoculation.

For analyses of jasmonic acid, L. japonicus seeds were germinated on germination soil (S-

jord, Weibull Trädgard AB) and after 5 weeks, plants were transferred to an aeroponic system

(based on Cook et al. [20]) with medium according to Lullien et al. [21], and infected withM.

loti strain TONO as described for perlite/vermiculite grown plants. Root and shoot systems

were harvested at five time points, after 0, 7, 14, 21 and 28 days and shock-frozen in liquid

nitrogen or fixed for immunolocalization experiments.

Molecular cloning

Plant RNA was isolated as described by Demina et al. [22]. The First-Strand1 cDNA Synthesis

Kit from GE Healthcare (Uppsala, Sweden) was used for reverse transcription. Three different

DNA polymerases were used according to the manufacturer’s instructions: Taq (native, with-

out BSA) from Fermentas (St. Leon-Rot, Germany), PfuTurbo1 DNA polymerase from Strata-

gene (La Jolla, CA, USA) and Platinum1 PCR SuperMix from Invitrogen (Lidingö, Sweden).

Sequences of the PCR products were confirmed by Eurofins Genomics (Ebersberg, Germany).

L. japonicus cDNAs of interest (aos1, aoc1, aoc2) were cloned in the expression vectors

pET-28a or pQE-30. For this purpose, Ljaos1 was amplified with specific primers adding PstI
restriction sites (5’-ACTGCAGAGATGATGGCATCTTCTAC-3’ and 5’-ACTGCAGT
TAAAAGCTTGCTCTCTTCAATG-3’.The resulting fragment was cloned in pGEM-T Easy.

Afterwards, the Ljaos1 cDNA was excised from this vector using PstI and cloned in the PstI
site of the expression vector pQE-30, yielding pQE-30-Ljaos1. The orientation of the insert

was determined using the asymmetric BamHI restriction site in the Ljaos1 cDNA. For the

cloning of Ljaoc1 in an expression vector, it was amplified with specific primers adding

BamHI restriction sites (5’-AAGGATCCCATCAACCACATCATTAGTTG-3’ and 5’-
AAGGATCCATGGCCTCAATGGGTTCTC-3’).After cloning into pGEM-T Easy, the insert

was excised using BamHI and cloned into the BamHI-digested pQE-30 vector. The orientation

of the insert was determined using the asymmetric HindIII site in the Ljaoc1 cDNA. For

Ljaoc2, no cDNA clone containing the whole ORF was available; therefore, primers were

designed based on genomic sequence information. Ljaoc2 was cloned in the expression vector

pET-28a after adding a 3’ BamHI site and 5’ XhoI site (5’-GGATCCTCCTCTGAAACTGA
GAG-3’ and 5’-CTCGAGGTTAGTGAAACCAGCAATGGT-3’).However, expression of

this construct in E. coli Rosetta cells did not yield AOC enzyme activity. Such problems with

the expression of aoc cDNAs in E. coli had been encountered earlier with the tomato gene

[23,24]. Based on these earlier results, the DNA sequence encoding the 83 N-terminal amino

acids, mostly comprising the transfer peptide, was removed from the 5’ end of the Ljaoc2
cDNA by amplifying a truncated cDNA, again adding a 3’ BamHI site and a 5’ XhoI site (5’-
GGATCCTCCTCTGAAACTGAGAG-3’ and 5’-CTCGAGGTTAGTGAAACCAGCAATGGT-
3’). The resulting fragment was cloned in pGEM-T Easy, and the insert was excised using

BamHI and XhoI and cloned in pET-28a.
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Protein isolation, protein gel electrophoresis, Western blot analysis and

immunolocalization

Protein isolation, gel electrophoresis and Western blot analysis were performed as described

by Zdyb et al. [16]. Immunolocalization was performed as described by Zdyb et al. [16]. Some

sections were analysed using an LSM 510META Confocal Laser Scanning Microscope (Carl

Zeiss, Jena, Germany). For visualization of AlexaFluor488, a 488 nm argon laser was used, and

for Toluidine Blue a 561 nm laser line.

JA determinations

Extraction of JA was performed as previously described for lipids, with some modifications

[25]. Plant material (100 mg) was extracted with 0.75 mL of methanol containing 10 ng D6-JA

(kindly provided by Otto Miersch, Halle/Saale, Germany) as internal standard. After vortex-

ing, 2.5 mL of methyl-tert-butyl ether (MTBE) were added and the extract was shaken for 1 h

at room temperature. For phase separation, 0.625 mL water was added. The mixture was incu-

bated for 10 min at room temperature and centrifuged at 450 x g for 15 min. The upper phase

was collected and the lower phase was re-extracted with 0.7 mL methanol and 1.3 mL MTBE

as described above. The combined upper phases were dried under streaming nitrogen and

resuspended in 100 μl of acetonitrile/water/acetic acid (20:80:0.1, v/v/v). The quantification of

JA was subsequently performed based on HPLC-MS/MS analysis as described in Ibrahim et al.

[26].

Real-time reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was extracted from roots, nodules, stems, leaves, flowers and developing seed pods

of L. japonicus using a modified version of the RNeasy Plant Mini Kit protocol (Qiagen, Hil-

den, Germany) combined with an on-column DNase treatment. Prior to cDNA synthesis, an

additional DNase digestion was carried out using the Heat&Run Genomic DNA removal kit

from ArcticZymes (Tromsø, Norway). 1 μg of total RNA per sample was reverse transcribed in

a final volume of 20 ul following the instructions of the TATAA GrandScript cDNA synthesis

kit (TATAA Biocenter, Göteborg, Sweden). cDNAs were diluted 10−1 and 2 ¼l were used as a

template in 10 μl PCR reactions; these reactions were performed in 1x Maxima SYBR green

(Thermo Fisher Scientific, Waltham, MA, USA) supplied with 300 nM of each primer in an

Illumina1 Eco™ Real Time PCR platform. PCR conditions used were as follows: 10 min, 95˚C

for initial denaturation, and 45 cycles with a duration of 30 sec at 60˚C followed by a melt dis-

sociation curve. Controls for gDNA and primer dimer assessment were taken into account by

the inclusion of water as a template, by RT-minus runs, and by melting dissociation curves

analyses. In order to estimate and correct for primers efficiency, standard curves from a serial

dilution of pooled cDNA were generated for each primer pair. Cq values correlating with the

steady-state level of transcript abundance at the exponential phase were treated based on the

ΔΔCt method using ubiquitin as an internal normalizer. For all organs, statistical analyses

were carried out based on three biological replicates with two technical PCR repeats from

which an unpaired 2-tail t-test was inferred using GenEx v. 5.4.1, MultiD Analyses (Askim,

Sweden).

Primers were designed using Primer3 at the Primer-Blast NCBI server: 5’-CGGATTA
CAACATCCAGAAGG-3’ and 5’-GTAATGGTCTTACCAGTCAAGG-3’ for the
housekeeping control (L. japonicus polyubiquitin; GenBank acces-
sion no. DQ249171), 5’-TGGTTTCGAGGTTGTTGG-3’ and 5’-GTGAGAGTAA
CAGCAGAACC-3’ for Ljaos1, 5’-AACCAACCTTGGGGGACAAG-3’ and 5’-
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TAACGCAAAAACAGCTCCGC-3’ for Ljaos2, 5’-TCAGCAACTTGTGTTCCC-3’
and 5’-GAAGGATCAACAGGCTTCC-3’ for Ljaoc1, 5’- CAGAGAAGAATGGTGA
CAGG and 5’-TCCTCATAGGTCAGGTATGG-3’ for Ljaoc2 and 5’-
GGTCCTTACCTGACCTATGA -3’ and 5’- GCTTGACCTGACCATACAC -3’ for Ljaoc3.

Analyses of enzyme activities

The assays were performed using 13-HPOT ((13S)-hydroperoxy-(9Z,11E,15Z)-octadecadie-

noic acid), which was obtained as described previously [27]. For the enzyme activity assays,

Ljaos1, Ljaoc1, and Ljaoc2 cDNAs were expressed in E. coli in the presence of the appropriate

antibiotic at 16˚C for 24 h after induction with 0.1 mM IPTG. Expression of the Ljaos1 cDNA

was performed in E. coli strain SG13009, chosen because it is well suited for growth at low tem-

peratures (16˚C), which allows overexpression of membrane-associated proteins more effec-

tively. The assays were carried out as described before with small modifications [28]. The

resulting products were extracted as previously described [29] and analyzed on reverse phase

HPLC [30].

Results and discussion

Identification of allene oxide synthase (aos) and allene oxide cyclase (aoc)

genes from Lotus japonicus
In order to analyse JA biosynthesis in roots and nodules of L. japonicus grown under different

conditions, two enzymes of the JA biosynthetic pathways were chosen for characterization,

AOS and AOC. The first step was to identify the members of the aos and aoc gene families in

L. japonicus using publicly available sequence information as well as information from the L.

japonicus sequencing project at http://www.kazusa.or.jp/lotus/. For this purpose, the corre-

sponding gene sequences from Arabidopsis thaliana (aos [31]; aoc [32]) were used to identify

the corresponding genes from L. japonicus. Our results showed that in L. japonicus AOS was

encoded by two genes, which were named Ljaos1 and Ljaos2. AOC enzymes were encoded by

a small gene family with three members, named Ljaoc1, Ljaoc2 and Ljaoc3.

Sequence analysis revealed that the Ljaos1 cDNA (GenBank accession number

AB600747.1) was 1918 bp in length, containing an open reading frame (ORF) of 1587 bp. The

molecular weight of the AOS1 protein was 59.3 kDa with a predicted isoelectric point (pI) of

8.41 according to Kozlowski [33]. Further bioinformatic analysis using the ChloroP 1.1 [34]

and the Plant-mPLoc server [35] revealed that the LjAOS1 protein contained a putative N-

terminal plastid targeting sequence of 37 amino acids. The Ljaos2 cDNA (Lj1g3v1604250.1 on

www.kazusa.org and lotus.au.dk) was 2822 bp in length with an ORF of 1599 bp. The molecu-

lar weight of AOS2 was 60.2 kDa with a predicted pI of 8.39. Bioinformatic analysis using

ChloroP 1.1 and Plant-mPLoc showed that LjAOS2 was a plastidic protein with a targeting

sequence of 57 amino acids.

It should be noted that while Arabidopsis thaliana as well as Medicago truncatula contain a

single AOS gene [36,30], larger gene families are common in legumes. E.g., analysis of legume

genomes available at https://legumeinfo.org/ shows that narrow-leafed lupine (Lupinus angu-
stifolius L.) and red clover (Trifolium pratense L.) have AOS gene families with seven members,

cowpea (Vigna unguiculata (L.) Walp.) has six AOS genes and the two diploid ancestors of pea-

nut (Arachis duranensis Krapov. & W.C. Gregory and Arachis ipaensis Krapov. & W.C. Greg-

ory) have six and five AOS genes, respectively.

Analysis of aoc sequences revealed that the Ljaoc1 cDNA (GenBank accession number

BT141471) was 893 bp in length and contained an ORF of 771 bp encoding a 28 kDa protein
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of 256 amino acids with a calculated pI of 8.49 and a putative N-terminal plastidic targeting

sequence of 53 amino acids. The Ljaoc2 cDNA (Kazusa accession number chr1.CM0012.1230.

r2.m) was 986 bp long and contained a 768 bp ORF encoding a 28 kDa protein of 255 amino

acids with a calculated pI of 8.11 and a putative N-terminal plastid targeting sequence of 71

amino acids. Ljaoc3, a 836 bp cDNA (Genbank BT138810.1), contained a 747 bp ORF encod-

ing a 27.25 kDa protein of 248 amino acids with a calculated pI of 7.87 and a putative N-termi-

nal plastid targeting sequence of 66 amino acids.

While A. thaliana has an AOC gene family with four members [32], M. truncatula has only

two AOC genes (see [8] for the gene encoding the 257 amino acid AOC1, GenBank accession

XP_013451276.1; the genome sequence revealed a second gene encoding a 234 aa isoform,

GenBank accession KEH25317.1). Based on https://legumeinfo.org/genomes, red clover has

two AOC genes and cowpea has three, while narrow-leafed lupine has seven and the two pro-

genitors of peanut have five (A. duraensis) and four (A. ipaensis), respectively. In short, with

three AOC genes, L. japonicius is in the normal range for legumes.

Transcript levels of Ljaos1 and Ljaos2 as well as Ljaoc1, Ljaoc2 and Ljaco3
in different organs

In order to analyse organ-specific expression of Ljaos1 and Ljaos2 and of the three members of

the L. japonicus aoc gene family, levels of each transcript were analysed in different organs of

L. japonicus roots, nodules, stem, leaves, flowers and immature pods using quantitative real

time RT-qPCR. Ljaos1 transcripts were present in all organs examined at similar levels (Fig 1),

while Ljaos2 transcript levels were much lower than those of Ljaos1. Substantial intra-tissue

variation was observed in Ljaos2 transcript levels in both roots and nodules, in contrast with

the other genes examined. This suggests the existence of regulatory mechanisms other than tis-

sue specificity for Ljaos2 expression. From the members of the aoc gene family, Ljaoc1 and

Ljaoc3 showed the highest expression levels in all organs. Ljaoc2 showed the lowest expression

levels of all aoc genes; in particular its expression levels in roots and nodules were very low.

None of the transcripts was induced significantly in nodules compared to roots or vice versa.

In all organs examined, AOS1 and AOC1/AOC3 seemed to play the major role. Interestingly,

although JA is required for reproductive development in many plant species [5], when com-

pared with the A. thaliana AOC gene family, only AOC2was significantly induced in flowers

compared to roots, and AOC2 transcript levels in flowers were still an order of magnitude

lower than those of AOC1/3. This could mean either that AOC expression levels in roots of L.

japoncius are higher than in Brassicaceae [32] and Solanaceae [37], or that AOC expression lev-

els in flowers of L. japonicus are lower than in flowers of other plants. The fact that MtAOC1

protein levels are similar in roots and flowers of M. truncatula [8] would seem to imply that

the phenomenon is not restricted to L. japonicus and might be common for legumes.

Biochemical characterization of LjAOS1

Since Ljaos1 expression levels were so much higher than those of Ljaos2, Ljaos1 was chosen for

biochemical characterization of the encoded enzyme. For this purpose, the Ljaos1 cDNA was

expressed in E. coli strain SG13009. In the assay performed on the cell lysate, [1-14C]-

13-HPOT was used as a substrate. Products were extracted and analyzed by radio-HPLC.

Since the resulting allene oxide is very unstable, its hydrolysis product, the α-ketol, was

detected as specific reaction product for LjAOS1. As a positive control, a cDNA expression

clone of the previously described Solanum tuberosum AOS1 was used [28]. In each case, three

independent colonies were tested and were active in the enzyme assay. The results of one rep-

resentative clone each are shown in Fig 2.
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Plant AOS enzymes belong to the CYP74 protein family, a group of cytochrome P-450s that

are specialized for the metabolism of fatty acid hydroperoxides [38]. Three different types of

AOS enzymes are known. The first two types can use either (13S)-hydroperoxides or (9S)-

hydroperoxides as substrates (subfamilies CYP74A and CYP74C, respectively), while the third

type can use both of them (CYP74B; reviewed by Stumpe and Feussner [38]). To further clas-

sify LjAOS1 and LjAOS2, a phylogenetic analysis was performed using various plant CYP74

protein sequences. Multiple alignments of the sequences were performed using ClustalX and a

phylogram was constructed using the PHYLIP program package. The phylogram showed that

LjAOS1 and LjAOS2 both belong to the CYP74A subfamily whose members are specific for

(13S)-hydroxyperoxides (S1 Fig).

Biochemical characterization of LjAOC1 and LjAOC2

The transcriptional analysis had shown that Ljaoc1 was the dominant aoc gene in nodules of L.

japonicus, followed by Ljaoc3, while Ljaoc2 was expressed at the lowest levels. LjAOC3 showed

similar levels of amino acid identity (69.5% vs. 70.2%) with LjAOC1 and LjAOC2, respectively,

Fig 1. Expression analysis of Ljaos1, Ljaos2, Ljaoc1, Ljaoc2 and Ljaoc3 genes in roots (R), nodules (N), stems (S), leaves (L), flowers (F) and

immature pods (P) of L. japonicus cv. Gifu using real time RT-PCR. L. japonicus ubiquitin was used as housekeeping control. Three biological

replicates were used. The data are presented as box plot. The boxes show the interquartile range, and bars indicate data points below the first and above

the third quartile. Lines in the boxes mark the median value.

https://doi.org/10.1371/journal.pone.0190884.g001
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Fig 2. Enzyme activity assays. Enzymatic conversion of [1-14C]-13-HPOT was analyzed by radio-HPLC. Solanum
tuberosum AOS1 and AOC (Stumpe et al., 2006) were used as positive controls. The chromatogram shows α-ketol as

well as OPDA as LjAOS1 reaction products, and OPDA as the only reaction product for LjAOC1 and LjAOC2 which

were used in combination with S. tuberosumAOS1. mAU, milli absorption units. One representative of three

independent experiments is shown.

https://doi.org/10.1371/journal.pone.0190884.g002
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while there were only 56.1% amino acid identify between LjAOC1 and LjAOC2. Therefore, we

chose LjAOC1 and LjAOC2 for biochemical characterization.

After the expression of Ljaoc1 and Ljaoc2 in E. coli SG13009, a coupled enzyme activity

assay was performed. As a positive control, an expression vector with a cDNA encoding AOC1

of S. tuberosum [30] was used. The lysates containing AOC were mixed with lysates containing

the AOS1 from S. tuberosum [28] and [1-14C]-13-HPOT was added, which was first trans-

formed into allene oxide, the substrate of AOCs, by StAOS1. Both LjAOC enzymes were tested

three times independently; Fig 2 shows one representative result for each construct. Both

AOCs, the full-length LjAOC1 and the truncated version of LjAOC2, were enzymatically

active, based on the fact that they catalyzed the synthesis of OPDA.

Amounts of AOC protein in roots vs. nodules

Since a specific antibody for AOS was not available, we tested only the abundance of AOC pro-

tein. Using the anti-tomato AOC antibody [26], which should recognize all isoforms of L. japo-
nicus AOC, relative amounts of AOC protein in roots and nodules were analyzed by Western

blotting. Levels of AOC protein detected in nodules were significantly lower than those

detected in roots (Fig 3). This was interesting since according to the transcriptional analysis

(Fig 1), the combined transcript levels of Ljaoc1, Ljaoc2 and Ljaoc3 in nodules were in the

same range as in roots. It has to be concluded that either not all Ljaoc transcripts are translated

at the same efficiency in all organs/cell types, or that AOC protein is more stable in roots than

in nodules, or that the difference is due to the fact that the nodule extract contained increased

amounts of membrane proteins due to the peribacteroid membranes, and/or due to the pres-

ence of rhizobial proteins.

JA levels in nodulated vs. non-nodulated roots of L. japonicus
L. japonicus with its determinate nodules was used as a model system to investigate the JA lev-

els in roots compared to nodules. Changes in JA levels during nodule development were also

tested and compared to JA levels in non-nodulated L. japonicus plants grown under different

nitrogen conditions.

Previous results had shown the effects of mechanical disturbance on JA levels in roots and

nodules [16,39]. This phenomenon was also examined for L. japonicus; here, leaves were

Fig 3. AOC protein levels in roots and nodules. The left panel shows a Western blot from root (LjR) and nodule

(LjN) proteins from L. japonicus, developed with an antibody against tomato AOC. The right panel shows a 12% SDS-

polyacrylamide gel with the same amount of protein loaded, stained with Fast Green. AOC proteins are 26 kDa in size.

One representative example of three independent experiments is shown.

https://doi.org/10.1371/journal.pone.0190884.g003
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included in the comparison. Nodules and roots were harvested from an individual plant in

two steps 30 min apart. The first harvest represented the undisturbed sample and the second

step yielded the mechanically disturbed (‘shaken’) control. The results showed that levels of JA

and OPDA in L. japonicus roots, nodules and leaves increased in response to mechanical dis-

turbance and wounding (data not shown).

To avoid the effect of mechanical disturbance on JA levels in further studies, a growth sys-

tem had to be used, where root systems did not have to be cleaned during harvesting. There-

fore, the aeroponic gowth system was chosen. For the same reason, separation of nodules from

roots was not an option. Instead, each plant was cut at the hypocotyl so that root and shoot sys-

tem could be frozen immediately in liquid nitrogen. This reduced the duration of handling of

each individual plant to a matter of seconds. Five week old plants of L. japonicus were trans-

ferred from soil to the aeroponic system, and samples were collected at five time points, after

0, 7, 14, 21 and 28 days. Infection with rhizobia took place on the day of transfer. At least five

plants were harvested per time point. Non-nodulated plants grown on two different sources of

nitrogen, potassium nitrate and ammonia, respectively, were examined as well. Two series

were examined for each growth condition. The results are presented in Fig 4. No significant

correlation between JA levels and the stage of nodule development was observed in any of the

experiments. There were also no significant differences in JA levels between the plants grown

on nitrate or ammonium, and the nodulated ones. The JA values at 7 dpi (T-1) contain two

outliers; in one of the two series, roots of nitrate grown plant have very high JA levels, while in

the other series, shoots of nodulated plants show very high JA levels (Fig 4). Since in both

Fig 4. JA levels [nmol/g FW] measured in root and shoot systems of L. japonicus plants grown with a nitrogen source or with rhizobia. Results

show six independent plant series grown under three different growth conditions, i.e. two series per growth condition. T-0 marks the beginning of the

experiments when 5-week-old plants were transferred from soil to the aeroponic tank. Subsequent samples were collected in weekly intervals: T-1 after

one week, T-2 after two weeks, T-3 after three weeks, T-4 after four weeks. In the case of the series grown without nitrogen, infection withM. loti strain

TONO took place at T-0. At least five plants were harvested per time point; three technical replicates were analysed based on their combined root- or

shoot systems, respectively. The data were evaluated using R [46] and plotted using ggplot2 (version 2.2.1, [47]). The analytical error is too large to allow

the detection of statistically significant differences (Mann Whitney U) between the series.

https://doi.org/10.1371/journal.pone.0190884.g004
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cases, these very high values were restricted to one series, they might be explained by anthro-

pogenic mechanical disturbance.

Distribution of AOC in L. japonicus nodules

The distribution of AOC protein in nodules of L. japonicus was analyzed using immunolocali-

zation using the same heterologous antibody that had been used for Western blot analysis. In

the initial experiment, the distribution of AOC was studied during nodule development. Nod-

ules were harvested form L. japonicus grown in the aeroponic system at different time points,

always a week apart. Harvesting point T-0 was the day of inoculation withMesorhizobium loti
strain TONO. There were no differences in AOC localization between the time points (data

not shown). In nodules of all ages, AOC protein was present in the nodule cortex, nodule vas-

cular parenchyma, and the uninfected cells of the inner tissue (Fig 5A–5E). Detailed observa-

tion under a confocal laser scanning microscope revealed that AOC was localized in the

plastidic stroma (Fig 5F–5G).

An interesting phenomenon was observed regarding the structure of infected cells of nod-

ules grown in aeroponic culture. Some infected cells showed a reduced density of bacteroids

(see arrows in Fig 5A and 5B), presumably due to degradation of the bacteroids. This phenom-

enon was observed already in two-week-old nodules. If this phenomenon were related to early

nodule senescence, cells with reduced bacteroid density would be expected to appear with

increased frequency in older nodules. However, the phenomenon was found at similar fre-

quency in two-week-old, three-week-old and four-week-old nodules, although only 6–8 nod-

ules per time point were analyzed in detail. Developmental as well as stress-induced nodule

senescence is related to increased nitric oxide levels [40]. Apart from being a side effect of bac-

teroid degradation during senescence, so far the phenomenon of reduced bacteroid density

had been described only for L. japonicus nodules induced by a Fix- mutant of M. loti [41].

Hence, altogether it seems likely that this observed low bacteroid density is due to bacteroid

degradation caused by stress due to the growth conditions.

To test this hypothesis, AOC immunolocalization experiments were performed on nodules

of plants grown in a perlite/vermiculite mixture wetted with ¼ strength Hoagland’s medium.

Thus, the two growth systems used not only differed in substrate, but also regarding the salt

concentrations in the growth medium. This, however, was unavoidable since aeroponic cul-

ture, with water droplets drying on the root surface, poses peculiar requirements with regard

to the concentration of nutrients in the growth medium. Three week old nodules were har-

vested from perlite/vermiculite-grown plants and immunolocalization was performed using

the same protocol as before, comparing sections from aeroponically grown and from perlite/

vermiculite-grown nodules. The results confirmed the localization of AOC in the nodule cor-

tex, uninfected cells of the inner tissue and nodule vascular parenchyma in nodules of perlite/

vermiculite grown plants (Fig 5D–5E). However, when comparing AOC fluorescence in the

uninfected cells of the inner tissue with AOC fluorescence in the vascular system, there was a

striking difference between nodules from the two different growth systems. When AOC pro-

tein levels were compared in nodules from perlite/vermiculite grown plants vs. those of aero-

ponically grown plants, the difference in distribution was striking: in nodules from perlite/

vermiculite grown plants, the highest levels of AOC were in the nodule vascular tissue. In nod-

ules from aeroponically grown plant, the highest levels of AOC were in the uninfected cells of

the inner tissue (compare Fig 5C with 5E). This could be explained by a reduction of AOC lev-

els in the vascular system of aeroponically grown plants. No infected cells from perlite/vermic-

ulite grown nodules were found to exhibit reduced bacteroid density. Hence, the occasional

occurrence of reduced bacteroid density in infected cells, as well as the reduced amount of

Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules

PLOS ONE | https://doi.org/10.1371/journal.pone.0190884 January 5, 2018 11 / 16

https://doi.org/10.1371/journal.pone.0190884


Fig 5. Immunolocalization of L. japonicus AOC protein in longitudinal sections of L. japonicus nodules. The nodules come from plants from two

different growth systems; (A-C, F-G) aeroponic culture, (D-E) perlite/vermiculite-grown plants (in both cases, nodules were harvest 3 weeks after

inoculation). Panels (A-E) show conventional wide-field fluorescent microscopy images where the fluorescence of the secondary antibody labeling

AOC is visible in green. The image in panel (F) was taken with differential interference contrast. The image in panel (G) was taken on a confocal laser

scanning microscope and shows immunolabeled AOC in green, while toluidine blue-stained bacteria and nuclei are shown in red. Labels: ic, infected

cells; nc, nodule cortex; uc, uninfected cells of the inner tissue. The nodule vascular bundles are labeled with asterisks. The arrows in panels (A) and (B)

points at infected cells with low bacteroid density. Size bars denote (A,D) 100 μm, (B,C,E) 50 μm, and (F,G) 20 μm.

https://doi.org/10.1371/journal.pone.0190884.g005
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AOC in the nodule vascular system, was a phenomenon related to aeroponic cultivation of L.

japonicus. Similar reduced bacteroid density has been published for ineffective nodules

induced by Rhizobium etli on L. japonicus showing early senescence [42] and for senescent L.

japonicus nodules formed by sen1mutant plants [43]; however, in those nodules the reduced

bacteroid density was consistent in all infected cells. This similarity leads to the suggestion that

the areas with reduced bacteroid density were senescent.

Research on Phaseolus vulgaris has shown that accumulation of salts on the surface or roots

of plants in aeroponic culture can lead to osmotic stress [44], and osmotic stress can lead to

bacteroid degradation like is taking place during senescence [45]. Thus, it is likely that in spite

of the fact that the close relative of L. japonicus, M. truncatula does not have growth problems

in the aeroponic system described [20], L. japonicus was stressed. While this stress might have

initially led to an increase in JA levels, it is plausible that it would later have led to habituation.

This could have caused reduced levels of JA in the plants, and maybe also led to a reduction of

inducible JA biosynthesis. The latter would be in agreement with results from this study that

nodules from plants grown in the aeroponic system showed much less AOC protein in their

vascular system than those from perlite/vermiculite-grown plants. In this context, it is interest-

ing thatM. truncatula plants exposed to mechanostimulation three times per week displayed a

shoot growth phenotype commensurate with increased JA levels, but while their shoots and

roots showed enhanced levels of MtAOC1 transcription, they did not contain increased JA lev-

els [39]. At any rate, the fact that the nodules of aeroponically grown L. japonicus plants display

a stress-related phenotype means that the observed levels of a stress-related phytohormone,

JA, might well be affected by factors other than nodule development.

In summary, because of the side effects of mechanical disturbance on JA biosynthesis, aero-

ponic or hydroponic culture was required to enable quick harvesting of L. japonicus root sys-

tems for the determination of JA levels. However, although the aeroponic culture system used

in this study reliably allowed good nodulation and did not cause any obvious growth defects,

detailed analyses suggested that it caused low level stress on the plants which affected infection

density and might have affected JA production.

Conclusions

The aos and aoc gene families of the model legume Lotus japonicus were characterized.

Enzyme activities of LjAOS1 and of two members of the LjAOC family, LjAOC1 and LjAOC2,

were confirmed using expression in E. coli. LjAOC proteins were localized in L. japonicus nod-

ules at different points of development using a heterologous antibody. Like in Medicago trun-
catula nodules [16], LjAOC proteins were present exclusively in the plastidic stroma of

uninfected nodule cell types, namely in the nodule cortex, nodule vascular parenchyma, and

the uninfected cells of the inner tissue. Changes in JA levels in the course of nodule develop-

ment were analysed using an aeroponic growth system. No significant differences were found

either between JA levels in root and shoot systems, respectively, under different forms of nitro-

gen supply, or over the course of nodule development. However, detailed analyses of nodules

formed in aeroponic culture suggested that this growth system was sub-optimal for L. japoni-
cus. While nodules formed in aeroponic culture were macroscopically indistinguishable from

nodules formed on the roots of perlite/vermiculite-grown plants, nodule development and rel-

ative amounts of LjAOC protein in uninfected cells of the inner tissue vs. the nodule vascular

system were affected in the aeroponic system.
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