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Abstract

Combining a deep neural network with fuzzy theory, this paper proposes an advertising

click-through rate (CTR) prediction approach based on a fuzzy deep neural network

(FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine

(FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted

Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with

the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for

modeling the CTR. The experimental results show that the proposed FDNN model outper-

forms several baseline models in terms of both data representation capability and robust-

ness in advertising click log datasets with noise.

Introduction

Internet advertising is regarded as an effective advertising communication approach due to

its strong targeted communication ability. Therefore, increasing numbers of researchers from

industry and academia have investigated internet advertising, and it has become an important

source of income for internet companies.

The cost per click (CPC) model [1] is one of the most common payment models in internet

advertising. Approximately 66% of advertising transactions depend on the CPC because the

CPC can more accurately reveal the conversion rate compared with the other models [2]. In

the CPC model, the click-through rate (CTR) is a significant index for measuring the effect of

advertisement placement.

To address this task, Chapelle O. et al. propose a machine learning framework that uses

Maximum Entropy to implement a logistic regression model and can address billions of sam-

ples and hundreds of millions of parameters. A two-phase feature selection algorithm is pro-

vided to reduce the need for domain expertise: a generalized mutual information method is

used to select the feature groups that are used in the model; next, feature hashing is used to

regulate the size of the models [3]. McMahan et al. adopted a logistic regression model to

solve advertising CTR problems for Google. Using multiple characteristics, including user
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information, search keywords, advertising data, and relative metadata, with advertisements as

the input of the model, these researchers proposed an online sparse learning algorithm to the

train model [4]. These above methods are recently used to address CTR prediction through

the logistic regression (LR) model in industry. These methods can appropriately address a

large number of features in real advertising system in industry, and can be efficiently paralle-

lized in a distributed computing system. However, they cannot learn complex mapping rela-

tions from data because of their limited data representation capability.

T. A. Anh-Phuong presented an online learning algorithm for click-through rate predic-

tion, known as Follow The Regularized Factorized Leader (FTRFL), which combines the Fol-

low-The-Regularized-Leader Proximal (FTRL-P) algorithm with per-coordinate learning rates

to obtain factorization machines. These researchers attempt to obtain both the sparsity pro-

vided by FTRL-Proximal and the ability to estimate higher-order features based on FM [5]. Z.

Pan et al. proposed a Sparse Factorization Machine (SFM) model to solve the problem of the

sparsity of the ad transaction dataset. In this model, the Laplace distribution is introduced to

model the parameters because it can better fit the sparse data, which has a high ratio of zero

elements. Furthermore, these researchers parallelized the SFM model on the Spark platform to

support CTR prediction in a real advertising system [2]. These above methods are recently

adopted to address CTR prediction through Factorization Machines (FMs) in academia. These

methods can alleviate this problem of feature learning by compressing the sparse features into

a dense vector space and using the second-order feature interactions. However, when facing a

dataset with complex relations, they cannot sufficiently capture the higher-order non-linear

representative features and complex inherent mapping relations among the users, contexts

and ads in the advertising datasets.

A. I. Baqapuri and I. Trofimov adopted Artificial Neural Networks (ANNs) to predict the

advertising CTR and obtained a better effect than that of the logistic regression model [6].

Dave and other researchers proposed a model that inherits the click information of rare/new

ads from frequent ads that are semantically related to calculate the CTR values for newly cre-

ated ads or rare ads that do not have sufficient historical information. The semantic features

are derived from the search ad click-through graphs and advertiser account information. Next,

gradient boosted decision trees (GBDTs) is adopted to learn from these similarity features.

Experiments demonstrate that this learned model, using these features, obtains good CTR pre-

diction performance for new ads [7]. Y Juan et al. first used trees in GBDT to generate abstract

nonlinear features and then combined the original features as input features, which were fed

into the FM model for the advertising prediction [8]. These above methods are recently used

to address CTR prediction through models ensemble technique, and they give state-of-the-art

ideas for industry and academia.

Zhang and other researchers used recurrent neural networks (RNNs) to predict the CTR

of sponsored search advertising. Using back-propagation through time (BPTT) to train their

model, these researchers obtained more accurate results for advertising CTR prediction than

neural networks and logistic regression models [9]. Yu adopted the improved regression neu-

ral network to predict advertising CTR by using long short-term memory (LSTM) to modify

RNN. This method effectively prevents the explosion or vanishing of the gradient [10]. Jiang

et al. adopted the DBNLR model, which integrates a deep belief network (DBN) with logistic

regression (LR) to address the problem of CTR prediction. A DBN stacked of RBMs is used to

obtain abstract features from original advertisement datasets, and then a regression model is

adopted to calculate the CTR prediction value [11]. Junxuan Chen et al. proposed a novel deep

neural network that contains convolution layers to extract representative visual features, and

fully connected layers learn the complex and effective nonlinear features based on the basic

visual features. Finally, these features are fed into a logistic regression model to predict the

Advertising CTR prediction based on FDNN
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CTR value [12]. These above methods are state-of-the-art solutions which are adopted to

address CTR prediction task through deep learning technology. In these above methods, a

deep architecture model is usually used to automatically extract the features of advertising

click log data, and a regression model is subsequently trained to model the advertising CTR.

Because a deep architecture is used to learn the features, there is no need for these methods to

depend on prior knowledge or human labor; they can effectively fit complex nonlinear map-

ping relations in advertising datasets. However, when the dataset contains noisy data such as

missing values and outliers, these methods may exhibit performance degradation.

A common strategy for dealing with this problem is to identify and delete records with out-

liers during data preprocessing. However, deleting entire records results in the loss of much

valuable and clean information. The other common strategy is to replace missing values and

outliers with “0” or “NULL”; however, the records with outliers are preserved in the training

set, which also affects the accuracy of CTR prediction.

Uncertainties not only exist in the data themselves but occur at each phase of big data pro-

cessing. For instance, the collected data may be created by faulty sensors or provided by not

fully informed customers; the outputs of specific artificial intelligent algorithms also contain

uncertainties. In these cases, fuzzy set techniques could be one of the most efficient tools to

handle various types of uncertainties [13]. Because the parameters of these above deep archi-

tecture models are constants, and the learning processes of the parameters are constrained in a

relatively small space, these methods have insufficient representation capability and relatively

weak robustness when the training data have been interrupted by uncertainties. Meanwhile,

fuzzy set techniques would be more efficient if they are used associated with other decision

making techniques, such as probability, neural networks, etc., because each type of techniques

exhibit their own strengths of representing and handling information granularity [13].

Due to the lack of a comprehensive understanding of the advertising datasets with noises, it

is often difficult for these methods to ensure that the extracted features capture the optimal

information for predicting the CTR. These deficiencies affect the accuracy and fitness of these

methods. According to the advantages of fuzzy set techniques, this paper proposes a novel

CTR prediction method based on the fuzzy deep neural network (FDNN) to address advertis-

ing datasets with noise.

The main contributions of this paper can be summarized as follows:

1. This paper proposes an FDNN model in which FDBN is used to automatically extract

abstract and complicated features from raw advertising datasets without any artificial interven-

tion or prior knowledge and subsequently uses fuzzy logistic regression to model the CTR.

2. Fuzzy set techniques are introduced into the Gaussian-Bernoulli Restricted Boltzmann

Machine (GBRBM), Restricted Boltzmann Machine (RBM) and logistic regression models to

construct basic components of FDNN, and corresponding learning algorithms are presented

in detail.

3. We conduct extensive experiments on real-world datasets to demonstrate the effective-

ness and efficiency of the proposed FDNN model. The impacts of several baseline models are

also discussed. Experiments results show the superiority of the proposed method. On the first

dataset, the results show that the proposed method achieves competitive performances com-

pared with the state-of-the-art models in terms of both data representation capability and

robustness.

Materials and methods

Relative theories of fuzzy numbers and fuzzy functions

Fuzzy number. Definition 1. Triangular Fuzzy Number

Advertising CTR prediction based on FDNN
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A fuzzy number y (fuzzy set) on a real domain can be defined as a triangular fuzzy number

if its membership function m
y
ðxÞ : R! ½0; 1� is equal to [14], and it is shown in S1 Fig.

m
y
ðxÞ ¼ yðxÞ ¼

x
m� l �

l
m� l ; x 2 ½l;m�

x
m� u �

u
m� u ; x 2 ½m; u�

0; otherwise

;

8
>>>>><

>>>>>:

ð1Þ

where l�m� u, l and u stand for the lower and upper values of the support of fuzzy number

y (fuzzy set), respectively; andm is the most likely value (middle value), that is, when x =m, x
belongs to y. The triangular fuzzy number can be denoted by (l,m, u). The support of y is the

set of elements {x 2 R|l< x< u}. When l =m = u, it is a non-fuzzy number.

Definition 2. α-cuts of a fuzzy set

The α-cut of fuzzy set y, represented by y½a�, is defined as y½a� ¼ fx 2 Ojy � ag ¼ ½yL; yR�,

where 0< α� 1, θL is the lower value of y½a� and θR is the upper value of y½a� [15, 16].

Fuzzy function. Definition 3. Fuzzy Function

Extended from a real-valued function f: Y = f(x, θ), the fuzzy function f can be defined as

[16]

Y ¼ f ðx; θÞ; ð2Þ

where θ and θ are parameters of functions f and f [16, 17], Y is the fuzzy output set.

The membership function Y ðyÞ can be expressed as

Y ðyÞ ¼ supyfminðy1ðy1Þ; :::; ynðynÞÞjf ðx; θÞ ¼ yg; ð3Þ

where θ = (θ1, . . ., θn)T, and θ ¼ ðy1; :::; ynÞ
T

Property 1. Real Domain Interval Arithmetic

For two real domain intervals [a, b] and [c, d], the interval arithmetic can be defined as

[16, 18]

[a, b] + [c, d] = [a + c, b + d];

[a, b] − [c, d] = [a − c, b − d];

[a, b] × [c, d] = [min(a × c, a × d, b × c, b × d),max(a × c, a × d, b × c, b × d)];

[a, b]� [c, d] = [min(a � c, a� d, b� c, b� d),max(a� c, a� d, b� c, b� d)].

Definition 4. α-Cuts of a Fuzzy Function

α-Cuts of Y : For a continuous function f, the α-Cuts of Y , namely Y ½a� ¼ ½Y 1½a�;Y 2½a��,

can be expressed as [16]

( Y 1½a� ¼ minfYðθ; xÞjθ 2 θ½a�g

Y 2½a� ¼ maxfYðθ; xÞjθ 2 θ½a�g
: ð4Þ

It is infeasible to calculate the membership function Y ðyÞ using formulas (2) and (3)

because this requires maximization and minimization of the original function. This paper

adopts α-cuts and interval arithmetic to solve this problem.

Y ½a� ¼ f ðx; θ½a�Þ ð5Þ

The membership function Y ðyÞ of a fuzzy function can be obtained by interval arithmetic

because intervals θ½a� are easy to calculate. However, when f is very complex, interval

Advertising CTR prediction based on FDNN
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arithmetic will be NP-hard; therefore, this paper introduces a defuzzification approach to han-

dle this problem.

Defuzzification of the fuzzy function. The centroid approximate solution [19] is

employed to defuzzify the fuzzy function Y ¼ f ðx; θÞ in this paper.

The centroid of fuzzy function f ðx; θÞ can be denoted by fcðx; θÞ [19]:

fcðx; θÞ ¼
R
θf ðx; θÞdθ
R
f ðx; θÞdθ

; θ 2 θ: ð6Þ

However, directly calculating formula (6) is difficult because it involves integrals. The centroid

can be approximated through many α-cuts of the fuzzy function in discrete form. θ is a vector

of fuzzy numbers and an α-cut of θ can be denoted as θ½a� ¼ ½θL; θR�, where θL and θR are

lower and upper bounds, respectively, of the interval with respect to α. When x is nonnegative,

f ðx; θÞ is a monotonically decreasing function with respect to parameters θ. Thus, according

to the interval arithmetic principle, definition 3 and formula (5), the α-cut of f ðx; θÞ is given

by

f ðx; θÞ½a� ¼ f ðx; θ½a�Þ ¼ ½f ðx; θLÞ; f ðx; θRÞ�: ð7Þ

The approximate centroid of fuzzy function f ðx; θÞ can be obtained by [20]

fcðx; θÞ �
PM

i¼1
ai½f ðx; θiLÞ; f ðx; θiRÞ�

2
PM

i¼1
ai

; ð8Þ

where α = (α1, . . ., αN), α 2 [0, 1]N and θ½ai� ¼ ½θiL; θiR�.
Although all the α-cutsare bounded intervals, this paper takes only the special case where

αi = 1 into consideration. Let θ = [θL, θR]. Formula (8) can be expressed as [20]

fcðx; θÞ �
1

2
½f ðx; θLÞ þ f ðx; θRÞ�: ð9Þ

Therefore, fuzzy function Y can be expressed as

Y ¼ f ðx; θÞ ¼ fcðx; θÞ �
1

2
½f ðx; θLÞ þ f ðx; θRÞ�: ð10Þ

Advertising CTR prediction based on the fuzzy deep neural network

Basic fuzzy components and corresponding learning algorithms. Inspired by the idea

of above fuzzy theory and methods [16–20], we first provide a detailed introduction and

describe the corresponding learning algorithms of several basic components that have been

modified using fuzzy technology.

A. FRBM and its Learning Algorithm
Fuzzy restricted Boltzmann machine (FRBM) is a symmetric neural network with binary

nodes that is based on an energy model. It contains a set of visual binary nodes v 2 {0, 1}D and

another set of hidden binary nodes h 2 {0, 1}F. There are no connections between different

nodes of the same hidden layer or between different nodes of the same visual layer. Fuzzy

parameters are employed to govern the FRBM model. The structure of FRBM is described in

S2 Fig.

The fuzzy energy function of FRBM can be expressed as [20]

Eðx; h; θÞ ¼ � b
T x � cTh � hTWx: ð11Þ

Advertising CTR prediction based on FDNN
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In this formula, θ ¼ fb; c;Wg, b and c are the offsets, and W is the connection weight

between the ith visible node and the jth hidden node.

According to the free energy function Fðx; θÞ ¼ � log
P

~he
� Eðx;~h;θÞ, the fuzzy free energy

function F is expressed as

Fðx; θÞ ¼ � log
X

~h

e� Eðx;~h;θÞ: ð12Þ

If Fðx; θÞ is used directly to define the probability, it is difficult to calculate the fuzzy probabil-

ity, fuzzy maximum likelihood and fuzzy objective function in the optimization. Therefore,

Fðx; θÞ needs to be defuzzifized to transform the optimization into regular maximum-likeli-

hood optimization. This paper adopts a centroid method to defuzzify Fðx; θÞ.
The centroid of Fðx; θÞ is expressed as Fcðx; θÞ, and the probability can be defined as

Pcðx; θÞ ¼
e� Fcðx;θÞ

Z
;Z ¼

X

~x

e� Fcð~x ;θÞ: ð13Þ

This paper selects the negative log-likelihood as the objective function of FRBM:

Lðθ;DÞ ¼ �
X

x2D

logPcðx; θÞ: ð14Þ

In the formula, D denotes the training dataset.

The learning algorithm of FRBM finds the parameters θ that minimize the objective func-

tion Lðθ;DÞ (minLθðθ;DÞ). The paper adopts the centroid approximation method to defuzzify

Fðx; θÞ:

Fðx; θÞ ¼ Fcðx; θÞ �
1

2
½Fðx; θLÞ þ Fðx; θRÞ�: ð15Þ

The gradients of Lðθ;DÞ with respect to θL can be expressed as

�
@logPcðx; θÞ

@θL
¼
@Fcðx; θLÞ
@θL

� Ep
@Fcðx; θLÞ
@θL

� �

: ð16Þ

In the formula, Ep(�) is the expectation over the target probability distribution P.

Correspondingly,

�
@logPcðx; θÞ

@θR
¼
@Fcðx; θRÞ
@θR

� Ep
@Fcðx; θRÞ
@θR

� �

: ð17Þ

Because it is difficult to calculate the expectation Ep
@Fcðx;θÞ
@θ

� �
, an approximation approach is

employed. After defuzzifying the objective function, Gibbs sampling [21] is adopted to sample

from these conditional distributions.

For FRBM, the fuzzy conditional probabilities can be expressed as Pðhj ¼ 1jxÞ ¼

sðcj þW �jxÞ and Pðxi ¼ 1jhÞ ¼ sðbi þWT
i�hÞ. The α-cuts of the fuzzy conditional probabili-

ties are described as Pðhj ¼ 1jxÞ½a� ¼ ½PLðhj ¼ 1jxÞ; PRðhj ¼ 1jxÞ� and Pðxi ¼ 1jhÞ½a� ¼
½PLðxi ¼ 1jhÞ; PRðxi ¼ 1jhÞ�.

Advertising CTR prediction based on FDNN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190831 May 4, 2018 6 / 24

https://doi.org/10.1371/journal.pone.0190831


In these formulas, PL(hj|x), PR(hj|x), PL(xi|h) and PR(xi|h) are the conditional probabilities

with respect to the lower bounds and upper bounds of the parameters. Consequently,

PLðhjjxÞ ¼ Pðhjjx; θLÞ ¼ sðcLj þW
L
�jxÞ;

PRðhjjxÞ ¼ Pðhjjx; θRÞ ¼ sðcRj þW
R
�jxÞ;

ð18Þ

and

PLðxijhÞ ¼ Pðxijh; θLÞ ¼ sðbLi þW
L
i�hÞ;

PRðxijhÞ ¼ Pðxijh; θRÞ ¼ sðbRi þW
R
i�hÞ:

ð19Þ

In these formulas,WL
ij andWR

ij are the lower bound and upper bound of the connection

weight, bLi and bRi are the lower bound and upper bound of the visible bias, and cLj and cRj are

the lower bound and upper bound of the hidden bias [20].

According to (15), (16), (17) and the expectation estimation method of [20, 22], the gradi-

ents of Lðθ;DÞ with respect to the fuzzy parameters of FRBM can be obtained as follows:

�
@logPcðxÞ
@WL

ij

¼ Ep½PLðhjjxÞ � x
L
i � � PLðhjjxÞ � x

L
i ;

�
@logPcðxÞ
@cLj

¼ Ep½PLðhjjxÞ� � PLðhjjxÞ;

�
@logPcðxÞ
@bLi

¼ Ep½PLðxijhÞ� � x
L
i ;

�
@logPcðxÞ
@WR

ij

¼ Ep½PRðhjjxÞ � x
R
i � � PRðhjjxÞ � x

R
i ;

�
@logPcðxÞ
@cRj

¼ Ep½PRðhjjxÞ� � PRðhjjxÞ;

�
@logPcðxÞ
@bRi

¼ Ep½PRðxijhÞ� � x
R
i ;

where Pc(x) is the centroid probability.

The CD1 algorithm [22] is employed to obtain the updating rules for parameters (θL and θR)

to approximate the expectation Ep
@Fcðx;θÞ
@θ

� �
[20, 22]. The above description is summarized as

Algorithm 1.

Algorithm 1 The learning algorithm of FRBM
Input: x(0) is an input sample of the training set;

ε is the learning rate;
WL and WR are the lower and upper bounds of connection weight matrices

of the visible and hidden layers;
bL and bR are the lower and upper bounds of bias vectors of the

visible nodes;
cL and cR are the lower and upper bounds of bias vectors of the hidden

nodes.
Output: The latest parameters of FRBM: WL, WR, bL, bR, cL, cR.

Advertising CTR prediction based on FDNN
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BEGIN
1. For all hidden nodes j do

obtain PLðh
Lð0Þ
j ¼ 1jxð0ÞÞ and PRðh

Rð0Þ
j ¼ 1jxð0ÞÞ by means of formula (18);

sample hLð0Þj 2 f0; 1g from PLðh
Lð0Þ
j jxð0ÞÞ;

sample hRð0Þj 2 f0; 1g from PRðh
Rð0Þ
j jxð0ÞÞ;

end for
2. For all visible nodes i do

gain PLðx
Lð1Þ
i ¼ 1jhLð0ÞÞ and PRðx

Rð1Þ
i ¼ 1jhRð0ÞÞ by means of formula (19);

sample xLð1Þi 2 f0; 1g from PLðx
Lð1Þ
i jh

Lð0Þ
Þ;

sample xRð1Þi 2 f0; 1g from PRðx
Rð1Þ
i jh

Rð0Þ
Þ;

end for
3. For all hidden nodes j do

obtain PLðh
Lð1Þ
j ¼ 1jxLð1ÞÞ and PRðh

Rð1Þ
j ¼ 1jxRð1ÞÞ by means of formula (18);

sample hLð1Þj 2 f0; 1g from PLðh
Lð1Þ
j jxLð1ÞÞ;

sample hRð1Þj 2 f0; 1g from PRðh
Rð1Þ
j jxRð1ÞÞ;

end for
4. The parameters can be updated according to the following rules:

WL = WL + ε(x(0) � PL(h
L(0) = 1|x(0)) − xL(1) � PL(h

L(1) = 1|xL(1)));
bL = bL + ε(x(0) − xL(1))
cL = cL + ε(PL(h

L(0) = 1|x(0) − PL(h
L(1) = 1|xL(1)));

WR = WR + ε(x(0) � PR(h
R(0) = 1|x(0)) − xR(1) � PR(h

R(1) = 1|xR(1)));
bR = bR + ε(x(0) − xR(1));
cR = cR + ε(PR(h

R(0) = 1|x(0) − PR(h
R(1) = 1|xR(1)));

5. return WL, WR, bL, bR, cL, cR.
END

B. FGBRBM and Its Learning Algorithm
The nodes of the visible and hidden layers in the fuzzy Gaussian-Bernoulli restricted Boltz-

mann machine (FGBRBM) model correspond to the Gaussian-Bernoulli nodes. In other

words, the nodes of visible layer v 2 RD are Gaussian nodes and the nodes of the first hidden

layer h 2 {0, 1}F are Bernoulli nodes (binary nodes) [23]. Their structures are described in

S3 Fig. The fuzzy energy function of FGBRBM can be defined as

Eðv; h; θÞ ¼ � vT �
1

σ

� �T

Wh �
1

2
vT �

1

σ
� b

T
�

1

σ

� �2

� b
T h; ð20Þ

where σi denotes the standard deviation of vi in the ith dimension of the Gaussian visual node.

Correspondingly, as for FGBRBM, the fuzzy conditional probability distribution for obtain-

ing nodes of the hidden layer through nodes of the visual layer can be described as:

Pðhj ¼ 1jvÞ ¼ g cj þWi�

� �
¼ g cj þ

X

i

vi
si
W ij

 !

; ð21Þ

where g(�) denotes the sigmoid function.

The formula for constructing the nodes of the visual layer through nodes of the hidden

layer can be expressed as

vi ¼ Nðbi þ si

XF

j¼1

Wijhj; s
2

i Þ: ð22Þ

In this formula, N(μ, σ2) is a Gaussian probability density function, where μ is the mean value

and σ2 denotes the variance.
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The α-cuts of fuzzy conditional probabilities can be expressed as Pðhj ¼ 1jvÞ½a� ¼

½PLðhj ¼ 1jvÞ; PRðhj ¼ 1jvÞ�, vi½a� ¼ Nðbi þ si
PF

j¼1
Wijhj; s2

i Þ½a� ¼ ½viL; viR�, where PL(hj|v)

and PR(hj|v) are the conditional probabilities with respect to the lower and upper bounds of

the parameters governing the FGBRBM, and viL and viR are the probabilities of the normal dis-

tribution. Consequently,

PLðhjjvÞ ¼ Pðhjjv; θLÞ ¼ sðcLj þW
L
�jvÞ;

PRðhjjvÞ ¼ Pðhjjv; θRÞ ¼ sðcRi þW
R
�j vÞ;

ð23Þ

and

viL ¼ N bLi þ si

XF

j¼1

WL
ijhj; s

2

i

 !

;

viR ¼ N bRi þ si

XF

j¼1

WR
ij hj; s

2

i

 !

;

ð24Þ

whereWL
ij andWR

ij are the lower and upper bounds of the connection weight, respectively; bLi
and bRi are the lower and upper bounds of visible node bias, respectively; and cLj and cRj are the

lower and upper bounds of the hidden node bias, respectively.

The CD-1 algorithm can also be used for learning parameters of the fuzzy Gaussian-Ber-

noulli RBM model. In the process of training, the input data of the whole training set should

first be normalized so that each dimension of the input data in the FGBRBM model obeys

the normal distribution, i.e., the mean value is 0 and the variance is 1. When the formula

Pðvi ¼ 1jh; θÞ is calculated, σ = 1. In the process of reconstructing the nodes of the visual

layer, this paper does not adopt binary data instead of the probabilities of the normal distribu-

tion. The above description is summarized as Algorithm 2.

Algorithm 2 The learning algorithm of FGBRBM
Input: x(0) is a sample of the training dataset;

ε is the learning rate;
WL and WR are the lower and upper bounds of connection weight matrices

of the visible and hidden layers;
bL and bR are the lower and upper bounds of bias vectors of the

visible nodes;
cL and cR are the lower and upper bounds of bias vectors of the hidden

nodes.
Output: The latest parameters of FGBRBM: WL, WR, bL, bR, cL, cR.
BEGIN
1. For all hidden nodes j do

obtain PLðh
Lð0Þ
j ¼ 1jvð0ÞÞ and PRðh

Rð0Þ
j ¼ 1jvð0ÞÞ by means of formula (23);

sample hLð0Þj 2 f0; 1g from PLðh
Lð0Þ
j jvð0ÞÞ;

sample hRð0Þj 2 f0; 1g from PRðh
Rð0Þ
j jvð0ÞÞ;

end for
2. For all visible nodes i do

obtain viL and viR by means of formula (24);
vLð1Þi ¼ NðbLi þ

PF
j¼1
WL

ijh
Lð0Þ
j ; 1Þ;

vRð1Þi ¼ NðbRi þ
PF

j¼1
WR

ij h
Rð0Þ
j ; 1Þ;

end for
3. For all hidden nodes j do

obtain PLðh
Lð1Þ
j ¼ 1jvLð1ÞÞ and PRðh

Rð1Þ
j ¼ 1jvRð1ÞÞ by means of formula (23);
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sample hLð1Þj 2 f0; 1g from PLðh
Lð1Þ
j jvLð1ÞÞ;

sample hRð1Þj 2 f0; 1g from PRðh
Rð1Þ
j jvRð1ÞÞ;

end for
4. The parameters can be updated according to the following rules:

WL = WL + ε(v(0) � PL(h
L(0) = 1|v(0)) − vL(1) � PL(h

L(1) = 1|vL(1)));
bL = bL + ε(v(0) − vL(1))
cL = cL + ε(PL(h

L(0) = 1|v(0) − PL(h
L(1) = 1|vL(1)));

WR = WR + ε(v(0) � PR(h
R(0) = 1|v(0)) − vR(1) � PR(h

R(1) = 1|vR(1)));
bR = bR + ε(v(0) − vR(1))
cR = cR + ε(PR(h

R(0) = 1|v(0) − PR(h
R(1) = 1|vR(1)));

5. return WL, WR, bL, bR, cL, cR.
END

C. FLR and Its Learning Algorithm Used for Modeling the Click Through Rate
The logistic regression (LR) model [24] is a classic model in the field of advertising click-rate

prediction. The LR model is described in S4 Fig. The activation function of the node in the out-

put layer is a sigmoid function [25]. The output value of the node (value of the activation func-

tion) hθ(x0) is the probability that a user will click on the advertisement; it can also be described

as P(y = 1|x0; θ0). When a sample (x0d; yd) in the training setD ¼ ðx0
1
; y1Þ; ðx02; y2Þ; :::; ðx0N ; yNÞ is

given, the probability value of advertising click rate prediction can be obtained in terms of logis-

tic regression and can be described by formula (25)

pðclickja;u; cÞ ¼ pðyd ¼ 1jx0d; θ
0
Þ ¼

1

1þ e� θ
0Tx0d

: ð25Þ

Correspondingly, pðy ¼ 0jx0; θ0Þ ¼ 1 � 1

1þe
� θ0T x0

d
.

In this formula, θ0T denotes the vector of parameters of the standardized logistic regression

model, a refers to the features of the advertisement, u denotes the features of users, and c repre-

sents the features of the context environment. These three features compose a vector, which

can be denoted as x0d. This vector is fed into the logistic regression model for CTR prediction.

For a single sample (x0d; yd), the probability of correctly predicting the advertising click-

through rate can be described as Pðydjx0d; θ
0
Þ ¼ hθ0 ðx0dÞ

ydð1 � hθ0 ðx0dÞÞ
ð1� ydÞ. This paper selects

the likelihood function as the objective function:

Jðx0d; θ
0
Þ ¼ �

1

N
logðPðYDjX

0

D; θ0ÞÞ

¼ �
1

N
log

YN

d¼1

ðhθ0 ðx
0

dÞ
ydð1 � hθ0 ðx

0

dÞÞ
1� ydÞ

 !

¼ �
1

N

XN

d¼1

ðydloghθ0 ðx
0

dÞ þ ð1 � ydÞlogð1 � hθ0 ðx
0

dÞÞÞ:

ð26Þ

In formula (26), the click label yd denotes the expected output and hθ0 ðx0dÞ is the real output

value of the neuron node in the output layer (output of the activation function); hy0 ðx0dÞ can

be described as hθ0 ðx0dÞ ¼ gðzÞ, where z ¼
P

iðwixi þ bÞ ¼ θ0Tx0d and g(x) denotes the sigmoid
function.

Advertising CTR prediction based on FDNN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190831 May 4, 2018 10 / 24

https://doi.org/10.1371/journal.pone.0190831


As for the fuzzy logistic regression model, the objective function can be described as

Jðx0d; θ
0
Þ ¼ �

1

N
logðPðYDjX

0

D; θ0 ÞÞ

¼ �
1

N
log

YN

d¼1

ðhθ0 ðx
0

dÞ
ydð1 � hθ0 ðx

0

dÞÞ
1� ydÞ

 !

¼ �
1

N

XN

d¼1

ðydloghθ0 ðx
0

dÞ þ ð1 � ydÞlogð1 � hθ0 ðx
0

dÞÞÞ;

ð27Þ

where hθ0 ðx
0
dÞ ¼ gðzÞ, z ¼

P
iðwixi þ bÞ ¼ θ0

T
x0d and gðxÞ ¼ 1

1þe� x.

According to formulas (5) and (7), the gradient of the objective function of FLR with

respect to fuzzy parameter θ0 can be expressed as

@Jðx0d; θ
0
Þ

@θ0 L
¼
@Jcðx0d; θ

0
Þ

@θ0 L

¼ �
1

N

XN

d¼1

ðyd
1

hθ0Lðx
0
dÞ

@hθ0Lðx
0
dÞ

@θ0L
� ð1 � ydÞ

1

1 � hθ0Lðx
0
dÞ

@hθ0Lðx
0
dÞ

@θ0L
Þ

¼
1

N

XN

d¼1

ðhθ0Lðx
0

dÞ � ydÞx
0

d

¼ C
XN

d¼1

ðhθ0Lðx
0

dÞ � ydÞx
0

d;

ð28Þ

@Jðx0d; θ
0
Þ

@θ0R
¼
@Jcðx0d; θ

0
Þ

@θ0R

¼ �
1

N

XN

d¼1

ðyd
1

hθ0Rðx
0
dÞ

@hθ0Rðx
0
dÞ

@θ0R
� ð1 � ydÞ

1

1 � hθ0Rðx
0
dÞ

@hθ0Rðx
0
dÞ

@θ0R
Þ

¼
1

N

XN

d¼1

ðhθ0Rðx
0

dÞ � ydÞx
0

d

¼ C
XN

d¼1

ðhθ0Rðx
0

dÞ � ydÞx
0

d:

ð29Þ

The above description is summarized as Algorithm 3.

Algorithm 3 The learning algorithm of FLR
Input: ðx0d; ydÞ is a sample of training sets;

ε is the learning rate;
θ0L ¼ fW

L; cLg and θ0R ¼ fW
R; cRg, where WL and WR are the lower and upper

bounds of connection weight matrices of FLR, and cL and cR are the lower
and upper bounds of bias vectors of the output node of FLR;
Output: The latest parameters of FLR: θ0L ¼ fW

L; cLg, θ0R ¼ fW
R; cRg.

BEGIN

1. obtain @Jcðθ0 Þ
@θ0L

by means of formula (28) based on the input data x0d;
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2. obtain @Jcðθ0 Þ
@θ0R

by means of formula (29) based on the input data x0d;
3. The parameters can be updated according to the following rules:

θ0L ¼ θ0L þ ε
@Jcðθ0 Þ
@θ0L

;

θ0R ¼ θ0R þ ε
@Jcðθ0 Þ
@θ0R

;

4. return θ0L; θ
0

R.
END

Advertising CTR prediction model FDNN. A. Construction of Advertising CTR Predic-
tion Model FDNN

This section describes the proposed fuzzy deep neural network (FDNN) model for advertis-

ing CTR prediction and its learning algorithm in detail. The architecture of the method and its

process of predicting CTR are illustrated in S5 Fig.

First, the fuzzy deep belief network (FDBN) constituted by FRBM and GBRBM is used to

automatically learn the discriminative features of raw input data from an advertising dataset,

and these features are able to capture internal explanatory information that is hidden in the

raw data, amplify the important information for discrimination and weaken irrelevant infor-

mation [26].

Next, FLR is adopted to model the CTR prediction and map the predicted CTR value to the

range between 0 and 1.

The raw input data of advertising CTR prediction are the fields that include the correspond-

ing advertisement features, users’ features, and context features, which are extracted from the

advertisement click log. These fields contain not only numerical data but also multi-category

data; therefore, the raw input data of advertising CTR prediction are composed of vectors with

different data types.

Because FRBM only models input with binary variance (0, 1), this paper adopts fuzzy

Gaussian-Bernoulli RBM (FGBRBM) to address the input data of advertising CTR prediction.

Then, FRBM can be used to construct FDBN through layer-by-layer stacking; the detailed

steps can be found in [22].

In real applications, advertising click rate prediction refers to binary classification or regres-

sion; therefore, this paper uses fuzzy logistic regression to model user behaviors in clicking

advertisements. After the input data vector x = (a, u, c) = (x1, x2, . . ., xn) is extracted by FDBN,

the vector x0 , which is composed of the binary values, in the last hidden layer of FDBN is fed

into fuzzy the logistic regression model for CTR prediction.

The advantage of the proposed method is that fuzzy set techniques are introduced, and

the uncertainties in the relationships between nodes located in adjacent layers is taken into

consideration. Nodes in adjacent layers of FDNN often interact in uncertain ways. Because the

parameters that represent the relationships between nodes in adjacent layers are fuzzy num-

bers and the learning process of fuzzy parameters is extended to a relatively wider space, this

advantage will be reflected in the fitness of the joint probability distribution. Combined with

the merits of deep learning, the proposed method demonstrates superior performance in cop-

ing with data with noises.

B. Construction and Training of the Advertising CTR Prediction Model FDNN
The process of constructing FDNN is illustrated in S6 Fig, and the detailed steps of con-

structing the FDNN are as follows:

Step 1: The training of FRBM layer by layer

First, the vectors that are constituted by related data of textual advertising click logs are

regarded as the input of FGBRBM, and the CD1 algorithm is used to train FGBRBM; in this

way, the parameter θ1 of FGBRBM is obtained. Based on the input vectors and the parameter

θ1, the hidden nodes h1 of FGBRBM are obtained.
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Second, the parameter θ2 of the current FRBM can be obtained when h1 is regarded as the

input data for the CD1 algorithm. Based on h1 and θ2, the hidden nodes h2 of the current

FRBM can be obtained.

Third, the previous process is repeated until reaching the fixed layer.

Step 2: Constructing FDBN by means of FRBMs

According to the training procedure of FRBM in step 1, the weight values of FRBMs are

connected from bottom to top to construct FDBN. In this FDBN, the connection between the

top two layers is undirected and the other connection is directed from top to bottom [22].

Step 3: Constructing the FDNN that is used for advertising CTR prediction by means of

FDBN

After an FLR model is added onto the top of the FDBN, the probability that the user clicks

this advertisement is equal to the output value of the nodes of the input layer. At this point, the

network becomes the initially trained fuzzy deep neural network (FDNN).

Step 4: Fine-tuning the parameters of FDNN

After FDNN is initially trained layer by layer, a fine-tuning process needs to be conducted.

In contrast to the unsupervised learning approach in the initial training, the fine-tuning is

implemented using supervised learning. Based on the weight values of the network that were

obtained from the initial training, error backpropagation [27, 29] and stochastic gradient

descent are used to update the weight values and bias of the neural network. After fine-tuning,

the process of training FDNN is complete. The output of FDNN is in the form of a probability:

pðclickja;u; cÞ ¼ pðyd ¼ 1jx0d; θ
0
Þ.

The process of fine-tuning the parameters of FDNN contains two phases.

1) Forward calculation of the input signal:

When labeled data (xd, yd) of click logs are given, that is, the combined feature vector

x = (a, u, c) = (x1, x2, . . ., xn) is given, the jth node in the lth layer (l = 2, ‥, Ln) of the FDNN

deep neural network can be defined as follows:

Ln denotes the total number of layers in the FDNN network;

sl denotes the number of nodes in the lth layer of the FDNN network;

wlji denotes the connection weight between the jth node in the lth layer and the ith node in

the l − 1th layer; blj denotes the bias of the jth node in the lth layer; netlj ¼ blj þ
Psl� 1

i¼1
wlji ol� 1

i

denotes the weighted-sum input of the jth node in the lth layer;

olj denotes the output value of the activation function of the jth node in the lth layer;

The selected activation function is sigmoid function.

In the forward calculation, the input signal is transmitted from the input layer to the output

layer. The input value of the jth node in the second layer of FDNN (l = 2) can be described as

net2j ¼ b2
j þ

Ps1
i¼1
w2
ji xi. When the input of node j is transferred by the activation function, its

output value can be described as o2
j ¼ gðnet2j Þ. Therefore, the input value of the jth node in the

lth layer of FDNN (l = 3, . . ., Ln) can be described as netlj ¼ blj þ
Psl� 1

i¼1
wljioi and its correspond-

ing output value can be described as olj ¼ gðnetlj Þ.
In particular, the output value of the jth node in the th layer of FDNN can be described as

h
y
ðxdÞ ¼ Oj ¼ O1 ¼ O

Ln
1 : ð30Þ

2) Backpropagation of the error signal:

This paper regards the cross-entropy as the objective function [25]. It can be described as

formula (31). The local gradient will be refined using backpropagation. The error signal

between the output value and labeled signal will be transmitted from the output layer to the

Advertising CTR prediction based on FDNN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190831 May 4, 2018 13 / 24

https://doi.org/10.1371/journal.pone.0190831


input layer in the process.

Jðxd; yÞ ¼ ydloghy
ðxdÞ þ ð1 � ydÞlogð1 � hy

ðxdÞÞ

¼ ydloggðnet
Ln
j Þ þ ð1 � ydÞlogð1 � gðnet

Ln
j ÞÞ;

ð31Þ

In this formula, yd is the label value of the sample, which can be represented as yd 2 [0, 1].

The gradient descent method will be adopted to learn the model. This paper will first define

the residual error d
l
j [28] of the jth node in the lth layerlayer as the partialand of objective func-

tion J with respect to the weighted sum netlj of node j. The residual error d
Ln
j of the j th neuron

node of the Ln th layer can be calculated by formula (32)

d
Ln
j ¼

@J

@netLnj
¼ yd

1

gðnetLnj Þ
g 0ðnetLnj Þ þ ð1 � ydÞ

� 1

1 � gðnetLnj Þ
g 0ðnetLnj Þ

¼ yd � gðnet
Ln
j Þ

¼ ydO
Ln
1 :

ð32Þ

The residual error d
l
j of the jth neuron node of the lth layer (l = 2, . . ., Ln − 1) can be calculated

by formula (33) according to the chain rule [29].

d
l
j ¼

@J
@netlj

¼
@J
@olj
�
@olj
@netlj

¼
Xslþ1

i¼1

@J
@netlþ1

i

@netlþ1
i

@olj

 !

�
@olj
@netlj

¼
Xslþ1

i¼1

d
lþ1

i � w
lþ1
ji

 !
@gðnetlj Þ

@netlj

¼
Xslþ1

i¼1

d
lþ1

i � w
lþ1
ji

 !

gðnetlj Þð1 � gðnetlj ÞÞ

¼
Xslþ1

i¼1

d
lþ1

i � w
lþ1
ji

 !

oljð1 � oljÞ;

ð33Þ

where wlþ1
ji denotes the connection weight between the jth node of the lth layer and the ith

node of l + 1th layer.

According to formulas (2) and (10), the gradient of cost function JðW ; bÞ with respect to

parameters wlji and blj can be calculated by formulas (34), (35), (36) and (37).

@J
@wljiL

¼
@J
@netlj

�
@netlj
@wljiL

¼ d
l
j L � ol� 1

i L; ð34Þ
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@J
@bljL
¼ d

l
j L; ð35Þ

@J
@wljiR

¼
@J
@netlj

�
@netlj
@wljiR

¼ d
l
j R � ol� 1

i R; ð36Þ

@J
@bljR
¼ d

l
j R: ð37Þ

The above process is described in Algorithm 4.

Algorithm 4 The algorithm for fine-tuning the parameters of FDNN using BP
Input: (xd, yd) is the labeled training data of textual advertising
click logs;

ε is the learning rate;
wljiL is the lower bound of the connection weight between the jth node

in the lth layer and the ith node in the (l − 1)th layer of FDNN;
bljL is the lower bound of the bias of the jth node in the lth layer

of FDNN;
wljiR is the upper bound of the connection weight between the jth node

in the lth layer and the ith node in the (l − 1)th layer of FDNN;
bljR is the upper bound of the bias of the jth node in the lth layer

of FDNN;
Output: The latest parameters: wljiL, wljiR, bljL, bljR
BEGIN
1. In the forward-propagation calculation, when the input data vector

xd is fed into the input layer, the output value of FDNN can be obtained
using formula (30);
2. In the calculation of error backpropagation,

obtain @J
@wljiL

by means of formula (34);

obtain @J
@bljL

by means of formula (35);

obtain @J
@wljiR

by means of formula (36);

obtain @J
@bljR

by means of formula (37);

3. The parameters can be updated according to the following rules:

wljiL ¼ w
l
jiL þ ε

@J
@wljiL

;

bljL ¼ b
l
jL þ ε

@J
@bljL
;

wljiR ¼ w
l
jiR þ ε

@J
@wljiR

;

bljR ¼ bljR þ ε
@J
@bljR

;

4. return wljiL, bljL, wljiR, bljR.
END

Experiment datasets and environment

Description of dataset. This paper uses the Criteo Display Advertising Challenge dataset,

which is provided by the Criteo company on the famous machine learning website Kaggle for

advertising CTR competition [30]. Every advertisement log record contains the set of features

of the displayed advertisement, which is composed of 13 numerical features and 26 categorical
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features. The detailed formats of these features are given in S1 Table. The class Label is used

to indicate whether this advertisement is clicked: if the advertisement is clicked, the value of

Label is 1; otherwise, the value of Label is 0. Categorical features are desensitized using Harsh

mapping; therefore, real meaning can not be obtained from them.

To adequately evaluate the performance of this model and prevent the interference of many

factors such as data timeliness, we randomly disrupt the order of the raw samples in the experi-

ment. Meanwhile, to avoid the over-fitting, the 5-fold cross validation method [31] is adopted

in the training process of all experiments.

Experiment environment. Six high-performance workstations are used for the experi-

ments. The hardware and software configurations of the experimental environment are shown

as S2 Table.

Results and analysis

Baseline models

This paper selects the logistic regression (LR), Factorization Machines (FMs) [32], GBDT+FM

[8], and DBNLR [11] models as the baseline models for performance comparison.

Performance evaluation metric of models

AUC. This paper uses the area under the receiver operating characteristic curve (AUC) [33,

34] as the main performance evaluation metric for advertising CTR prediction. The confusion

matrix is shown as S3 Table [35, 36]. Formulas TPR = TP/(TP + FN) and FPR = FP/(FP + TN)

are used to calculate the corresponding TPR and FPR values of the confusion matrix to obtain a

co-ordinate pair (dot pair). The dot pairs make up the receiver operating characteristic (ROC)

curve [37]. The AUC is the total area under the ROC. The larger the AUC is, the more accurate

the advertising CTR prediction is, and the better the effect achieved by the advertising place-

ment is.

Log-loss. This paper selects the logarithmic loss function ‘log-loss’ [38, 39] as another aux-

iliary performance evaluation metric for advertising CTR prediction.

logloss ¼ �
1

L

XL

i¼1

yilogyi þ ð1 � yiÞlogð1 � yiÞ; ð38Þ

where L is the number of samples, yi is the true label (0 or 1), and yi is the predicted probabil-

ity. The value of log-loss reflects the similarity between the CTR predicted by model and real

CTR. The smaller the value of log-loss is, the more accurate the advertising CTR prediction is.

Experiments design and results analysis

Configuration optimization and performance analysis of FDNN and DBNLR. A. Fea-
ture Pre-processing

FDNN is similar with DBNLR in the architecture. Their difference lies in the components

of model. Therefore, this paper selects the DBNLR as a baseline model.

In the experiment on the FDNN and DBNLR models, the numerical features of the raw

dataset are directly adopted, and these categorical features are expanded to binary vectors

using one-hot representation.

Although the method of one-hot representation is straightforward and effective, it makes

the feature vectors sparse and high-dimensional. In the deep learning models, when the

dimensionality of the features is large, the scale of the parameters of the model becomes

large, which leads to a sharp increase in training time. Moreover, the hardware will be a
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bottleneck in the training process. Therefore, this paper adopts a feature hashing strategy

(signed hashing trick) [40] to reduce the dimensionality of these sparse binary feature vec-

tors. Finally, the joint vector that is composed of numerical features and categorical features

and has been processed by the feature hashing strategy is regarded as the input of the two

deep architecture models.

Input vectors can be obtained when the data of the Display Advertising Challenge dataset

are preprocessed using the feature preprocessing methods described above. In this experiment,

after preprocessing, the dimensionality of the input vector is 1746088. Therefore, the number

of nodes in the visible layer (input layer) is 1746088.

B. The Parameter Settings for Training FDNN and DBNLR
These two models are developed based on the Theano framework [41] by means of Python.

In all experiments, the maximum number of learning epochs in the training process is set to a

sufficiently large value (800) and the Early-Stopping strategy is adopted to automatically cut

epochs for obtaining the best validation score. Furthermore, this strategy can also avoid over-

fitting.

The steps of the Early-Stopping strategy are as follows:

1. Split the dataset into a training set and a validation set;

2. When the training of every epoch has been finished, calculate the validation error (loss)

in the validation dataset;

3. When the validation error of the validation dataset no longer decreases, record the num-

ber of epochs and the current validation error value. If the validation error of the validation

dataset does not increase after continuation, the training process is terminated, the best valida-

tion score is obtained, and optimization is complete. Meanwhile, the optimal parameter esti-

mation values are obtained.

In the initial training process of FDBN and DBNLR, the gradient descent method with

minibatch is used for training on these samples and each minibatch includes 2000 training

samples. For FGBRBM (or GBRBM), the learning rate is 0.01, while for FRBM (or RBM) with

the binary variable, the learning rate is 0.1. The decay factor of the weight value is 0.0002.

In the fine-tuning process of FDNN and DBNLR, the gradient descent method with mini-

batch is used for training on these samples and each minibatch includes 4000 training samples.

The decay factor of the weight value is 0 and the learning rate is set as 0.005.

Dropout represents the probability that a node is retained in the neural network [42, 43]. A

reasonable sparse dropout strategy can strengthen the robustness of a neural network. Dropout

is utilized to reduce over-fitting and the complexity of these two deep learning models. The

paper sets the dropout rate to 0.5, 0.6, 0.7, 0.8, and 0.9 to implement the testing experiments.

Under the condition of having the same configuration structure, the dropout rates are respec-

tively 0.5 and 0.6 when FDNN and DBNLR use their own optimal settings.

C.Optimization of the number of hidden layers and hidden nodes
Currently, there is no method for quickly setting the number of hidden layers and the num-

ber of hidden nodes in each layer. Therefore, many experiments and much experience are uti-

lized to search for the optimal structure. According to past experience, when the number of

nodes of the visible layer is large, the nodes of the hidden layer need to perform “dimensional-

ity reduction- dimensionality addition—dimensionality reduction”. However, when the num-

ber of nodes of the visible layer is small, the nodes of the hidden layer only need to perform

“dimensionality addition—dimensionality reduction”. In general, the number of hidden nodes

will be increased or decreased with multiple. By comparing the performances in many experi-

ments with different configurations (different numbers of nodes of each hidden layer and

numbers of hidden layers), the configuration with relatively optimal performance can be

obtained.
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In S4 Table, information on different configurations in many experiments is given. In S7

Fig, the corresponding AUC values of DBNLR and FDNN with different configurations are

given. In S8 Fig, the corresponding log-loss values of DBNLR and FDNN with different config-

urations are given.

As presented in S7 and S8 Figs, in the experiments for training FDNN, in the beginning,

increasing the number of hidden layers can improve the performance of the proposed method;

however, when the number of hidden layers is more than 3, the performance is degraded. This

is because FDNN does not adequately capture feature interactions when the number of hidden

layers is small. However, when the number of hidden layers and the number of nodes in the

hidden layers exceed a certain scale, cross-features disturb and degrade the accuracy of CTR

prediction. The over-fitting phenomenon is observed and the algorithm spends more time

learning the parameters.

After many experiments have been completed, a configuration with relatively optimal per-

formance is obtained: Conf11, the number of hidden layers is 3; the number of nodes of the

first hidden layer is 170; the number of nodes of the second hidden layer is 1700; and the num-

ber of nodes of the third hidden layer is 17. This paper chooses this configuration as the final

structure of FDNN. Corresponding AUC and log-loss on the test dataset can be seen in S9 and

S10 Figs.

In the experiments for training DBNLR, relatively optimal performance is obtained when

the configuration structure is as follows: Conf7, the number of hidden layers is 3; the number

of nodes of the first hidden layer is 150; the number of nodes of the second hidden layer is

1500; and the number of nodes of the third hidden layer is 15. This paper chooses this configu-

ration as the final structure of DBNLR. Corresponding AUC and log-loss on the test dataset

can be seen in S9 and S10 Figs.

We observe that the curve of the AUC value of the DBNLR model and that of the FDNN

model are indented. However, when they have the same configuration, the overall level of

performance of DBNLR is worse than that of FDNN; this is true for the log-loss index. It is

because fuzzy set techniques are introduced in the proposed FDNN model. The components

of FDNN model are fuzzy RBM, fuzzy GBRBM and fuzzy LR. With the data of many records

in the Display Advertising Challenge dataset which contains outliers and missing values

implying many uncertainties, the uncertainties can be taken into consideration and efficiently

handled by fuzzy set techniques; therefore, the performance of the FDNN model for CTR pre-

diction is better than that of DBNLR in the experiment.

Configuration optimization of other baseline models. A. LR Solution
CTR prediction in a real advertising system involves a large number of samples, while logis-

tic regression (LR) model can appropriately address a large number of features and can be

trained rapidly, so the LR model is selected as a baseline model in this paper. This paper selects

LIBLINEAR [44] to implement L2-regularized logistic regression, and the stochastic gradient

method (SG) is adopted to optimize the parameters of LR. In the LR solution, the numerical

features are used directly and the categorical features are first represented with one-hot encod-

ing and then used to establish the feature space with MurmurHash 3. After many experiments,

this paper adopts the following parameters: η = 0.2, λ = 0.

B. FM Solution
For advertising CTR prediction, Factorization Machines (FMs) combine the advantages of

Support Vector Machines with factorization models, and can characterize the basic feature

interactions of a large number of advertising data, therefore, this paper selects the FM model

as a baseline model [45]. For advertising CTR prediction, Factorization Machines (FMs) is also

adopted, which is based on feature engineering and matrix design. This paper adopts LIBFM

to implement factorization machines [46, 47] and the stochastic gradient method (SG) is
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adopted to optimize the parameters of FM. The numerical features are used directly and the

categorical features are first represented with one-hot encoding. After many experiments, this

paper adopts the following parameters: λ = 40, k = 30.

C. GBDT+FM Solution
Gradient Boost Decision Tree (GBDT) is a nonlinear model that is based on the concept

of collective learning boosting. GBDT has strong extracting feature ability and nonlinear fit-

ting ability, and it can flexibly handle various types of data in the advertising dataset includ-

ing continuous value and discrete value, but no over-fitting occurs. Therefore, this paper

selects GBDT+FM solution as a baseline model. Based on the work of Y Juan et al., this paper

implements GBDT+FM solutions for performance comparison and analysis. First, in Pre-

processing-A, all numerical features are used directly and all categorical features are repre-

sented with one-hot encoding. Then, these features are fed into decision trees in GBDT to

generate GBDT features. This paper selects Xgboost to implement the GBDT [48]. In Prepro-

cessing-A, the number of decision trees in GBDT is 30 and the depth is 7. Thirty features are

generated for each impression. The following process is Preprocessing-B, which is used for

generating input features for FM. In Preprocessing-B, numerical features (I1-I13) with values

greater than 2 are transformed by v blog(v)2c; categorical features (C1-C26) that appear

fewer than 10 times are transformed into a special value; and GBDT features are directly

included. Therefore, each record contains 69 features: 13 numerical features, 26 categorical

features and 30 GBDT features. Then, these three groups of features are hashed into 1 M

dimensions using a hashing trick. Finally, the processed features are fed into the FM model

for CTR prediction. The parameters of the FM model that achieve the relatively optimal

results are “λ = 40, k = 100”.

Experimental results and analysis. According to S9 and S10 Figs, the proposed FDNN

method has the best performance and LR has the worst performance. In the process of train-

ing models, it can be found that logistic regression model can be trained rapidly, but its effect

is in the general level. One reason is that when LR is used to predict CTR, it requires the

experts with sophisticated experience to implement feature engineering through the human

labor. The other reason is that the simple structure of LR restrains its representation ability.

These two disadvantages cause that LR cannot learn complex feature interactions and is

insensitive to outliers and missing values. Therefore, LR has the relatively bad performance

in the experiment.

According to S9 and S10 Figs, FM is superior in performance to LR. The reason is that FM

extends the idea of LR because FM adds to second order fitting on the basis of first order fitting

and it can automatically learn cross features of any two features from different dimensions.

And cross features are expressed with embedding vector. Compared with LR, FM model has

fewer manual intervene but higher efficiency. Therefore, FM has better representation ability

than LR in the experiment. However, FM also cannot learn much more complex feature inter-

actions because of its relatively simple structure.

In this experiment, GBDT+FM solution outperform the FM model. The GBDT+FM solution

obtains good prediction results, which are slightly inferior to those of the proposed method.

The GBDT can learn useful high-order feature interactions because it has strong nonlinear fit-

ting ability and the robustness for hyperparameter, so it can efficiently extracts discriminative

features and cross-features of advertising dataset, and shows better performance than FM model

in our CTR prediction experiment.

Compared with the GBDT+FM solution, the proposed method achieves more than 0.09%

improvement in terms of AUC (0.01% in terms of log-loss) on the dataset. The reasons are as

follows. The first is that the quality of data exerts a great influence on effect of model. Because

the dataset contains many noisy data, there are bottlenecks in the effects of GBDT+FM
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solution. Compared with this model, the proposed FDNN model, as a result of being endowed

with fuzzy technology, can capture more-complex high-order feature interactions of the

advertising dataset, which contains many outliers and missing values. The second is that

GBDT+FM solution, belonging to a kind of stacking combined model without backpropor-

tion, is not always better than the proposed model with backproportion in effect improvement

for CTR prediction from the theoretical perspective. Therefore, it demonstrates relatively good

performance in terms of both data representation capability and prediction accuracy. In a real

production environment for an advertising system, a small improvement in advertising CTR

is likely to result in a significant increase in financial income for the internet company and an

improved user experience.

Discussion

This paper proposes a fuzzy deep neural network (FDNN) to address the problem of advertis-

ing CTR prediction. The network’s performance is compared with those of several baseline

models in real advertisement datasets. Due to the fuzziness that is introduced into the pro-

posed model, it can learn the most useful high-order feature interactions and demonstrates

good performance in terms of both data representation capability and robustness in advertise-

ment datasets with noise.

Big data bring new perspectives to these fields and challenges in processing and discovering

valuable information. The traditional artificial intelligence techniques can no longer effectively

extract and organize the discriminative information from raw advertisement data directly [49].

This paper provides a basis for the further application of fuzzy deep neural networks in adver-

tising CTR prediction. Future work will focus on exploring additional unsupervised feature

learning and deep architecture models to improve the CTR prediction for internet advertising.

In addition, in big data era, a real production environment for advertising CTR prediction

requires that the advertising system return the prediction results in milliseconds or even

microseconds. Determining how to implement low-lag and high-efficiency impromptu Ad-

Hoc analysis to predict and return results based on a big dataset is a great challenge for big

data processing systems. Big data systems with stream computing, such as Spark Streaming,

Storm, and Flink, can implement analysis and query in real time. However, because of the lim-

ited memory capacity and loss of raw historical data in system, Ad-Hoc analysis and query for

a big dataset cannot be implemented. Therefore, exploring CTR prediction solutions based on

streaming big data processing technology is another future direction of the work of this paper.
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