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Abstract

To study the genetic diversity of enterovirus G (EV-G) among Japanese pigs, metage-

nomics sequencing was performed on fecal samples from pigs with or without diarrhea, col-

lected between 2014 and 2016. Fifty-nine EV-G sequences, which were >5,000 nucleotides

long, were obtained. By complete VP1 sequence analysis, Japanese EV-G isolates were

classified into G1 (17 strains), G2 (four strains), G3 (22 strains), G4 (two strains), G6 (two

strains), G9 (six strains), G10 (five strains), and a new genotype (one strain). Remarkably,

16 G1 and one G2 strain identified in diarrheic (23.5%; four strains) or normal (76.5%; 13

strains) fecal samples possessed a papain-like cysteine protease (PL-CP) sequence, which

was recently found in the USA and Belgium in the EV-G genome, at the 2C–3A junction site.

This paper presents the first report of the high prevalence of viruses carrying PL-CP in the

EV-G population. Furthermore, possible inter- and intragenotype recombination events

were found among EV-G strains, including G1-PL-CP strains. Our findings may advance

the understanding of the molecular epidemiology and genetic evolution of EV-Gs.
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Introduction

Porcine enteroviruses (PEVs), members of the family Picornaviridae, are positive-sense, sin-

gle-stranded nonenveloped RNA viruses, whose genomes consist of a single, large open read-

ing frame encoding a single polyprotein flanked by 50 and 30 untranslated regions (50UTR and

30UTR) and a poly(A) tail at its 30 end [1]. PEVs were originally classified into 13 types (PEV-1

to PEV-13) on the basis of virus neutralization assay results [2–3]. After further genomic stud-

ies, PEV-1 to -7 and PEV-11 to -13 have been reclassified and assigned to the genus Tescho-
virus and PEV-8, formally belonging to PEV-A, has been renamed porcine sapelovirus 1 and

reclassified into the genus Sapelovirus [1, 4–6]. PEV-B, consisting of PEV-9 and -10, was

reclassified as enterovirus G (EV-G). PEV-9 and -10, the prototypical EV-Gs isolated in 1973

and 1975 in UK, were renamed as EV-G1 and EV-G2, respectively [1, 7]. Currently, 16 EV-G

genotypes are known to exist in Hungary, South Korea, the USA, China, Vietnam, and Bel-

gium [8–15].

Although porcine teschoviruses and sapeloviruses have been identified as the cause of occa-

sional diverse disorders, including gastrointestinal diseases, polioencephalomyelitis, and respi-

ratory diseases [16–22], clinical relevance of EV-Gs to enteric or other disorders—apart from

cases of skin lesion, pyrexia, and flaccid paralysis—has not been elucidated [7, 23]. Very

recently, the unique EV-Gs that have a papain-like cysteine protease sequence (PL-CP) in the

2C–3A junction region of their genomes were identified in fecal samples from three indepen-

dent cases of porcine diarrhea in the USA and Belgium [24–26]. The PL-CP has sequence iden-

tity to that of toroviruses (which are members of the order Nidovirales), in the ORF1a region.

The PL-CP of nidoviruses acts as a protease to cleave peptide bonds and as a deubiquitinase to

cleave the isopeptide bonds in polyubiquitin chains [27–29]. Viral deubiquitinases can remove

the protective effect of attached ubiquitin-like molecules such as the protein encoded by inter-

feron stimulated gene 15. These viral protease and deubiquitinase activities can modulate or

block activation of the innate immune response [29–31]. EV-G PL-CP also shows strong deu-

biquitination and deISGylation activities and is thought to influence enteroviral genome plas-

ticity and viral pathogenesis by acting as an innate-immunity antagonist [25].

In the present study, we investigated the genetic diversity of EV-G isolates from fecal sam-

ples from pigs in Japan via the metagenomics approach. We detected high genetic diversity of

Japanese EV-Gs and high prevalence of viruses carrying PL-CP in the EV-G population for the

first time. Furthermore, possible inter- and intragenotype recombination events were found in

the EV-G strains, including G1-PL-CP strains.

Materials and methods

Samples, cDNA construction, and next-generation sequencing

A total of 222 fecal samples from 6- to 100-day-old pigs from 77 pig farms, including 126 nor-

mal feces, 21 feces with mild diarrhea, and 75 diarrheic feces, were subjected to metagenomics

analysis. cDNA libraries were constructed as previously described [32]. Briefly, total RNA was

extracted directly from the supernatant of a 10% fecal suspension by means of the TRIzol LS

Reagent (Life Technologies, Carlsbad, CA, USA) and treated with DNase I (Takara Bio, Shiga,

Japan). cDNA libraries for next-generation sequencing were built using the NEBNext Ultra

RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA), according to

the manufacturer’s instruction. Sequencing was carried out on a MiSeq bench-top sequencer

(Illumina, San Diego, CA, USA), using 151 pair-end reads. Contigs were generated from

trimmed sequence reads by de novo assembly, and the generated contigs were evaluated by

means of mapping reads to a reference command in CLC Genomics Workbench with strictest
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parameter settings (mismatch cost, 2; insertion cost, 3; deletion cost, 3; length function, 0.9;

and similarity function, 0.9), and 50 and 30 sequences with insufficient read depth (<3) were

discarded.

Genome analysis

The nucleotide (nt) and amino acid (aa) sequences were aligned in the ClustalW software [33]

followed by phylogenetic analysis via the maximum-likelihood method in the MEGA 5.22 soft-

ware [34]. The best-fit models in MEGA 5.22 were the GTR+G+I model for VP1, VP4-VP3,

P2, and P3 phylogenetic trees and the WAG+G model for the PL-CP phylogenetic tree. Reli-

ability of the phylogenetic trees was evaluated by bootstrap analysis with 1000 replicates [35].

Pairwise sequence identities were calculated using CLC Genomics Workbench 7.5.5 (CLC

bio). Recombination analysis was conducted using the SimPlot software v.3.5.1 [36] and

Recombination Detection Program 4 (RDP) [37].

Ethics statement

Because the fecal samples were collected from naturally infected animals in the field, no spe-

cific approval was needed. Before starting work on this study, we contacted the farm owners

and obtained their permission.

Results

Metagenomics analysis and EV-G detection

Next-generation sequencing was conducted on cDNA libraries constructed from total RNA of

222 fecal samples. Via a BLAST search, 59 EV-G-like contigs that were longer than 5,000 nt,

including the entire VP1-coding sequence with more than threefold coverage of sequence

reads, were identified in 35 (15.8%) normal fecal samples, five (2.3%) fecal samples for mild

diarrhea, and 10 (4.5%) diarrheic fecal samples (Tables 1 and 2). Eight of 50 samples revealed

more than two EV-G-like contigs (Table 1). Apart from three samples (Ishi-Ya3, Ishi-Ka3, and

Ishi-Ka7), 47 samples were found to contain other viruses: Rotaviruses A, C, or H; orthoreo-

virus; kobuvirus; picobirnavirus; astrovirus; porcine epidemic diarrhea virus (PEDV); posa-

virus; sapelovirus; St-Valerien virus; sapovirus; or teschovirus (Table 1 and S3 Table).

Phylogenetic analysis and pairwise identity evaluation of the VP1 gene

Because EV-G discrimination is based on sequence identities of the complete VP1 gene

(http://www.picornaviridae.com/), a phylogenetic tree using the complete VP1 nt sequence

was constructed. Japanese EV-G strains clustered with the reference strains of G1 (17 strains),

G2 (four strains), G3 (22 strains), G4 (two strains), G6 (two strains), G9 (six strains), and G10

(five strains). One strain named Ishi-Ka2 branched independently and did not cluster with any

reference strains (Fig 1). Because>25% difference in complete VP1 nt sequences between iso-

lates is a criterion for genotype classification [13–14], a pairwise comparison of complete VP1
nt sequences was conducted (Table 3 and S1 Table). Bu6-5, Bu8-2, Bu8-4, and Ishi-Ya4-2

formed one cluster but were found to be slightly related to the G3 group. Although complete

VP1 nt sequence identities of these strains to those of other G3 strains (except for Ishi-Ka3,

Ishi-Ka3-1, Ishi-Ka4, Ishi-Ka5-1, Ishi-Ka6, and Ishi-Ka7) were <75.0% (69.8%-74.9%), these

four strains shared�75.0% nt sequence identities with Ishi-Ka3, Ishi-Ka3-1, Ishi-Ka4, Ishi-

Ka5-1, and Ishi-Ka6 (S1 Table). Therefore, we tentatively classified these strains as G3-lineage

2 (Fig 1). Ishi-Ka2 revealed low nt sequence identities (57.5% to 73.1%) with other genotypes

and thus Ishi-Ka2 may represent a new serotype of EV-G (Table 3).
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Table 1. Information on EV-G-positive fecal samples from pigs in Japan.

Sample

name

Collection

year

Age of pigs

(days)

Health

status

Region (geographic

coordinates)

Sample

status

Number of EV-G contigs

(Enterovirus G genotype)

Co-infection with other viruses

Bu3-4 2014 12 Without

diarrhea

Niigata

(37.902458,139.023407)

Single 1 (G3) Rotavirus A (G4P[19]), Orthoreovirus

Bu3-5 2014 10 Without

diarrhea

Niigata

(37.902458,139.023407)

Single 1 (G3) Rotavirus A (G4P[19]), Kobuvirus

Bu3-6 2014 6 Without

diarrhea

Niigata

(37.902458,139.023407)

Single 1 (G3) Rotavirus A (G4P[19])

Bu3-7 2014 6 Without

diarrhea

Niigata

(37.902458,139.023407)

Single 1 (G3) Rotavirus A (G4P[19])

Bu4-1 2014 21 Without

diarrhea

Niigata

(37.902458,139.023407)

Single 1 (G3) Picobirnavirus

Bu4-2 2014 14 Without

diarrhea

Niigata

(37.902458,139.023407)

Single 1 (G3) Astrovirus, Kobuvirus

Bu4-4 2014 16 Without

diarrhea

Niigata

(37.902458,139.023407)

Single 1 (G3) Rotavirus A (G9P[13]), Astrovirus,

Kobuvirus

Bu4-6 2014 20 Without

diarrhea

Niigata

(37.902458,139.023407)

Single 1 (G3) Rotavirus A (G9P[13])

Bu5-1 2014 9 Without

diarrhea

Tochigi

(36.564579,139.883392)

Single 1 (G3) Rotavirus A (G5P[23])

Bu5-6 2014 22 Mild

diarrhea

Tochigi

(36.564579,139.883392)

Single 1 (G3) Kobuvirus

Bu6-5 2014 8 Diarrhea Fukushima

(37.750918,140.467823)

Single 1 (G3) Rotavirus A (G9P[23])

Bu8-2 2014 26 Without

diarrhea

Chiba

(35.604561,140.123108)

Single 1 (G3) Rotavirus A (G4P[6])

Bu8-4 2014 25 Diarrhea Chiba

(35.604561,140.123108)

Single 1 (G3) Rotavirus A (G4P[6]), Picobirnavirus

Iba26-489 2014 <100 Diarrhea Ibaraki

(36.344040,140.445465)

Single 1 (G9) Porcine epidemic diarrhea virus,

Sapelovirus, Posavirus, Picobirnavirus

Iba26-506 2014 <100 Diarrhea Ibaraki

(36.344040,140.445465)

Single 1 (G2) Porcine epidemic diarrhea virus,

Posavirus,

HgOg2-2 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G1-PL-CP) Astrovirus, Sapelovirus

HgOg2-3 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G1-PL-CP) Astrovirus, Posavirus

HgOg2-4 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 2 (G1-PL-CP, G2) Astrovirus

HgOg2-5 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G1-PL-CP) Sapelovirus

HgTa2-1 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 2 (G1-PL-CP, G6) Astrovirus, Rotavirus C, Sapelovirus

HgTa2-2 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 2 (G1-PL-CP, G9) Astrovirus, Picobirnavirus, Sapovirus

HgTa2-5 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G1-PL-CP) Astrovirus

MoI2-1 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G1-PL-CP) Astrovirus, Sapovirus, Rotavirus A

(G9P[13]), Porcine picornavirus Japan

MoI2-2 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G1-PL-CP) Astrovirus, Sapelovirus, Teschovirus,

Rotavirus C

MoI2-3 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G1-PL-CP) Astrovirus, Rotavirus C

HgYa2-1 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G2-PL-CP) Astrovirus, Sapelovirus, Torovirus,

Rotavirus C

(Continued)
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Table 1. (Continued)

Sample

name

Collection

year

Age of pigs

(days)

Health

status

Region (geographic

coordinates)

Sample

status

Number of EV-G contigs

(Enterovirus G genotype)

Co-infection with other viruses

HgYa2-3 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G10) Astrovirus, Sapelovirus,

Picobirnavirus

HgYa2-4 2015 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G10) Astrovirus, Sapelovirus,

Picobirnavirus

Iba27-20 2015 <100 Diarrhea Ibaraki

(36.344040,140.445465)

Single 1 (G9) Porcine epidemic diarrhea virus,

Picobirnavirus

Iba27-21 2015 <100 Diarrhea Ibaraki

(36.344040,140.445465)

Single 1 (G9) Porcine epidemic diarrhea virus

Iba27-107 2015 <100 Diarrhea Ibaraki

(36.344040,140.445465)

Single 1 (G1-PL-CP) Porcine epidemic diarrhea virus,

Rotavirus A (G5P[13])

Iba464-3 2015 30 Diarrhea Ibaraki

(36.344040,140.445465)

Single 2 (G1, G4) Astrovirus

Iba464-4 2015 30 Diarrhea Ibaraki

(36.344040,140.445465)

Single 2 (G1-PL-CP, G6) Astrovirus, Rotavirus H

Ishi-Sa4 2015 20 Mild

diarrhea

Ishikawa

(36.595242,136.625671)

Pooled 1 (G3) Rotavirus A (G9P[23]), Kobuvirus,

Picobirnavirus

Ishi-Sa5 2015 20 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Pooled 1 (G3) Rotavirus C, Kobuvirus

Ishi-Ya5 2015 100 Diarrhea Ishikawa

(36.595242,136.625671)

Single 1 (G1-PL-CP) St-Valerien swine virus, Sapelovirus

Ishi-Ka3 2015 16 Mild

diarrhea

Ishikawa

(36.595242,136.625671)

Pooled 2 (G3, G10) Kobuvirus, Sapovirus

Ishi-Ka4 2015 16 Mild

diarrhea

Ishikawa

(36.595242,136.625671)

Pooled 1 (G3) Kobuvirus, Picobirnavirus

HgTa1 2016 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G2) Astrovirus, Sapovirus, Picobirnavirus

HgYa1-1 2016 60 Without

diarrhea

Tottori

(35.503479,134.238266)

Single 1 (G4( Sapelovirus, Astrovirus, Sapovirus,

Rotavirus C

Ishi-Ya2 2016 23 Mild

diarrhea

Ishikawa

(36.595242,136.625671)

Single 1 (G1-PL-CP) Kobuvirus

Ishi-Ya3 2016 24 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 2 (G1-PL-CP, G9) Kobuvirus

Ishi-Ya4 2016 24 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 3 (G1-PL-CP, G3, G9) -

Ishi-Ka2 2016 15 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 1 (G?) Kobuvirus

Ishi-Ka3 2016 20 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 1 (G3) -

Ishi-Ka5 2016 16 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 1 (G3) Kobuvirus, Rotavirus C

Ishi-Ka6 2016 16 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 1 (G3) Kobuvirus, Sapovirus, Rotavirus C

Ishi-Ka7 2016 16 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 1 (G3) -

Ishi-Im8 2016 11 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 1 (G10) Kobuvirus, Rotavirus A (GXP[23]),

Posavirus

Ishi-Im9 2016 11 Without

diarrhea

Ishikawa

(36.595242,136.625671)

Single 1 (G10) Rotavirus C, Rotavirus A (GXP[23]),

Teschovirus, Kobuvirus,

Picobirnavirus

https://doi.org/10.1371/journal.pone.0190819.t001
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Table 2. Summary of genomic information on EV-Gs isolated in the present study.

Strain name Abbreviated name of

strain

Genotype Total reads Enterovirus

reads

Enterovirus reads

(%)

Sequence

length

DDBJ accession

number

EVG/Porcine/JPN/Iba464-3-

1/2015

Iba464-3-1 G1 1,819,610 8,572 0.5 7,372 LC316790

EVG/Porcine/JPN/HgOg2-2/

2015

HgOg2-2 G1-PL-CP 369,006 1,329 0.4 7,995 LC316774

EVG/Porcine/JPN/HgOg2-3/

2015

HgOg2-3 G1-PL-CP 1,067,294 1,304 0.1 7,995 LC316775

EVG/Porcine/JPN/HgOg2-4-

1/2015

HgOg2-4-1 G1-PL-CP 399,976 2,610 0.7 8,004 LC316776

EVG/Porcine/JPN/HgOg2-5/

2015

HgOg2-5 G1-PL-CP 267,732 2,001 0.7 7,982 LC316777

EVG/Porcine/JPN/Iba464-4-

1/2015

Iba464-4-1 G1-PL-CP 2,016,670 6,134 0.3 8,003 LC316778

EVG/Porcine/JPN/HgTa2-1-

1/2015

HgTa2-1-1 G1-PL-CP 685,940 5,841 0.9 8,007 LC316779

EV/Porcine/JPN/HgTa2-2-1/

2015

HgTa2-2-1 G1-PL-CP 862,726 3,543 0.4 6,655 LC316780

EVG/Porcine/JPN/HgTa2-5/

2015

HgTa2-5 G1-PL-CP 257,556 1,125 0.4 7,984 LC316781

EVG/Porcine/JPN/MoI2-1-1/

2015

MoI2-1-1 G1-PL-CP 2,804,452 1,741 0.1 8,010 LC316782

EVG/Porcine/JPN/MoI2-2-1/

2015

MoI2-2-1 G1-PL-CP 1,495,394 7,432 0.5 7,998 LC316783

EVG/Porcine/JPN/MoI2-3-1/

2015

MoI2-3-1 G1-PL-CP 277,718 1,890 0.7 7,987 LC316784

EVG/Porcine/JPN/IshiYa-5/

2015

Ishi-Ya5 G1-PL-CP 577,849 1,461 0.3 6,057 LC316785

EVG/Porcine/JPN/Iba27-

107/2015

Iba27-107 G1-PL-CP 251,252 4,191 1.7 7,997 LC316786

EVG/Porcine/JPN/Ishi-Ya2/

2016

Ishi-Ya2 G1-PL-CP 1,202,322 45,093 3.8 8,033 LC316787

EVG/Porcine/JPN/Ishi-Ya3-

1/2016

Ishi-Ya3-1 G1-PL-CP 1,675,068 48,765 2.9 8,034 LC316788

EVG/Porcine/JPN/Ishi-Ya4-

1/2016

Ishi-Ya4-1 G1-PL-CP 136,686 9,755 7.1 8,030 LC316789

EVG/Porcine/JPN/Iba26-

506/2014

Iba26-506 G2 161,256 1,831 1.1 7,342 LC316792

EVG/Porcine/JPN/HgOg2-4-

2/2015

HgOg2-4-2 G2 399,976 2,375 0.6 7,365 LC316793

EVG/Porcine/JPN/HgTa1/

2016

HgTa1 G2 1,405,590 1,627 0.1 7,347 LC316794

EVG/Porcine/JPN/HgYa2-1/

2015

HgYa2-1 G2-PL-CP 1,373,440 11,521 0.8 8,016 LC316791

EVG/Porcine/JPN/Bu3-4/

2014

Bu3-4 G3 582,500 437,580 75.1 7,397 LC316795

EVG/Porcine/JPN/Bu3-5/

2014

Bu3-5 G3 639,686 3,698 0.6 7,360 LC316796

EVG/Porcine/JPN/Bu3-6/

2014

Bu3-6 G3 585,342 5,032 0.9 7,374 LC316797

EVG/Porcine/JPN/Bu3-7/

2014

Bu3-7 G3 797,002 13,498 1.7 7,378 LC316798

EVG/Porcine/JPN/Bu4-1/

2014

Bu4-1 G3 467,920 6,547 1.4 7,381 LC316799
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Table 2. (Continued)

Strain name Abbreviated name of

strain

Genotype Total reads Enterovirus

reads

Enterovirus reads

(%)

Sequence

length

DDBJ accession

number

EVG/Porcine/JPN/Bu4-2/

2014

Bu4-2 G3 629,719 5,821 0.9 7,355 LC316800

EVG/Porcine/JPN/Bu4-4/

2014

Bu4-4 G3 957,684 4,258 0.4 7,355 LC316801

EVG/Porcine/JPN/Bu4-6/

2014

Bu4-6 G3 446,798 68,970 15.4 7,381 LC316802

EVG/Porcine/JPN/Bu5-1/

2014

Bu5-1 G3 609,055 36,635 6.0 7,390 LC316803

EVG/Porcine/JPN/Bu5-6/

2014

Bu5-6 G3 666,801 33,387 5.0 7,385 LC316804

EVG/Porcine/JPN/Bu6-5/

2014

Bu6-5 G3 432,420 37,095 8.6 7,384 LC316805

EVG/Porcine/JPN/Bu8-2/

2014

Bu8-2 G3 622,936 2,334 0.4 7,377 LC316806

EVG/Porcine/JPN/Bu8-4/

2014

Bu8-4 G3 569,460 1,929 0.3 6,427 LC316807

EVG/Porcine/JPN/Ishi-Sa5/

2015

Ishi-Sa5 G3 2,389,638 2,845 0.1 7,350 LC316808

EVG/Porcine/JPN/Ishi-Ka3-

1/2015

Ishi-Ka3-1 G3 2,648,440 1,868,538 70.6 7,396 LC316809

EVG/Porcine/JPN/Ishi-Ka4/

2015

Ishi-Ka4 G3 597,344 4,130 0.7 7,366 LC316810

EVG/Porcine/JPN/Ishi-Sa4/

2015

Ishi-Sa4 G3 1,130,432 1,345 0.1 7,363 LC316811

EVG/Porcine/JPN/Ishi-Ka3/

2016

Ishi-Ka3 G3 326,014 3,682 1.1 7,367 LC316812

EVG/Porcine/JPN/Ishi-Ka5-

1/2016

Ishi-Ka5-1 G3 442,360 516 0.1 7,303 LC316813

EVG/Porcine/JPN/Ishi-Ka6/

2016

Ishi-Ka6 G3 536,200 27,564 5.1 7,383 LC316814

EVG/Porcine/JPN/Ishi-Ka7/

2016

Ishi-Ka7 G3 903,384 1,524 0.2 7,296 LC316815

EVG/Porcine/JPN/Ishi-Ya4-

2/2016

Ishi-Ya4-2 G3 136,686 11,960 8.7 7,357 LC316816

EVG/Porcine/JPN/Iba464-3-

2/2015

Iba464-3-2 G4 1,819,610 9,165 0.5 7,356 LC316817

EVG/Porcine/JPN/HgYa1-1/

2016

HgYa1-1 G4 1,083,038 319 0.03 5,057 LC316818

EVG/Porcine/JPN/HgTa2-1-

2/2015

HgTa2-1-2 G6 685,940 2,108 0.3 7,344 LC316819

EVG/Porcine/JPN/Iba464-4-

2/2015

Iba464-4-2 G6 2,016,670 1,596 0.1 7,341 LC316820

EVG/Porcine/JPN/HgTa2-2-

2/2015

HgTa2-2-2 G9 862,726 2,830 0.3 7,354 LC316821

EVG/Porcine/JPN/Iba27-21/

2015

Iba27-21 G9 298,500 823 0.3 7,266 LC316822

EVG/Porcine/JPN/Iba26-

489/2014

Iba26-489 G9 130,796 13,406 10.2 7,373 LC316823

EVG/Porcine/JPN/Iba27-20/

2015

Iba27-20 G9 103,974 4,380 4.2 7,365 LC316824

EVG/Porcine/JPN/Ishi-Ya3-

2/2016

Ishi-Ya3-2 G9 1,675,068 46,365 2.8 7,355 LC316825
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Identification and genomic characterization of EV-Gs with a PL-CP

sequence

Complete or nearly complete aa sequences of the coding-sequence region (CDS) of 59 Japa-

nese EV-G strains were aligned and compared. We found that 17 of the 59 strains contain

extra 633 to 651 nt (211 to 217 aa) within the 2C-3A coding region. According to BLAST anal-

ysis, these sequences have sequence homology to the PL-CP sequence variants that were

recently identified in EV-G strains from the USA and Belgium [24–26]. Each inserted

sequence is located between the coding regions 2C and 3A as in the USA and Belgium strains.

The insertion sequences were aligned and compared with those of the PL-CP of EV-G strains

from the USA and Belgium and with the PL-VP sequences in the genome of nidoviruses

including porcine and bovine toroviruses by phylogenetic analysis and pairwise sequence

comparison (Fig 2 and S2 Table). The PL-CP sequence of Japanese EV-G1 and that of Japanese

EV-G2 revealed�74.0% nt and�74.6% aa sequence identities to each other and to the USA

and Belgium EV-Gs and clustered in one group but are distantly related to those of porcine

and bovine toroviruses, showing lower sequence identities (57.0% to 64.6% in the nt sequence

and 49.6% to 58.7% in the aa sequence). EV-G HgYa2-1 and porcine torovirus HgYa2-2 were

identified on the same farm at the same time; however, the nt and aa sequence identity

between the PL-CP sequences of those strains was 62.3% and 54.3%, respectively (S2 Table).

Japanese EV-G strains carrying PL-CP were subdivided into G1-PL-CP lineage 1, G1-PL-CP

lineage 2, and G2 in the VP1 phylogenetic tree (Fig 1); however, these groups were not clearly

detectable in the PL-CP tree (Fig 2)

Phylogenetic analysis and similarity plot evaluation for the nearly full

genome of EV-Gs

To further investigate the genomic relations among EV-G strains, phylogenetic trees based on

nt sequences of three regions (VP4-VP3, VP1, P2, and P3) were constructed. The tree for

VP4-VP3 was similar to that of VP1, but the P2 and P3 trees showed topologies different from

each other and no clear-cut EV-G types could be defined (Fig 3A). EV-G1-PL-CP lineage 3

was found to be related to G1-PL-CP lineage 2 and 3 in the trees for VP4-VP3 and VP1,

whereas G1-PL-CP lineage 3 was closely related to G3 and G9 strains in the P2 tree and to G3

and G1-PL-CP strains in the P3 tree. The G2-PL-CP strain HgYa2-1 showed high homology

Table 2. (Continued)

Strain name Abbreviated name of

strain

Genotype Total reads Enterovirus

reads

Enterovirus reads

(%)

Sequence

length

DDBJ accession

number

EVG/Porcine/JPN/Ishi-Ya4-

3/2016

Ishi-Ya4-3 G9 136,686 12,043 8.8 7,300 LC316826

EVG/Porcine/JPN/HgYa2-3-

1/2015

HgYa2-3-1 G10 722,010 3,127 0.4 7,330 LC316827

EVG/Porcine/JPN/HgYa2-4-

1/2015

HgYa2-4-1 G10 1,344,284 1,881 0.1 7,332 LC316828

EVG/Porcine/JPN/Ishi-Ka3-

2/2015

Ishi-Ka3-2 G10 2,648,440 1,868,538 70.6 7,345 LC316829

EVG/Porcine/JPN/Ishi-Im8/

2016

Ishi-Im8 G10 1,414,912 102,556 7.2 7,382 LC316830

EVG/Porcine/JPN/Ishi-Im9-

1/2016

Ishi-Im9-1 G10 1,759,264 1,997 0.1 7,040 LC316831

EVG/Porcine/JPN/Ishi-Ka2/

2016

Ishi-Ka2 G? 960,736 1,546 0.2 7,360 LC316832

https://doi.org/10.1371/journal.pone.0190819.t002
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Fig 1. A phylogenetic tree of complete VP1 coding-region sequences. Phylogenetic analyses based on nt sequences of the

full-length VP1 coding region of 59 EV-Gs detected in this study was performed using reference strains from the DDBJ/

EMBL/GenBank databases. The host, country of origin, strain name, and year of detection are shown for each strain. DDBJ/

EMBL/GenBank accession numbers are indicated in parentheses. Phylogenetic trees that were constructed by the maximum

likelihood method in MEGA 5.22 with bootstrap values (1000 replicates) above 70 are presented. The bar represents a

corrected genetic distance. The genotypes are indicated on the right-hand side. ● denotes EV-G strains detected in this study.

EV-G PL-CP strains are indicated with underlined bold text.

https://doi.org/10.1371/journal.pone.0190819.g001
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Table 3. Pairwise nt (lower left) and aa (upper right) sequence identity levels for VP1 between genotypes of EV-Gs.

G1 G2 G3 G4 G5 G6 G8 G9 G10 G11 G12 G13 G14 G15 G16 G?

(08NC)

G?

(JL14)

G?

(Ka2)

G1 79.5–

100

71.0–

100

59.2–

64.8

59.1–

65.7

64.0–

70.0

56.1–

61.1

63.4–

69.4

58.8–

61.6

60.4–

66.7

62.8–

68.8

66.8–

71.7

63.4–

66.6

59.2–

63.4

68.0–

72.9

60.7–

63.9

62.2–

65.0

58.1–

63.0

54.4–

58.3

60.8–

64.7

G2 58.6–

64.0

93.3–

99.7

77.5–

98.6

56.6–

61.2

62.7–

65.5

70.9–

71.9

64.2–

65.3

68.3–

70.8

58.6–

61.5

61.4–

63.5

68.3–

69.4

65.1–

65.5

60.9–

62.0

66.9–

68.0

62.1–

64.2

60.2–

61.3

76.1–

76.4

66.3–

67.0

60.8–

62.2

G3 58.2–

64.7

57.5–

61.9

81.4–

100

69.8–

100

63.2–

67.4

53.3–

57.3

65.7–

69.6

55.9–

60.7

78.5–

83.2

71.9–

77.5

67.0–

69.0

66.2–

72.9

65.3–

68.4

64.9–

69.0

75.4–

80.0

60.4–

64.9

57.0–

61.2

54.4–

57.3

75.1–

79.3

G4 62.9–

67.4

61.3–

65.0

60.4–

66.1

91.2–

94.7

77.3–

80.6

64.6–

64.9

79.6–

81.0

61.3–

62.7

65.6–

68.1

67.7–

69.5

70.3–

71.0

66.2–

66.9

65.9–

66.9

68.0–

69.4

68.1–

70.9

66.4–

67.5

63.7–

64.8

60.0–

61.1

68.5–

68.9

G5 58.3–

60.2

64.0–

65.4

55.5–

58.7

61.5–

62.3

- 62.6–

64.3

66.0 59.1–

60.1

59.8–

60.8

65.3 64.9 61.1 63.5 58.7 60.7 71.6 68.8 57.1

G6 60.7–

67.6

61.5–

64.1

62.5–

66.6

70.5–

73.0

60.8–

61.9

96.8–

98.6

83.3–

85.2

62.1–

62.3

68.9–

71.3

68.5–

70.3

72.2–

72.9

69.8–

71.2

67.0–

68.1

68.8 70.2 66.2–

66.9

63.9–

64.2

58.0–

59.4

67.5–

68.9

G8 57.5–

62.3

64.7–

66.7

58.5–

61.7

61.9–

64.2

61.6 62.0–

62.5

- 57.9–

59.7

60.4–

62.5

69.0 66.6 65.1 66.6 60.0 60.1 71.1 63.2 61.2

G9 60.0–

64.4

57.7–

61.2

68.8–

75.5

62.2–

66.0

57.8–

59.8

63.4–

67.3

58.1–

60.1

93.7–

100

81.5–

99.9

77.7–

81.3

70.1–

71.5

70.4–

72.3

66.9–

69.4

68.0–

69.4

81.3–

82.4

64.1–

65.3

59.7–

62.2

60.8–

62.0

78.6–

81.1

G10 60.8–

65.4

60.9–

63.0

66.1–

70.5

63.7–

66.8

57.7–

59.4

62.7–

65.5

59.0–

62.0

69.4–

74.2

92.3–

100

79.0–

100

69.4–

70.4

69.7–

71.5

67.6–

69.0

69.4–

70.4

75.4–

76.1

66.2–

66.6

61.8–

64.9

58.7–

59.4

73.3–

76.1

G11 63.1–

67.3

65.3–

66.2

64.2–

66.6

64.9–

69.9

62.7 67.6–

68.2

66.1 65.7–

67.8

66.1–

68.0

- 75.3 69.6 76.7 66.9 68.1 69.0 62.5 67.0

G12 62.3–

66.0

61.4–

63.7

63.3–

66.7

64.4–

65.1

62.0 65.3–

65.5

64.2 65.4–

66.9

65.3–

66.7

68.3 - 74.8 73.1 68.3 66.0 68.7 63.5 67.4

G13 61.4–

64.4

60.3–

61.6

61.3–

65.4

63.4–

64.3

60.8 63.4–

63.6

63.6 63.2–

65.4

62.9–

65.0

64.9 68.8 - 67.8 66.9 66.6 63.4 59.3 65.3

G14 63.3–

67.6

63.6–

65.0

61.5–

65.5

66.4–

67.5

60.5 65.2–

66.7

66.1 64.3–

66.8

64.3–

65.3

72.2 68.2 63.5 - 67.6 68.9 65.9 61.8 70.2

G15 58.8–

62.1

61.2–

62.2

68.0–

69.7

65.2–

66.7

59.1 63.3–

64.8

61.9 68.5–

70.2

67.8–

69.3

64.8 64.3 62.3 62.3 - 64.7 61.1 58.4 85.3

G16 58.8–

62.2

56.1–

58.9

56.5–

60.8

60.0–

62.0

55.7 61.3–

62.0

57.1 58.5–

61.6

60.3–

61.6

63.2 62.2 60.9 62.5 59.3 - 63.0 58.6 64.9

G?

(08NC)

58.3–

61.4

68.1–

69.1

56.8–

61.3

60.7–

64.1

64.2 60.6–

61.9

68.1 60.1–

61.3

60.1–

61.8

67.7 64.0 62.7 66.6 60.1 56.6 - 67.7 62.6

G?

(JL14)

53.9–

57.9

61.4–

64.0

54.9–

58.5

58.3–

59.8

64.3 56.6–

57.6

59.9 58.9–

60.3

57.3–

58.2

60.1 60.0 56.7 60.0 58.7 56.3 64.1 - 57.8

G?

(Ka2)

59.6–

63.4

60.6–

62.4

66.0–

71.8

63.4–

64.9

58.0 62.7–

63.8

61.7 68.9–

72.5

68.1–

70.4

64.9 63.6 63.3 64.9 73.3 58.3 60.7 57.3 -

https://doi.org/10.1371/journal.pone.0190819.t003
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Fig 2. Amino acid (aa) sequence comparison of EV-G PL-CP with that of torovirus PL-CP. (A) Alignment of aa sequences of

EV-G PL-CP inserted between regions 2C and 3A with PL-CPs of porcine torovirus and bovine torovirus. (B) Phylogenetic analyses

based on aa sequences of EV-G PL-CP and PL-CP of nidoviruses including toroviruses. Phylogenetic trees that were constructed by

the maximum likelihood method in MEGA 5.22 with bootstrap values (1000 replicates) above 70 are shown. The scale bar indicates

nucleotide substitutions per site. ● denotes EV-G strains detected in this study.

https://doi.org/10.1371/journal.pone.0190819.g002
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Fig 3. Whole-genome analysis of EV-Gs by means of phylogenetic trees, SimPlot, and RDP. (A) Phylogenetic analyses based on nt

sequences of VP4-VP3, VP1, P2, and P3 of 59 EV-Gs detected in this study, using reference strains from DDBJ/EMBL/GenBank

databases. An abbreviated strain name, year of detection, and genotype are presented for each strain. Phylogenetic trees that were

constructed by the maximum likelihood method in MEGA 5.22 with bootstrap values (1000 replicates) above 70 are shown. The bar

represents a corrected genetic distance. The genotypes are indicated on the right-hand side. ● denotes EV-G strains detected in this

study. EV-G PL-CP strains are indicated with underlined bold text. (B) Genome structure of EV-G. (C) Similarity plots of the entire

genomes of EV-G1-PL-CP Iba27-107 (red curve), EV-G2-PL-CP HgYa2-1 (brown curve), EV-G?-PL-CP 08/NC (blue curve), and

Genetic diversity and recombination of enterovirus G strains in Japanese pigs
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to G2 strains in the tree for VP4-VP3 and VP1, whereas HgYa2-1 showed high similarity with

G1-PL-CP lineage 1 strains in regions P2 and P3 (Fig 3A). By SimPlot analysis, the crossover

site was mapped to the 2A region. The G2-PL-CP strain HgYa2-1 revealed that the down-

stream region of the crossover site has high similarity to the G1-PL-CP strain MoI2-2-1 (Fig

3C). To find a possible recombination breakpoint, a bootstrap scanning analysis was con-

ducted. A possible recombination breakpoint was identified in the middle of the 2A region

(Fig 3D).

Ishi-Ka2 branched independently in the trees for VP4-VP3 and VP1, whereas Ishi-Ka2

clustered with G3-lineage 1 and formed a cluster with G3 strains identified on the same farm

(S1A Fig). SimPlot analysis suggested that Ishi-Ka2 has extremely high similarity to G3-lineage

1 strain Ishi-Ka7 in regions 2C and P3 (S1C Fig).

G3-lineage 2 strains showed a topology similar to that of the VP1 tree in VP4-VP3; how-

ever, the G3-lineage 2 strains branched separately from the G3-lineage-1 strains in the P2 and

P3 trees (S1A Fig) and were found to be closely related to each other throughout the genome

(S1D Fig).

Discussion

Although we did not initially aim to determine EV-G prevalence among pigs in Japan in this

study, contigs that were longer than 5,000 nt were found in 22.5% (50/222) of pigs and on

23.4% (18/77) of farms, suggesting that EV-Gs are widespread among Japanese pigs. Forty-

four strains out of 59 (74.6%) were detected in healthy pigs, indicating that EV-Gs seem not to

be associated with diarrhea in pigs, in accordance with other reports [13–14, 38]. Because the

detection limit of the method was not tested, a true prevalence study is needed in the future.

EV-G genotyping is based on>25% divergence between VP1 nucleotide sequences [14,

39]. In the present study, according to the criteria, seven genotypes (G1, G2, G4, G6, G9, G10,

and G?) were found in the feces samples from Japanese pigs, and the predominant genotypes

were G3 (37.3%; 22/59) and G1 (28.8%; 17/59; Table 1, Fig 1). There are few studies on the

genotyping of EV-Gs in pigs, and limited information is available from DDBJ/EMBL/GenBank

databases. G1 and G6 types are predominant genotypes in Vietnam, whereas G3, G2, and G4

types appear to be common genotypes in Spain (however, that study did not analyze complete

VP1 sequence) [40]. To date, G1–G16 genotypes and at least three EV-Gs with an unassigned

genotype, including Ishi-Ka2 in this study, have been reported [13–14, 25, 41]. Owing to the

limited number of reports on a specific geographic area, probably not all genotypes of EV-Gs

are known at present. Further studies are needed for a comprehensive understanding of the

genetic diversity of EV-Gs in other geographic areas.

Picornaviruses show significant genetic variability driven by both mutations and recombi-

nation events [42–43]. Ishi-Ka2 manifested >25% VP1 nucleotide sequence divergence from

other strains; therefore, Ishi-Ka2 can be considered a new serotype of EV-Gs. Nonetheless,

Ishi-Ka2 shares high sequence homology with the G3-lineage 1 strain Ishi-Ka7, which was

identified in a pig kept on the same farm, except for the P1 region. It is likely that Ishi-Ka2

emerged by possible recombination events; however, the putative recombination points could

not be identified, and the origins of these recombination events are unclear because the recom-

bination counterparts of these strains could not be found in the DDBJ/EMBL/GenBank data-

bases or our dataset. G3-lineage 2 strains have sequence homology to G3-lineage 1 in the P1

EV-G1-PL-CP MoI2-2-1 as query sequences, with a sliding window of 200 nt and a moving step size of 20 nt. (D) Recombination

breakpoint analysis of EV-G2-PL-CP HgYa2-1 vs. EV-G1-PL-CP MoI2-2-1 (purple curve), EV-G1-PL-CP Iba27-107 vs. EV-G1-PL-CP

MoI2-2-1 (blue curve), and EV-G1-PL-CP Iba27-107 vs. EV-G2 HgYa2-1 (yellow curve).

https://doi.org/10.1371/journal.pone.0190819.g003
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region, but they are distantly related to G3-lineage 1 on the basis of regions P2 and P3. Because

VP1 induces a host immune response, serological properties can be hypothesized based on

sequence homology of the VP1 gene. On the other hand, these results suggest that full genome

analysis may be needed in addition to the genotyping approaches based solely on the VP1 gene

for precise EV-G classification.

RNA recombination events contribute to genetic diversity and may lead to changes in viru-

lence, escape from host immunity, and adaptation to a new host [42–50]. EV-G strains carry-

ing PL-CP in pigs with diarrhea have been reported in the USA and Belgium [24–26]. In these

cases, EV-G-PL-CPs were detected solely or with low abundance of PEDV. Shang et al. con-

structed an infectious clone of the EV-G-PL-CP strain, 08/NC_USA/2015, and compared it

with a PL-CP knockout recombinant virus. They found that the PL-CP knockout virus showed

impaired growth and induced higher expression levels of innate-immunity genes, suggesting

that EV-G-PL-CP strains acquire pathogenesis via a recombination event [25]. Four out of 17

Japanese EV-G-PL-CP strains were detected in diarrheic cases of pigs; however, 13

EV-G-PL-CP strains were isolated from healthy pigs. In all cases of detection of EV-G-PL-CP

in Japan, EV-G-PL-CP strains were identified together with other enteric viruses, such as

astrovirus, sapelovirus, posavirus, rotavirus, picobirnavirus, sapovirus, teschovirus, torovirus,

PEDV, St-Valerien virus, or kobuvirus (Table 1). Mixed infection with EV-G-PL-CP and other

enteric viruses may influence the pathogenicity of EV-G-PL-CP strains.

The sequences of PL-CP of Japanese EV-G PL-CP strains are distantly related to the

sequences derived from ORF1 of toroviruses, even though they were simultaneously identified

on the same farm, and they have homology to those of USA and Belgium strains (Fig 2), sug-

gesting that a recombination event between an EV-G and torovirus occurred in the past. By

recombination analyses, possible recombination events between EV-G-PL-CP strains were

uncovered and a recombination breakpoint was identified in the middle of region 2A (Fig 3),

in agreement with another report that describes a recombinant event between EV-G8 and

EV-G9 [14], suggesting that this point may be a hotspot of recombination events of EV-G. Fur-

thermore, VP1-2A junction is a known recombination hot-spot in human enteroviruses and

this was discussed in many papers [51–55]. The present recombination profile in EV-G

described here apparently mirrors that in human enteroviruses. EV-Gs that received PL-CP

have been evolving independently and gaining genetic diversity via recombination events.

Conclusions

By a metagenomics approach, high genetic diversity of EV-Gs, including new genotypes and

high prevalence of EV-Gs carrying PL-CP, was observed among EV-G isolates from the feces

of Japanese pigs. EV-Gs comingle and pose a risk of coinfection in the current growing and

high-density pig husbandry system of Japan. Coinfection of a single animal with multiple

EV-Gs, including EV-G-PL-CP strains, may lead to recombination events, which may in turn

promote genetic diversity of EV-Gs and EV-G-PL-CPs. These findings may improve our

understanding of the molecular epidemiology and evolution of EV-Gs.

Supporting information

S1 Fig. Whole-genome analysis of EV-G isolates using a phylogenetic tree and SimPlot. (A)

Phylogenetic analyses based on nt sequences of VP4-VP3, VP1, P2, and P3 of 59 EV-Gs

detected in this study with reference strains from DDBJ/EMBL/GenBank databases. An abbre-

viated strain name, year of detection, and genotype are shown for each strain. Phylogenetic

trees that were constructed by the maximum likelihood method in MEGA 5.22 with bootstrap

values (1000 replicates) above 70 are presented. The bar represents a corrected genetic
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distance. The genotypes are shown on the right-hand side. ● denotes EV-G strains detected in

this study. EV-G PL-CP strains are indicated with underlined bold text. (B) Genome structure

of EV-G. (C, D) Similarity plots of the entire genomes of EV-G3-lineage 1 strains (green

curve), EV-G3-lineage 2 strains (light green curve), EV-G? Ishi-Ka2 (purple curve), and

EV-G3-lineage 1 Ishi-Ka7 (C) and EV-G3-lineage 2 Ishi-Ya4-2 (D) as query sequences, with a

sliding window of 200 nt and a moving step size of 20 nt.

(TIF)

S1 Table. Pairwise nucleotide (lower left) and amino acid (upper right) sequence identities

(%) of completeVP1 gene between Japanese EV-Gs and other EV-G strains.

(XLSX)

S2 Table. Pairwise nucleotide (lower left) and amino acid (upper right) sequence identities

(%) of the PL-CP between EV-G strains and porcine and bovine toroviruses.

(XLSX)

S3 Table. Information of co-infection with other viruses.

(XLSX)
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