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Abstract

Both musical training and native language have been shown to have experience-based

plastic effects on auditory processing. However, the combined effects within individuals are

unclear. Recent research suggests that musical training and tone language speaking are

not clearly additive in their effects on processing of auditory features and that there may be

a disconnect between perceptual and neural signatures of auditory feature processing. The

literature has only recently begun to investigate the effects of musical expertise on basic

auditory processing for different linguistic groups. This work provides a profile of primary

auditory feature discrimination for Mandarin speaking musicians and nonmusicians. The

musicians showed enhanced perceptual discrimination for both frequency and duration as

well as enhanced duration discrimination in a multifeature discrimination task, compared to

nonmusicians. However, there were no differences between the groups in duration process-

ing of nonspeech sounds at a subcortical level or in subcortical frequency representation of

a nonnative tone contour, for fo or for the first or second formant region. The results indicate

that musical expertise provides a cognitive, but not subcortical, advantage in a population of

Mandarin speakers.

Introduction

The plastic effects of musical training on the brain have gained great interest in the research

community [1]. Musical training has been shown to be associated with perceptual benefits in

lower frequency discrimination thresholds for pure tones [2,3] and faster and more accurate

detection of small pitch changes [4] not only in nonspeech sounds but also in a foreign lan-

guage [5], compared to nonmusicians. Musicians have shown enhanced mismatch negativity

(MMN) to slightly detuned chords, indicating more precise detection of frequency deviations

[6]. On a subcortical level, musicians show enhanced phase locking and pitch representation

in the frequency following response (FFR) in both musical and speech sounds [7,8], enhanced

representation of spectral content which contains vocal emotion [9,10], and enhanced
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differentiation of speech sounds by encoding of the second formant [11]. The magnitude of

brainstem responses to tuned and detuned chords was also related to perceptual differences in

pitch discrimination between musicians and nonmusicians, indicating a link between behav-

ioral performance and subcortical plasticity [12].

Auditory plasticity has been shown over short periods of time in schoolchildren participat-

ing in both formal and informal musical activities, indicating that experience-based effects of

music are not limited to adult professional musicians but that musical experience promotes

maturation of the auditory system [13,14,15] and auditory plasticity over the lifespan is sensi-

tive to behavioral needs. The current view is that musical training promotes efficiency through

corticofugal tuning which emphasizes features that are trained and/or are useful for the cur-

rent task demands [16].

Native speakers of tone languages, which encode lexical pitch contrasts, show perceptual

benefits for frequency and interval change detection as well as discrimination of nonnative lin-

guistic tone contrasts compared to English speakers, even after training [17,18]. Mandarin

speakers have shown stronger pitch representation and smoother pitch tracking to Mandarin

tones as well as stronger representation of the second harmonic [19]. Pitch tracking of Manda-

rin Chinese and Thai speakers to linguistic tone contours was more accurate than that of

English speakers, indicating a transfer effect between tone languages [20]. Moreover, pitch

representation is enhanced to musical and nonmusical sounds, speech stimuli, and iterated

ripple noise, which suggests an effect that is not specific to the speech context [21,22,23].

Effects of musical training and tone language are very similar, and many studies have equiv-

ocated them. However, recent attempts to disentangle the effects have shown a much more

complex picture. Cooper and Wang [24] separated tone and non-tone speakers and musicians

and nonmusicians in both linguistic groups (English and Thai) and taught them a new tone

language (Cantonese). They found no clear advantage for tone language learning from the

native tone language speaking musicians; rather, English-speaking musicians had the most

advantage in learning Cantonese. The Thai speakers experienced tone confusion which

impeded their learning of the new Cantonese tone contours, while the musicians in both lin-

guistic groups performed better than the nonmusicians.

Language effects have been shown not only with tone languages but also quantity languages,

like Finnish, which encode lexical duration. Previous studies have shown that native speakers

exhibit enhanced perceptual, cortical, and duration processing at subcortical level [25,26,

27,28]. The interaction of these effects with musical training, however, is more complex, and

the effects of musical expertise within linguistic groups are unclear. Enhanced MMNs and per-

ceptual detection for duration deviants was found for Finnish speaking nonmusicians and

French speaking musicians, but enhanced MMNs were found for frequency deviants only in

French speaking musicians [29]. Likewise, Finnish speakers with greater musical sophistica-

tion have shown enhanced perceptual frequency discrimination, but not duration discrimina-

tion, and no enhanced subcortical duration discrimination, compared to those with less

musical sophistication [30]. These studies indicate a specific effect of native language phono-

logical patterns in the effects of musical expertise within the linguistic group.

Other research has shown an interesting disconnect between perceptual and neural effects

when music and language are investigated in combination. Bidelman, Gandour, and Krishnan

[31] found enhanced subcortical representation of pitch sequences in both musicians and Chi-

nese speakers but only corresponding perceptual pitch discrimination advantages for the

musicians, indicating that cognitive benefits of auditory training may arise only for behavior-

ally relevant tasks.

On the other hand, Hutka et al. [32] found enhanced perceptual pitch discrimination for

both musicians and Cantonese speakers, compared to nonmusicians, but only enhanced
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MMNs for pitch and timbre deviants in musicians. The authors interpret this as musical train-

ing having broader benefits to auditory processing than language, which is more specific. The

divergence of results between several studies suggest that music and language may have differ-

ent mechanisms or effects on plasticity; i.e. they do not appear to be clearly additive.

Moreover, there is a lack of linguistic group control in the language and music literature

and little knowledge about the effects of musical expertise within different linguistic groups,

particularly tone language speakers. If musical training and native language possibly have dif-

ferent mechanisms or interacting effects, then they must be adequately controlled in future

research. This study attempts to contribute to the illumination of the separate effects of musical

expertise and native language by investigating the effects of musical expertise on native speak-

ers of a tone language (Mandarin Chinese). It uses both perceptual auditory feature discrimi-

nation tasks and brainstem recording designed to spotlight onset and sustained responses for

subcortical duration and frequency signatures in order to form a thorough profile of the effects

of musical expertise in Mandarin speakers.

Methods

Participants

57 native Mandarin Chinese speaking adults aged 18–35 participated in behavioral data collec-

tion (21 males, 28 nonmusicians, 29 musicians; Table 1).

55 of them also participated in the auditory brainstem response (ABR) data collection (20

males, 26 nonmusicians, 29 musicians). No participants had any experience with Finnish and

spoke primarily Mandarin Chinese at home for the first 15 years of life. Some studies have

shown connections between auditory discrimination and intelligence [33,34,35,36], but for

practical reasons, it was not possible to conduct large-scale intelligence testing.

Musicians were defined as having more than 6 years of formal musical training and weekly

musical practice, and nonmusicians were defined as having fewer than 2 years of musical train-

ing and no regular musical hobbies.

Participants were recruited by student telephone phone and email lists within Beijing Nor-

mal University and were compensated for their time. They gave written consent according to

Table 1. Description of participants: group designation, age, gender, Gold-MSI scores, and primary instruments of musicians.

Total Mean age Gender Mean Gold-MSI

M F

Nonmusicians 29 21.9 9 20 54.6

Musicians 28 20.5 12 16 97.6

Piano 9 Western

InstrumentsViolin 1

Electric keyboard 1

Guitar 5

Electric guitar 2

Drums 2

Saxophone 1

Voice 2

Bamboo flute 1 Traditional

InstrumentsYangqin 1

Erhu 1

Guzheng/koto 2

https://doi.org/10.1371/journal.pone.0190793.t001
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the Declaration of Helsinki and the ethical review committees of both the University of Hel-

sinki and Beijing Normal University.

Procedure

The full experiment took 2 hours and all participants completed the brainstem recording first.

The recording consisted of two blocks of a passive listening task, counterbalanced between

participants in order to avoid any attentional issues that may affect data quality (boredom,

movements, etc.). The first block contained two synthesized short sounds (see section: Stimuli)

presented at 55 dB sound pressure level (SPL). The second block contained one natural conso-

nant-vowel (CV) speech contour, /puu/, extracted from a longer Finnish word /puuro/ which

means “porridge,” presented at 65 dB SPL. There were a total of 6000 sweeps for each short

stimulus (3000 per polarity) and 4000 sweeps for the speech stimulus.

For brainstem recording, a one-channel setup was used with one active channel at Cz

online referenced to linked mastoids with a forehead ground at the hairline and four vertical

and horizontal electrooculography (EOG) electrodes. A ±30 μV thresholding process was

applied for artifact rejection. Data was collected in a shielded room using a Neuroscan

SynAmps2 Scan 4.5 system with a sampling rate of 20 kHz in AC mode/Gain 2010 and online

open filter 10–3000 Hz with 6 dB roll-off. Sound stimuli were presented binaurally with

shielded circumaural Sennheiser HD 419 headphones.

The behavioral experiment consisted of four listening tests modified from Kaernbach [37].

Participants listened to sounds with headphones presented from a laptop with sound cali-

brated to 65dB SPL. There were three adaptive single-feature tasks in which one sound feature

was adjusted at a time (intensity, frequency, or duration) in order to find the 75% accuracy

threshold for each feature. During each trial, two sounds were played in sequence and the par-

ticipant was asked to press a key on the laptop to choose which sound was louder, higher, or

longer (Intensity Test, Frequency Test, Duration Test, respectively). Correct answers increased

the task difficulty by one step and incorrect answers reduced task difficulty by three steps

(one-up three-down procedure), to find an accuracy rate of 75%. These tasks took about 10

minutes each. Then, a multifeature task asked again which sound was longer (duration), but

all three features were varied randomly. This task took 20 minutes and terminated after 300

trials.

Stimuli

The first block of the ABR section consisted of two synthesized narrowband gamma-filtered

stimuli, one at 162 Hz and on at 216 Hz, both presented at 55dB (SPL). A sawtooth wave of

each pitch was narrow band filtered using a fourth order polynomial gammatone filter with

centre frequency 3141.56 Hz; then, average intensities were normalized. Each stimulus is

about 25ms in length with a 25ms silent buffer before and after the sound for an interstimulus

interval (ISI) of about 50ms (the lengths are not actually absolute since the duration of the sti-

muli depend somewhat on the periodicity of the frequencies). The short stimuli were pre-

sented in alternating polarities and randomized.

The second block of the ABR section consisted of one CV syllable, /puu/, which means

“tree,” recorded from an adult female native Finnish speaker and cut from the longer word

/puuro/, which means “porridge.” The tone contour ranges in fundamental frequency (fo)

from 169 to 233 Hz and lasts 340ms long with a 20ms silence before and 30ms silence after,

presented in a single polarity at 65 dB with a total of 4000 sweeps. Finnish does not have a

system of lexical tones as Mandarin does, but instead a lexical duration contrast, in which vow-

els and consonants have a long and short version, e.g. tuli, “fire,” tuuli, “wind,” and tulli,
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“customs.” The long vowels are co-signaled by a tone contour which has a slight initial rise fol-

lowed by a long fall which aids in recognition of duration contrasts. Mandarin has four lexical

tones: high level, high rising, low falling-rising, and high falling. Thus, the tone contour used

here came from a natural spoken language but represented a totally unfamiliar contour to

Mandarin speakers.

The behavioral stimuli were synthesized in the same way as the short nonspeech sounds

used for brainstem recording but were longer since they were used for perceptual judgments.

The standard sounds were 150ms long, 65 dB, and 162 Hz. The behavioral tasks were created

within custom Matlab functions to be within the range of human speech syllables in intensity,

frequency, and duration. The three features were either held constant or varied adaptively or

randomly, depending on the task. The adaptive tasks automatically terminated after 51 rever-

sals; the multifeature task had 300 trials.

Analysis

Psychoacoustic tasks

The behavioral analysis used estimates from a logistic regression model that were fitted to the

binary response data to calculate Weber fractions that represent discrimination thresholds for

each auditory feature, using the equation ln(3)/k where k is the GLM estimate. For the duration

modulation test, generalized Weber fractions use the same calculation and represent the extent

to which duration is judged longer, given an increase in each specific feature (intensity, fre-

quency, or duration). Additional effects were calculated: the intensity ratio, which is the (abso-

lute value of the) ratio of generalized Weber fractions for the intensity dimension over the

duration dimension and represents the extent to which participants were influenced by varia-

tion in intensity when making the duration judgment (a larger ratio corresponds to more

influence). The frequency ratio is the same calculation for the influence of frequency on dura-

tion judgment, and the duration ratio is the ratio of Weber fractions of duration discrimina-

tion from the simple task to the complex task, which represents the difference in performance

between the simple and complex tasks (a smaller ratio corresponds to decrement in perfor-

mance from simple to complex task). It is expected that all participants decrease in perfor-

mance between the simple and complex task since ignoring distracting features is a more

difficult task.

Subcortical responses

For analysis of the short ABR stimuli, data was preprocessed with band-pass filters at 80Hz

and 4000Hz and an artifact rejection threshold of 30 μV and epochs of 15ms prestimulus and

30ms poststimulus. Due to a technical error, it was not possible to separate responses to the

two different stimuli; therefore, the results show group grand averages. Wave V peak ampli-

tudes and latencies were extracted with a custom Matlab thresholding algorithm designed to

detect peaks within a designated time window as a percentage of total peak size, which is a con-

servative measure to take higher-amplitude noise into consideration. Wave V is thought to be

generated by the inferior colliculus, which is a waystation for corticofugal connections and is

an important integration point for incoming afferent and efferent information. The amplitude

of wave V indicates precision in the temporal tuning of a population of neurons responding to

sound [38]. It has been shown to reflect subcortical experience-based plasticity from auditory

training and is affected by learning and language disorders [39,40,41]. It has previously been

shown that wave V amplitude reflects enhanced duration processing at a subcortical level asso-

ciated with quantity language experience [28], so the current study was interested in possible

duration processing enhancement at the subcortical level due to musical expertise.

Musical expertise in Mandarin Chinese speakers
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Responses to the speech stimulus were bandpass filtered from 80–1000 Hz. The analysis

was mainly concerned with the sustained portion of the response (post-20ms). Waveforms for

each subject were averaged before further analysis.

FFR analysis was conducted by means of a sliding window short-term autocorrelation func-

tion which allocated 40 ms time bins shifted by 1ms, creating 283 overlapping bins. For the

pitch tracking analysis, each bin was autocorrelated (cross-correlated with itself) and the peak

autocorrelation value (expressed as a number between 0 and 1, excluding the first lag which is

1) was identified for each bin, representing the periodicity strength of each time bin. Then,

these peak values were averaged for each participant to determine the participant’s pitch

strength over the entire course of the response.

A short-term spectral analysis was also conducted using the same sliding window function.

A Fast Fourier Transform (FFT) was applied to the windowed bins (Hanning window, bins

zero-padded to 1 second to increase spectral resolution). From this, it was possible to extract

the fo contour from the spectrogram by identifying the frequency which shows the peak mag-

nitude for each time bin. Thus, this is the measure of pitch tracking in terms of frequency.

These peak magnitude frequencies per subject were then cross correlated with the stimulus

itself (which has undergone the same short-term FFT process) to obtain the FFT pitch tracking

measure (expressed as a cross correlation coefficient between 0 and 1) per participant.

Musical expertise

For measures of musical expertise used in correlations, the current study uses the generalized

score of the self-report questionnaire from the Goldsmiths Musical Sophistication Index

(Gold-MSI) [42]. As a full evaluation it consists of the self-report questionnaire and a battery

of listening tests including melodic memory, beat perception, and sound similarity. The self-

report questionnaire alone has been validated using objective listening tests and is an effective

measure of musical ability [43]. The self-report inventory scores participants along five factors

of musical engagement: active engagement, perceptual abilities, musical training, singing

abilities, and emotional engagement. These factors are weighted together to create the general-

ized musical sophistication score. The Gold-MSI is equally useful for evaluating the musical

sophistication of people who are highly formally trained, untrained, or have casual musical

experience.

Statistical analysis

Since the distributions were not normal, nonparametric methods were used. A series of

Mann-Whitney-Wilcoxon tests were run to compare the results of each test between music

groups and Bonferroni corrected for multiple comparisons within effect type.

An additional comparison was done of pitch tracking in responses to the speech stimulus

with a restricted frequency window of 100Hz around the first and second formants. A further

analysis correlated Gold-MSI general sophistication scores with all of the previous effects:

behavioral single-feature frequency, intensity, and duration discrimination, multifeature dura-

tion discrimination, frequency ratio, duration ratio, intensity ratio, wave V amplitude and

latency, autocorrelation pitch tracking, FFT pitch tracking for fo, F1, and F2.

Results

Perceptual effects

Musicians showed enhanced single-feature discrimination for both frequency and duration

and for duration in the complex task compared to the non-musicians (for descriptives, see

Musical expertise in Mandarin Chinese speakers
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Table 2). They also showed a trending difference in single-feature intensity discrimination and

frequency ratio, which did not reach significance at the corrected level (Table 3).

Subcortical effects

There were no differences between musicians and nonmusicians for either peak amplitude or

latency of wave V in onset responses to the short nonspeech stimuli (Fig 1), nor for either auto-

correlation pitch tracking or FFT pitch tracking of fundamental frequency in responses to the

speech stimulus (Fig 2, Table 4).

Further analysis

Formant pitch tracking. The FFT pitch tracking sliding window algorithm was run again

on 100 Hz windows around the average first (397–497) and second (700–800) formant fre-

quencies as identified by Praat. The sliding window was also run on the original speech stimu-

lus with the same restrictions and the results were cross correlated. Pitch tracking of the

formants was also not significantly different between musicians and nonmusicians (Table 5).

Correlations with musical sophistication. A further analysis determined whether the

results would be different with another measure of musical expertise, namely, the Gold-MSI

general musical sophistication score. This score takes into consideration formal musical train-

ing but also factors which are unrelated to training and which may be due to aptitude or social

or environmental conditions. All previously used perceptual and neural measures were corre-

lated with the general musical sophistication index score, and the results mirror those of the

music groups although some of the trends do not reach the corrected significance level (Tables

6 and 7). Moreover, the group music score means were significantly different, indicating that

the participants were accurately assigned to musician and nonmusician groups (W = 812,

Table 2. Mean and standard deviation of Weber fractions for musicians and nonmusicians for each perceptual variable of interest.

Weber fractions Mean Std dev

Musicians Nonmusicians Musicians Nonmusicians

Frequency 0.5 7.42 0.76 18.4

Duration 0.025 0.066 0.016 0.13

Intensity 1.14 1.59 0.67 1.06

Complex duration 0.031 0.057 0.026 0.056

Frequency ratio 156.28 -1259.4 631.45 6596.13

Intensity ratio 1474.97 233.69 6280.8 965.24

Duration ratio 0.86 1.14 0.33 1.17

https://doi.org/10.1371/journal.pone.0190793.t002

Table 3. Mann-Whitney-Wilcoxon test for perceptual effects between musicians and nonmusicians.

Effect W value P value

Simple frequency 145 0.000087*

Simple duration 199 0.0022*

Simple intensity 269 0.067

Complex duration 216 0.0035*

Frequency ratio 526 0.0279

Intensity ratio 479 0.16

Duration ratio 338 0.51

Bonferroni-corrected alpha level at 0.007.

* indicates significance at the Bonferroni-corrected level.

https://doi.org/10.1371/journal.pone.0190793.t003
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p = 9.52 x10-11). The difference is likely due to the fact that the two measures of musical exper-

tise emphasize slightly different factors.

Discussion

This work investigated the basic perceptual and subcortical auditory profiles of Mandarin

speaking musicians and nonmusicians. Mandarin speaking musicians showed more accurate

single-feature discrimination for both frequency and duration and a stronger influence of fre-

quency on duration discrimination in a complex auditory environment. No subcortical effects

were found.

Perceptual effects

There was no effect of duration ratio, which means that there was no group-based difference

in the relationship between the single-feature duration task and the multifeature duration task.

In general, participants decline in accuracy between the simple and complex tasks due to the

increase in processing load from the addition of distracting features. It might be expected that

Fig 1. Onset response of musicians (blue, dark) and nonmusicians (red, light) to synthesized

nonspeech sounds showing V-A complex. Dashed lines represent one standard deviation.

https://doi.org/10.1371/journal.pone.0190793.g001

Fig 2. fo contours of musicians (blue, dark) and nonmusicians (red, light) to a natural speech sound

/puu/. The grey line shows the contour of the original stimulus, and dashed lines represent one standard

deviation.

https://doi.org/10.1371/journal.pone.0190793.g002
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musicians would perform better in the complex task (showing less decrement in performance)

than nonmusicians due to their superior processing skills. However, it may also be argued that

enhancement in processing of low level single features could lead to an overall increase in sys-

tem efficiency, which promotes integration of low level features. This appears to be what hap-

pened in a population of musically diverse Finnish speakers, whose linguistically driven

enhancement for duration processing was more degraded in the complex task for those with

higher levels of musical sophistication [30]. Here, there was no difference in degradation of

duration discrimination for Mandarin speakers with the addition of distracting features

between musicians and nonmusicians. In fact, the musicians showed significantly more accu-

rate duration discrimination in the complex task compared to the nonmusicians. In other

words, both the Mandarin speaking musicians and nonmusicians showed a similar extent of

degradation between the simple and complex task, but the musicians had an overall more

accurate duration discrimination within both tasks.

There was a nonsignificant trend (at corrected level) of frequency ratio. Previous studies

have found that Mandarin speakers are less affected by frequency when making duration judg-

ments than quantity language speakers (Finnish and Estonian), with both the most accurate

duration discrimination and the most influence of frequency on duration discrimination

occurring for Finns [44]. The positive correlation indicates that the more musically sophisti-

cated participants were more affected by frequency in their duration judgments than the less

musically sophisticated. Although counterintuitive, this indicates an enhanced efficiency in

the auditory system since psychoacoustically, frequency contributes to perceived duration

[45,46]. By integrating features which are perceptually bound, musicians process sound more

efficiently in real-world acoustic environments like music performance.

Subcortical effects

Both groups showed high variability in amplitude of the onset response. Both groups accu-

rately followed the speech stimulus tone contour, however, FFT pitch tracking for both musi-

cians and nonmusicians, while giving generally high cross correlation values, was similarly

highly variable and contained octave jumps. It is likely that since the participants were all

Table 4. Mann-Whitney-Wilcoxon test for subcortical effects between musicians and nonmusicians.

Effect W value P value

Autocorrelation pitch tracking 377 0.99

FFT pitch tracking fo 402.5 0.69

Wave V peak amplitude 334 0.68

Wave V peak latency 312 1

Bonferroni-corrected alpha level at 0.0125.

* indicates significance at the Bonferroni-corrected level.

https://doi.org/10.1371/journal.pone.0190793.t004

Table 5. Mann-Whitney-Wilcoxon test for first and second formant pitch tracking between musicians

and nonmusicians.

Effect W value P value

FFT pitch tracking F1 346.5 0.77

FFT pitch tracking F2 362.5 0.99

Bonferroni-corrected alpha level at 0.025.

* indicates significance at the Bonferroni-corrected level.

https://doi.org/10.1371/journal.pone.0190793.t005
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healthy adult native Mandarin speakers, there was a ceiling effect for subcortical frequency

processing due to linguistic expertise.

The speech stimulus was chosen to represent a nonnative tone contour from a natural lan-

guage. It is possible that the Mandarin speakers did not process the stimulus as linguistic, and/

or that the musicians processed it as musical, which would activate perceptual benefits from

cognitively identifying the task demands in a musical context. Previous research has shown

top-down effects of language or music on categorization (and further pitch processing) of

sounds which are similar to natural language tone contours or musical notes [47,48]. It may be

necessary to direct participants’ “listening mode” with stimuli that could be ambiguously inter-

preted to be linguistic or musical. Additionally, further investigations could use a wider range

of similar natural speech, musical, and speech like stimuli, such as instrumental and vocal con-

tours, synthesized contours without phonemes, and iterated ripple noise in order to determine

the effect of top-down organization of auditory domains.

Musical expertise

The correlational analysis with Gold-MSI scores showed the same pattern of effects as the

cross-sectional analysis, which was expected since the group means were significantly differ-

ent. However, the distribution of scores was not bimodal, as would be expected from groups

which did not overlap in level of musical training (fewer than 2 years/6 or more years). The

Gold-MSI is likely capturing additional features that are not directly associated with formal

musical training and which may have a weak effect on the results.

Table 6. Correlations between Gold-MSI generalized musical sophistication score and perceptual

effects.

Correlations S rho P value

Music x frequency 39652 -0.51 .000077*

Music x duration 37090 -0.34 0.012

Music x intensity 31945 -0.15 0.27

Music x complex duration 37825 -0.29 0.029

Music x frequency ratio 21020 0.28 0.036

Music x intensity ratio 26078 0.11 0.43

Music x duration ratio 30894 -0.11 0.41

Bonferroni-corrected alpha level at 0.007.

* indicates significance at the Bonferroni-corrected level.

https://doi.org/10.1371/journal.pone.0190793.t006

Table 7. Correlations between Gold-MSI generalized musical sophistication score and subcortical

effect.

Correlations S rho P value

Music x Autocorrelation pitch tracking 27548 0.0062 0.96

Music x FFT pitch tracking fo 25003 0.098 0.48

Music x FFT pitch tracking F1 23952 0.087 0.53

Music x FFT pitch tracking F2 25773 0.018 0.90

Music x Wave V peak amplitude 19513 0.063 0.66

Music x Wave V peak latency 17492 0.16 0.27

Bonferroni-corrected alpha level at 0.008

* indicates significance at the Bonferroni-corrected level.

https://doi.org/10.1371/journal.pone.0190793.t007
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Participants indicated their main instrument on the Gold-MSI (Table 1). Of the 28 musi-

cians, 21 indicated Western instruments, 5 indicated traditional Chinese instruments, and 2

indicated voice. The traditional instruments included guzheng (Chinese zither), koto (Japanese

instrument similar to the guzheng), yangqin (a hammered dulcimer), erhu (a two-stringed fid-

dle), and bamboo flute. Previous research has shown that there are differences in auditory fea-

ture processing between different kinds of instrumentalists and musical styles [49,50,51].

Here, it is possible that different styles or cultures of music training could emphasize different

auditory features enough to influence the results. Unfortunately, the Western and traditional

groups here were too different in number to compare in a statistically meaningful way. How-

ever, musical culture remains an interesting question for the future and could be investigated

by focusing on style of musical expertise as a design factor.

Limitations

As mentioned above, it was not possible to statistically compare musicians trained in tradi-

tional or Western musical styles. It would be of particular interest to compare musicians

trained in different tonal systems or on fixed- and movable pitch instruments or vocalists since

regular practice of a tonal system with smaller or larger frequency differences between notes

may influence discrimination patterns.

One of the main limitations of this work is the lack of a multifeature frequency discrimina-

tion task. In the future, some of these questions could be addressed by a more complete set of

perceptual tasks, especially since the Mandarin speakers show music-based effects for both fre-

quency and duration.

Some recent research has indicated genetic factors in auditory feature processing and musi-

cal aptitude heritability [52,53,54,55,56]. Future studies should consider the impact of genetic

differences across major linguistic groups and the effect that difference may have in comparing

auditory processing between the groups.

Conclusions

Knowledge about early auditory processing plasticity is becoming more granular and effects

specific to certain sound environments are becoming clearer. Future investigations must take

into consideration the differences between language environments and musical environments

in their effects in tuning the auditory system. Additionally, in order to gain a more complete

picture of the plasticity of the auditory system, musicality evaluations should be carefully con-

sidered as well as other factors like genetics/aptitude, socio-cultural differences in music atti-

tudes, and behavioral task demands. Musical expertise appears to confer mainly perceptual

advantages within linguistic groups. The transfer between language and music effects happen

on an early level of processing, but responses are still modulated by behavioral goals which

drive efferent connections as well as a holistic pressure to efficiency in the full system.

Supporting information

S1 Table. Data values. Data values for each participant used in statistical analyses and demo-

graphic information.

(XLSX)
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