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Abstract

Many complex diseases like diabetes, hypertension, metabolic syndrome, et cetera, are

measured by multiple correlated phenotypes. However, most genome-wide association

studies (GWAS) focus on one phenotype of interest or study multiple phenotypes separately

for identifying genetic variants associated with complex diseases. Analyzing one phenotype

or the related phenotypes separately may lose power due to ignoring the information ob-

tained by combining phenotypes, such as the correlation between phenotypes. In order to

increase statistical power to detect genetic variants associated with complex diseases, we

develop a novel method to test a weighted combination of multiple phenotypes (WCmulP).

We perform extensive simulation studies as well as real data (COPDGene) analysis to eval-

uate the performance of the proposed method. Our simulation results show that WCmulP

has correct type I error rates and is either the most powerful test or comparable to the most

powerful test among the methods we compared. WCmulP also has an outstanding perfor-

mance for identifying single-nucleotide polymorphisms (SNPs) associated with COPD-

related phenotypes.

Introduction

Genome-wide association studies (GWAS) aim to discover genetic variants associated with

complex diseases [1, 2]. In GWAS, researchers often collect data on multiple correlated pheno-

types to get a better understanding of the complex disease [3]. Here are some examples of what

diseases are measured by multiple phenotypes. In type 2 diabetes (T2D) studies data are usu-

ally collected on a number of risk factors and diabetes-related quantitative phenotypes. Hyper-

tension is measured by systolic blood pressures (SBP) and diastolic blood pressures (DBP) [2],

and the correlation coefficient between SBP and DBP was greater than 0.5 in 95% of patients

[4]. The metabolic syndrome refers to the co-occurrence of insulin resistance, obesity, athero-

genic dyslipidemia and hypertension, and these factors are associated and share underlying

mediators, pathway and mechanisms [5]. The correlations between multiple phenotypes can

be leveraged to improve the power of genetic association tests to identify markers associated
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with one or more of the phenotypes [6]. The standard approach to analyze these multiple cor-

related phenotypes is to perform single-phenotype analyses separately and report the findings

for each phenotype [1]. However, analyzing one phenotype at a time will suffer penalties from

the multiple testing and result in a reduced power especially for GWAS [3]. Recently, the joint

analysis of multiple phenotypes has become popular because it can increase statistical power

over analyzing phenotypes separately in detecting genetic variants [3, 6].

There are three commonly used strategies to detect genetic associations between a genetic

variant and multiple correlated phenotypes. The first one is combining test statistics (or p-val-

ues) from univariate analysis. This strategy first tests an association between each phenotype

and a genetic variant individually and then combines the univariate analysis results, i.e. test

statistics or p-values, by using different approaches. The O’Brien’s method [7], sample splitting

and cross-validation method [3], Trait-based Association Test that uses Extended Simes proce-

dure (TATES) [8], Unified Score-Based Association Test (USAT) [9], Fisher’s Combination

[10], and Adaptive Fisher’s Combination (AFC) [11] belong to this strategy. The advantage of

this strategy is its simplicity and is especially useful for analyzing different types of phenotypes

such as continuous, dichotomous and survival [2]. The second one is data reduction. This

strategy derives a single or a few new phenotypes that are linear combinations of the original

phenotypes. Existing methods include projection-based techniques and canonical correlation

analysis (CCA). Projection-based approaches include principal components analysis (PCA)

and principal component of heritability (PCH), where principal components (PCs) are built to

maximize either the phenotypic variance or heritability [2, 6, 12, 13]. Canonical correlation

analysis (CCA) finds the linear combination of phenotypes that explain the largest possible

amount of the correlation between the genetic variant and all multiple phenotypes [14]. Data

reduction approaches are in general only applicable to multiple phenotypes consisting of all

continuous phenotypes that are approximately normally distributed [2]. The third strategy is

regression models which include mixed effect models [15–17], the generalized estimating

equation (GEE) [18, 19], and reverse regression methods [1, 20, 21]. The linear mixed effects

model (LME) and generalized linear mixed effects model (GLMM) are two commonly used

mixed effects models, where the fixed effects are used for the genetic variant and random

effects are used to account for phenotypic correlations. The GEE methods collapse the random

effects and random residual errors in marginal regression models which are a class of models

different from mixed effect models. The reverse regression methods take genotypes as the

response variable and multiple phenotypes as predictors, such as the proportional odds logistic

regression for joint model of multiple phenotypes (MultiPhen) [1]. Regression approaches are

able to deal with a mixture of continuous, dichotomous, and survival phenotypes, but they are

complicated and few available software were developed to implement these methods [2].

In this article, we developed a novel allele-based method for testing association between

multiple phenotypes and a genetic variant. First, we take the allele at the genetic variant as the

response variable and the multiple phenotypes as predictors. Then, we present a new multivari-

ate method that we refer to as WCmulP (Weighted Combination of multiple Phenotypes),

inspired by TOW (Test for testing the effect of an Optimally Weighted combination of variants)

procedure proposed by Sha et al. [22] for rare variant association studies and allele-based

aproach proposed by Majumdar et al. [23]. For each of the independent individuals, WCmulP

linearly combines the multiple phenotypes to “one phenotype” by using the optimal weights pro-

posed by Sha et al. [22]. Then we use the score test based on the logistic model to test the associa-

tion between the genetic variant and the linear combination of phenotypes. Using extensive

simulation studies, we compare the performance of WCmulP with some of the existing methods,

MultiPhen[1], O’Brien’s method [7], TATES [8], CCA [14], and SHet [24]. Our results show

that, in all of the simulation scenarios, WCmulP is either the most powerful test or comparable
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to the most powerful tests among the methods we compared. Finally, we evaluate the perfor-

mance of our proposed method using a real data set, the COPDGene study from dbGaP.

Methods

We consider a sample of n unrelated individuals. Each individual has K possibly correlated

phenotypes. Let Yi,k denote the kth phenotype of the ith individual. We propose to use an allele-

based logistic regression model to test the association between a variant of interest and multi-

ple phenotypes. For a genetic variant with two alleles, we use x2i−1 and x2i to denote the coding

of the two alleles of the ith individual such that we use x1 and x2 to code the two alleles of the

first individual, use x3 and x4 to code the two alleles of the second individual, and so on. For a

variant with two alleles A and a, if the genotype of the ith individual is AA, we define x2i−1 =

x2i = 1; if the genotype is aa, we define x2i−1 = x2i = 0; and if the genotype is Aa, we define x2i−1 = 1;

and x2i = 0. We define the kth phenotype corresponding to the two alleles x2i−1 and x2i of the ith

individual as y2i−1,k and y2i,k, where y2i−1,k = y2i,k = Yi,k. Hence, the total number of observations in

the allele-based data is 2n. We model the relationship between alleles and multiple phenotypes

using the inverse logistic regression model

logitðpjÞ ¼ aþ yj;1b1 þ yj;2b2 þ � � � þ yj;KbK ; j ¼ 1; 2; . . . ; 2n; ð1Þ

where πj = Pr(xj = 1|Yj = (yj,1,. . .,yj,K)T), α is the intercept, and β = (β1,. . .,βK)T is a K-dimention

vector of parameters. To test the association between multiple phenotypes and the variant is equiv-

alent to test the null hypothesis H0: β = 0 under Eq (1). We use the score test statistic given by Sha

et al. [25] to test H0: β = 0 under Eq (1). The test statistic is

S ¼ UTV � 1U; ð2Þ

where U ¼
P2n

j¼1
ðxj � �xÞY j;V ¼ 1 � �xð Þ�x

P2n
j¼1
ðY j �

�Y ÞðY j �
�Y ÞT ; �x ¼ 1

2n

P2n
j¼1

xj; �Y ¼

ð�y1; . . . ; �yKÞ
T

and �yk ¼
1

2n

P2n
j¼1

yj;k for k = 1,. . .,K. The test statistic S asymptotically follows a chi-

square distribution with K degrees of freedom.

When K is large, the score test may lose power due to the large degrees of freedom. To over-

come this problem, we combine the K phenotypes to one variable by using a linear combina-

tion of phenotypes, yj ¼
PK

k¼1
wkyj;k, where w1,. . ., wK are the weights. With the linear

combination of phenotypes yj ¼
PK

k¼1
wkyj;k, the score test statistic in Eq (2) becomes

Sðw1; . . . ;wKÞ ¼ 2n
ð
P2n

j¼1
ðxj � �xÞyjÞ

2

P2n
j¼1
ðxj � �xÞ2

P2n
j¼1
ðyj � �yÞ2

: ð3Þ

We propose to use the optimal weights proposed by Sha et al. [22], that is, wo
k ¼

P2n
j¼1
ðxj� �xÞðyj;k � �ykÞ

P2n
j¼1
ðyj;k � �ykÞ

2
for k = 1,2, . . ., K. Actually, the optimal weights wo

1
; . . . ;wo

K maximize S(w1,. . .,

wK) in Eq (3). With this optimally weighted combination of phenotypes yoj ¼
PK

k¼1
wo

kyj;k, the

test statistic given in Eq (3) becomes

Sðwo
1
; . . . ;wo

KÞ ¼ 2n �
P2n

j¼1
ðxj � �xÞðyoj � �yoÞ
P2n

j¼1
ðxj � �xÞ2

; ð4Þ

where �yo ¼ 1

2n

P2n
j¼1

yoj . From Eq (2)–Eq (4), we reduced the dimension of the phenotypes from

multivariate (yj,k, k = 1, . . ., K) to univariate ðyoj Þ with optimal weights wo
k such that Eq (4) is
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the maximum of Eq (3). Since wo
1
; . . . ;wo

K are data-driven weights, Sðwo
1
; . . . ;wo

KÞ does not fol-

low a chi-square distribution. We use a permutation procedure to evaluate the p-value of

Sðwo
1
; . . . ;wo

KÞ. In each permutation, we randomly shuffle the genotypes and keep the pheno-

types unchanged. Since
P2n

j¼1
ðxj � �xÞ2 does not change under each permutation, the test statis-

tic Sðwo
1
; . . . ;wo

KÞ is equivalent to

T ¼
P2n

j¼1
ðxj � �xÞðyoj � �yoÞ: ð5Þ

This test statistic T is our proposed test statistic to test the effect of the Weighted Combination

of multiple Phenotypes (WCmulP).

The WCmulP method can also be extended to incorporate covariates. Suppose that there

are p covariates. Let Zi,l denote the lth covariate of the ith individual. We define the lth covariate

corresponding to the two alleles x2i−1 and x2i of the ith individual as z2i−1,l and z2i,l, where z2i−1,l =

z2i,l = Zi,l. We then adjust the phenotype value yj,k for the covariates by applying linear regres-

sions. That is,

yj;k ¼ a0;k þ a1;kzj;1 þ � � � þ ap;kzj;p þ tj;k:

Let ~yj;k denote the residuals of yj,k in the linear regression. We incorporate the covariate effects in

WCmulP by replacing yj,k in Eq (5) by ~yj;k. With covariates, the statistic of WCmulP is defined as

TWCmulP ¼ Tjyj;k¼~yj;k
:

Comparison of methods

We compare the power of the proposed WCmulP with that of the following methods:

Score (Score test): the test statistic of Score is given by Eq (2).

OB (O’Brien’s method) [7]: the test statistic of OB, eTS−1Tuni, is a linear combination of uni-

variate test statistics, and it is the most powerful test among a class of test statistics that are linear

combination of Tuni, where Tuni is the vector of the univariate test statistics, S is the covariance

matrix of Tuni, and e = (1,1. . .,1)T is a 1’s vector with length K (the number of phenotypes).

MultiPhen (Joint model of Multiple Phenotypes) [1]: it uses the proportional odds logistic

regression to model the genotype data as ordinal response and phenotypes as predictors. A

likelihood ratio test is used to test the null hypothesis.

TATES (Trait-based Association Test that uses Extended Simes procedure) [8]: it combines

univariate p-values to acquire one phenotype-based p-value, while correcting for correlations

between phenotypes. The TATES p-value is given by Min mepðkÞ
meðkÞ

� �
, where p(k) is the kth

(k = 1,. . .,K) sorted p-value in ascending order, me and me(k) are the effective numbers of inde-

pendent p-values of all K phenotypes and k specified phenotypes, respectively. The effective

numbers can be calculated from the correlation matrix of p-values.

CCA (Canonical Correlation Analysis) [14]: it extracts the linear combination of phenotypes

that maximizes the correlations between linear combinations of phenotypes and genotypes at the

variant of interest. The test is based on Wilks’ lambda and the corresponding F-approximation.

SHet (Test for Heterogeneous genetic effects) [24]: The test statistic of SHet, SHet, is based

on SHom, which is the most powerful test statistic when the genetic effect is homogeneous. Both

SHom and SHet are quadratic combinations of the univariate test statistics. The test statistic of

SHom is SHom ¼
eT ðRW Þ� 1 TuniðeT ðRW Þ

� 1TuniÞ
T

eT ðWRWÞ� 1e
, where R is the correlation matrix of Tuni, W is a diagonal

matrix of weights for the univariate test statistics, and e is a 1’s vector with length K (number

of phenotypes). SHet can be viewed as the maximum of SHom’s satisfying different thresholds.

More specifically, given a threshold, only test statistics with absolute values that are greater
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than the threshold are used, R and W are therefore partially used corresponding to the selected

test statistics. The p-values of SHet can be evaluated by simulation.

Simulation studies

Our simulations are similar to that of Wang et al. [13]. To evaluate the type I error rates and

powers of our method, we simulate genotype-phenotype data sets for n unrelated individuals

with total K phenotypes according to a variety of simulation scenarios. Specifically, genotype

data at a genetic variant are simulated according to the minor allele frequency (MAF) under the

assumption of Hardy-Weinberg equilibrium. We generate K phenotypes by the factor model

y ¼ lx þ cγf þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� ε; ð6Þ

where y = (y1,. . .,yK)T; x is the genotype score at the variant of interest; λ = (λ1,. . .,λK) is the vec-

tor of effect sizes of the genetic variant on the K phenotypes; f = (f1,. . .,fR)T * MVN(0,S),

S = (1−ρ)I + ρA, R is the number of factors, A is a matrix with elements of 1, I is the identity

matrix, and ρ is the correlation between fi and fj for i 6¼ j; γ is a K by R matrix; c is a constant

number; and ε = (ε1,. . .,εK)T is a vector of residuals, ε1,. . .,εK are independent, and εk * N(0,1)

for k = 1,. . .,K. Based on Eq (6), we consider the following six models.

Model 1: There is only one factor and genotype has an impact on all traits with the same

effect size. That is, R = 1, λ = (β,. . .,β)T, and γ = (1,. . .,1)T.

Model 2: There are two factors and genotype has an impact on two factors with opposite

effects. That is, R = 2, l ¼ � b; . . . ; � b
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

K=2

; b; . . . ; b
|fflfflfflffl{zfflfflfflffl}

K=2

 !T
, and γ = bdiag(D1,D2), where Di ¼

1; . . . ; 1
|fflfflfflffl{zfflfflfflffl}

K=2

 !T
for i = 1,2, “bdiag” indicates the block diagonal matrix.

Model 3: There are two factors and genotype has an impact on one factor. That is, R = 2,

l ¼ 0; . . . ; 0;b; . . . ; b
|fflfflfflffl{zfflfflfflffl}

K=2

 !T
, and γ = bdiag(D1,D2), where Di ¼ 1; . . . ; 1

|fflfflfflffl{zfflfflfflffl}
K=2

 !T
for i = 1,2.

Model 4: There are four factors and genotype has an impact on one factor. That is, R = 4,

l ¼ 0; . . . ; 0;b; . . . ; b
|fflfflfflffl{zfflfflfflffl}

K=4

 !T
, and γ = bdiag(D1,D2,D3,D4), where Di ¼ 1; . . . ; 1

|fflfflfflffl{zfflfflfflffl}
K=4

 !T
for

i = 1,. . .,4.

Model 5: There are four factors and genotype has an impact on two factors with opposite

effects. That is, R = 4, l ¼ 0; . . . ; 0; � b; . . . ; � b
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

K=4

; b; . . . ; b
|fflfflfflffl{zfflfflfflffl}

K=4

 !T
, and γ = bdiag(D1,D2,D3,D4),

where Di ¼ 1; . . . ; 1
|fflfflfflffl{zfflfflfflffl}

K=4

 !T
for i = 1,. . .,4.

Model 6: There are four factors and genotype has an impact on three factors with effects of

different directions. That is, R = 4,

l ¼ 0; . . . ; 0; 2b

K=4þ1
� 1; 2b

K=4þ1
� 2; . . . ; 2b

K=4þ1
� K

4
; � b; . . . ; � b
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

K=4

; b; . . . ; b
|fflfflfflffl{zfflfflfflffl}

K=4

0

B
@

1

C
A

T

, and γ = bdiag(D1,

D2,D3,D4), where Di ¼ 1; . . . ; 1
|fflfflfflffl{zfflfflfflffl}

K=4

 !T
for i = 1,. . .,4.
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In the six models, the within-factor correlation is c2 and the between-factor correlation is

ρc2. Table A in S1 File gives the structures of γ and cov(y|x) for different numbers of factors

(R = 1,2, and 4) when the number of phenotypes is 8.

We also generate phenotypes with covariates effects. We refer to Sha et al. [22] and

Sun et al. [26] by adding two covariates in Eq (6) as y ¼ ð0:5z1 þ 0:5z2Þeþ lx þ cγfþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� ε, where z1 is a continuous random variable generated from a standard normal dis-

tribution, z2 is a binary random variable taking values of 0 and 1 with a probability of 0.5, and

e is a K-dimensional vector with all elements being 1’s. To evaluate type I error rates and pow-

ers, we consider n = 1,000 unrelated individuals, MAF = 0.3, and different numbers of pheno-

types K = 8,16. To evaluate the type I error rates of all methods, we generate all phenotypes

independent of genotypes by setting β = 0. We evaluate type I error rates at significance levels

α = 0.001 and 0.01 for all methods. To evaluate powers, we vary the values of β (within-factor

correlation c2 = 0.5 and between-factor correlation ρc2 = 0.1) and vary the values of within-fac-

tor correlation c2 (0.3,0.5,. . .,0.9) (between-factor correlation ρc2 = 0.1 and β = 0.1,).

Simulation results

To evaluate the type I error rates of WCmulP and other six methods, we consider different

numbers of phenotypes, different significance levels, and different numbers of factors. In each

simulation scenario, the p-values of WCmulP and SHet are estimated using 10,000 permuta-

tions, and the p-values of Score, MultiPhen, TATES, CCA and OB are estimated using their

asymptotic distributions. The type I error rates of the seven methods are evaluated using

10,000 replicated samples. For 10,000 replicated samples, the 95% confidence intervals (CIs)

for type I error rates of nominal levels 0.001 and 0.01 are (0.00038,0.00162) and (0.008,0.012),

respectively. The estimated type I error rates of WCmulP and other six methods are summa-

rized in Table 1 (K = 8) and Table 2 (K = 16). From these tables, we can see that all estimated

type I error rates of WCmulP are within 95% CIs, which indicates that the proposed WCmulP

is a valid test. The estimated type I error rates of SHet, Score, MultiPhen, TATES, CCA and

OB are not significantly different from the nominal levels.

For power comparisons, we consider power as a function of genetic effect β (Figs 1 and 2)

and power as a function of within-factor correlation c2 (Figs 3 and 4). In each of the simulation

scenario, the p-values of WCmulP and SHet are estimated using 1,000 permutations and the

p-values of Score, MultiPhen, TATES, CCA and OB are estimated using their asymptotic dis-

tributions. The powers of the seven methods are evaluated using 1,000 replicated samples at a

significance level of 0.01.

Table 1. Estimated type I error rates for the seven methods under three simulation settings. The number of phenotypes is K = 8, c2 = 0.5, ρc2 = 0.1, and MAF = 0.3.

The p-values of WCmulp and SHet are evaluated using 10,000 permutations. The type I error rate of all of the seven methods is evaluated using 10,000 replicated samples

at a significance level of α. R is the number of factors.

Type I error rates

R = 1 R = 2 R = 4

Methods α = 0.001 α = 0.01 α = 0.001 α = 0.01 α = 0.001 α = 0.01

WCmulP 0.0008 0.0097 0.0011 0.0091 0.0011 0.0104

SHet 0.0008 0.0106 0.0009 0.0093 0.0008 0.0104

Score 0.0006 0.0102 0.0008 0.0103 0.0004 0.0105

MultiPhen 0.0011 0.0106 0.0011 0.0105 0.0005 0.0107

TATES 0.0012 0.0094 0.0007 0.0121 0.0004 0.0106

CCA 0.0008 0.0107 0.0010 0.0099 0.0008 0.0107

OB 0.0007 0.0095 0.0016 0.0092 0.0013 0.0105

https://doi.org/10.1371/journal.pone.0190788.t001
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Our simulation results show that:

1. As expected, the powers of all methods increase as the genetic effect β increases in each

model (Figs 1 and 2).

Table 2. Estimated type I error rates for the seven methods under three simulation settings. The number of phenotypes is K = 16, c2 = 0.5, ρc2 = 0.1, and MAF = 0.3.

The p-values of WCmulp and SHet are evaluated using 10,000 permutations. The type I error rate of all of the seven methods is evaluated using 10,000 replicated samples

at a significance level of α.

Type I error rates

R = 1 R = 2 R = 4

Methods α = 0.001 α = 0.01 α = 0.001 α = 0.01 α = 0.001 α = 0.01

WCmulP 0.0011 0.0089 0.0006 0.0094 0.0008 0.0098

SHet 0.0009 0.0098 0.0009 0.0126 0.0008 0.0088

Score 0.0010 0.0096 0.0011 0.0098 0.0010 0.0086

MultiPhen 0.0011 0.0096 0.0011 0.0121 0.0013 0.0103

TATES 0.0013 0.0110 0.0012 0.0102 0.0008 0.0104

CCA 0.0012 0.0097 0.0009 0.0111 0.0011 0.0089

OB 0.0011 0.0085 0.0006 0.0092 0.0007 0.0097

https://doi.org/10.1371/journal.pone.0190788.t002

Fig 1. Power comparisons of the seven methods as a function of β for the six models. The total number of phenotypes is K = 8, c2 = 0.5, ρc2 =

0.1, and MAF = 0.3. The p-values of WCmulP and SHet are evaluated using 1,000 permutations. The power of all of the seven methods is

evaluated using 1,000 replicated samples at a significance level of 0.01.

https://doi.org/10.1371/journal.pone.0190788.g001
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2. WCmulP is either the most powerful test or comparable to the most powerful tests in all six

models (Figs 1–4).

3. As number of phenotypes increases from K = 8 to K = 16, WCmulP presents more obvious

ascendancy than other methods.

4. SHet, Score, MultiPhen, and CCA have similar performance in all six models; we call these

four tests as group 1.

5. OB is the most powerful test when the genetic effects are homogeneous (model 1). How-

ever, OB reduces power significantly when genetic effects are heterogeneous, especially

when opposite directions of the genetic effects exist (models 2, 5–6) or when the genetic

variant impacts only a small portion of phenotypes (model 4). This phenomenon was also

observed by Zhu et al. [27].

6. Power comparisons of TATES with tests in group 1 depend on the models. In general,

TATES is more powerful than tests in group 1 when the genetic variant impacts on a por-

tion of phenotypes (models 3 and 4).

7. In general, as the within-factor correlation c2 increases, the powers of all methods decrease

(Figs 3 and 4). TATES is relatively robust to c2 because it essentially only depends on the

Fig 2. Power comparisons of the seven methods as a function of β for the six models. The total number of phenotypes is K = 16, c2 = 0.5,

ρc2 = 0.1, and MAF = 0.3. The p-values of WCmulP and SHet are evaluated using 1,000 permutations. The power of all of the seven methods is

evaluated using 1,000 replicated samples at a significance level of 0.01.

https://doi.org/10.1371/journal.pone.0190788.g002
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phenotype that has the strongest association with the genetic variant, as explained in Zhu

et al. [27].

We also considered using principal components (PCs) of the phenotypes instead of the

original phenotypes to do power comparisons and the results are given in Figures A-D in S1

File. We exclude PCs that explain less than 10−6 of the total variation. Using PCs of the pheno-

types, we observe that: (1) WCmulP, Score, MultiPhen, and CCA have very similar powers in

all six models (Figures A-D in S1 File). We call these tests as group s1. The tests in group s1 are

either the most powerful tests or comparable to the most powerful one; (2) SHet is less power-

ful than the tests in group s1; (3) OB is the least powerful method in all six models because PCs

likely have effects with different directions; (4) TATES becomes the most powerful method

when the genetic variant has effects on all phenotypes with the same absolute value of effect

sizes (models 1 and 2) because in this case, one of the PCs may capture the most of association

information.

We also compared the powers using a lower significance level 5×10−5 (Figure E in S1 File).

Figure E in S1 File shows that the pattern of the power comparisons by using significance level

5×10−5 is similar to that by using significance level 0.01 (Fig 1).

Fig 3. Power comparisons of the seven methods as a function of c2 for the six models. The total number of phenotypes is K = 8, ρc2 = 0.1, β =

0.1, and MAF = 0.3. The p-values of WCmulP and SHet are evaluated using 1,000 permutations, the p-values of other methods are evaluated

using asymptotic distribution. The power of all of the seven methods is evaluated using 1,000 replicated samples at a significance level of 0.01.

https://doi.org/10.1371/journal.pone.0190788.g003
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Real data analysis

Chronic obstructive pulmonary disease (COPD) refers to a group of diseases that cause airflow

blockage and breathing-related problems. The Genetic Epidemiology of COPD Study (COPD-

Gene) is a multicenter observational study designed to identify genetic factors associated with

Fig 4. Power comparisons of the seven methods as a function of c2 for the six models. The total number of phenotypes is K = 16, ρc2 = 0.1,

β = 0.1, and MAF = 0.3. The p-values of WCmulP and SHet are evaluated using 1,000 permutations, the p-values of other methods are evaluated

using asymptotic distribution. The power of all of the seven methods is evaluated using 1,000 replicated samples at a significance level of 0.01.

https://doi.org/10.1371/journal.pone.0190788.g004

Table 3. Description of COPD-related phenotypes.

Phenotypes Descriptions

Gas Trapping (GasTrap) Air trapping at -856 Hounsfield units (HU) on expiratory chest CT scan

Exacerbation Frequency

(ExacerFreq)

Number of COPD exacerbations during the year before study enrollment

Emphysema (Emph) % Emphysema at -950 HU

Airway Wall Area (Pi10) Square root of the wall area of a hypothetical 10 mm internal perimeter airway

Emphysema Distribution

(EmphDist)

Log ratio of emphysema at -950 HU in the upper 1/3 of lung fields compared to

the lower 1/3 of lung fields

Six Minute Walk Distance

(6MWD)

Measure of exercise capacity

FEV1 Observed FEV1 (liters)/predicted FEV1 (liters), with predicted values from

Hankinson reference equations

https://doi.org/10.1371/journal.pone.0190788.t003
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COPD, to define and characterize disease-related phenotypes, and to assess the association of

disease-related phenotypes with the identified susceptibility genes [28]. 10,192 participants

(including 6,784 non-Hispanic Whites (NHW) and 3,408 African-Americans (AA)) are

included in COPDGene. We selected 7 key quantitative COPD-related phenotypes and 4

covariates that are the same as those in Liang et al. [11]. The detailed description of these 7

phenotypes is in Table 3, and their correlation structure is given in Figure F in S1 File. The

four covariates include Body Mass Index, Age, Pack-Years (one pack-year is defined as smok-

ing one pack per day for one year), and gender. A set of 5,430 NHW across 630,860 SNPs were

used in the analysis after excluding subjects with missing data in any of the 11 variables.

We apply WCmulP and other six methods to both original 7 phenotypes (Table 4) and the

principal components (PCs) of the phenotypes (Table B in S1 File). PCs that explain less than

10−6 of the total variation are excluded. In this way, one PC is excluded and there are 6 PCs

left. Using the first few PCs is also a dimension reduction method. Thus, using PCs of the phe-

notypes, WCmulP uses two dimension reduction methods: using the first few PCs and the

weighted combination of those PCs. To identify SNPs significantly associated with the 7

COPD-related phenotypes and the top 6 PCs of the phenotypes, we use the genome-wide sig-

nificance threshold of 5 × 10−8. There are total 16 SNPs that are significant under at least one

method (Table 4 and Table B in S1 File). Those 16 SNPs have been reported being associated

with the COPD-related phenotypes by previous studies [29–42]. From Table 4, we can see that

MultiPhen identified the largest number of SNPs, 14 SNPs; WCmulP, SHet, Score, and CCA

identified 13 SNPs; TATES identified 9 SNPs; and OB didn’t identify any SNPs, that’s likely

because the true genetic effects of each SNP are heterogeneous for all phenotypes. From

Table B in S1 File, we can see that using PCs of the phenotypes, WCmulP identified all of the

16 SNPs; MultiPhen identified 15 SNPs; SHet, Score, and CCA identified 13 SNPs; TATES

identified 4 SNPs; and OB identified 3 SNPs. In summary, the number of SNPs identified by

WCmulP is comparable to the largest number of SNPs identified by other tests; and using PCs

of phenotypes, WCmulP is the only method that identified all 16 SNPs. The results of the real

data analysis are consistent with our simulation results.

Table 4. Significant SNPs and the corresponding p-values in the analysis of COPDGene. The p-values of WCmulP are evaluated using 109 permutations; the p-values

of SHet are evaluated using 108 permutations. The p-values of Score, MultiPhen, CCA, TATES, and OB are evaluated using asymptotic distributions. The grayed-out p-val-

ues indicate the p-values> 5 × 10−8.

Chr Position Variant identifier WCmulP SHet Score MultiPhen CCA TATES OB

4 145431497 rs1512282 0 1.0E-08 1.90E-09 1.03E-09 1.69E-09 5.77E-09 0.339

4 145434744 rs1032297 0 0 5.55E-14 7.69E-14 6.52E-14 6.22E-13 0.452

4 145474473 rs1489759 0 0 1.11E-16 1.22E-16 1.11E-16 2.52E-16 0.483

4 145485738 rs1980057 0 0 1.11E-16 8.14E-17 0 9.35E-17 0.411

4 145485915 rs7655625 0 0 1.11E-16 9.13E-17 0 1.64E-16 0.478

15 78882925 rs16969968 0 0 1.91E-11 7.84E-12 1.32E-11 2.98E-08 0.986

15 78894339 rs1051730 1.00E-08 0 2.05E-11 8.16E-12 1.41E-11 2.63E-08 0.992

15 78898723 rs12914385 0 0 1.78E-12 1.48E-12 1.76E-12 5.14E-10 0.999

15 78911181 rs8040868 0 0 2.21E-12 2.59E-12 2.74E-12 2.40E-09 0.768

15 78878541 rs951266 2.00E-08 0 2.42E-11 1.02E-11 1.77E-11 5.17E-08 0.956

15 78806023 rs8034191 4.00E-08 1.0E-08 2.95E-10 7.74E-11 2.14E-10 1.02E-07 0.868

15 78851615 rs2036527 4.00E-08 1.0E-08 5.58E-10 1.77E-10 3.99E-10 1.56E-07 0.880

15 78826180 rs931794 4.80E-08 3.0E-08 3.13E-10 9.09E-11 2.35E-10 1.18E-07 0.913

15 78740964 rs2568494 7.18E-06 1.93E-06 1.22E-07 4.23E-08 1.05E-07 2.88E-05 0.269

15 78733731 rs17483721 8.12E-06 2.29E-06 2.26E-07 9.87E-08 2.11E-07 3.57E-05 0.308

15 78742376 rs17483929 8.15E-06 2.13E-06 1.65E-07 6.53E-08 1.50E-07 2.82E-05 0.347

https://doi.org/10.1371/journal.pone.0190788.t004
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Discussion

In this article, we developed WCmulP to perform multivariate analysis of multiple phenotypes

in association studies based on the following reasons: (1) complex diseases are usually mea-

sured by multiple correlated phenotypes in genetic association studies; and (2) there is increas-

ing evidence showing that studying multiple correlated phenotypes jointly may increase

powers for detecting genetic variants that are associated with complex diseases. Our results

show that WCmulP has correct type I error rates and is either the most powerful test or com-

parable to the most powerful tests among the seven tests we considered. None of the other

methods showed consistent good performances under the simulation scenarios. OB is the

most powerful test when the genetic effects are homogeneous, while it loses power dramatically

when genetic effects are heterogeneous; especially when opposite directions of the genetic

effects exist. SHet, Score, MultiPhen, and CCA have similar powers and they are less powerful

than WCmulP in most scenarios. TATES is more powerful only when the genetic variant

affects a portion of phenotypes. In addition, in the real data analysis, WCmulP identified 13

(out of 16) significant SNPs, 1 SNP less than the largest number of identified SNPs; using PCs

of phenotypes, WCmulP is the only method that identified all 16 SNPs. The real data analysis

results show that WCmulP has excellent performance in identifying SNPs associated with

complex disease with multiple correlated phenotypes such as COPD.

In the context of association studies, it is important to correct for population stratification

(PS). PS refers to allele frequency differences between populations unrelated to the outcome of

interest, but due to systematic ancestry differences. PS can cause seriously confounded associa-

tions if not adjusted properly [43, 44]. The principal component analysis (PCA) method [45–

49] and linear mixed model (LMM) approach [50–52] have been used to adjust for population

stratification. There are also other methods such as multidimensional scaling (MDS) [53], the

robust PCA based on resampling by half means (RPCA-RHM) [54], and the robust PCA based

on the projection pursuit (RPCA-PP) [54], which are extension methods of the PCA approach.

PCA identifies several top principal components of the genotype data matrix and uses them as

covariates in the association analysis. We propose to use PCA to control for PS in our pro-

posed method when samples from different populations are involved. However, the perfor-

mance needs further investigations.

One disadvantage of WCmulP is that the test statistic does not have an asymptotic distribu-

tion and a permutation procedure is needed to calculate its p-value, which is time consuming

compared to the methods whose test statistics have asymptotic distributions. The running

time of WCmulP with 1,000 permutations on a data set with 5,000 individuals and 20 pheno-

types on a laptop with 4 Intel(R) Cores(TM) i7-4790 CPU @ 3.6GHz and 4 GB memory is no

more than 0.15s. To perform GWAS, we can first select genetic variants that show evidence of

association based on a small number of permutations (e.g. 1,000), and then a large number of

permutations are used to test the selected significant genetic variants [21]. Furthermore,

WCmulP cannot be used for rare variant association studies, although recent studies have

shown that complex diseases are caused by both common and rare variants [50, 55–58]. How

to extend WCmulP to rare variant association studies is our future work.

In our simulation studies, the numbers of phenotypes varied from 8 to 16 and the methods

rely on all observations having fully observed phenotypes. However, in real data analysis, as

the number of phenotypes increases the chance that missing at least one observation increases

exponentially, especially in epidemiological and clinical research [59, 60]. There are several

approaches to handle missing phenotypes: deletion-based methods, simple replacement meth-

ods, and imputation methods [59]. The most commonly used method for dealing with missing

data is deletion-based method, in which observations with missing values are removed from
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the analysis [59]. However, removal of observations with missing values will reduce sample

size, thus resulting in power losses [60]. The simple replacement methods replace the missing

values with plausible values for the variable with missing values, such as the sample mean [8,

59]. It is a simple, unconditional method that does not depend on other variables. However,

mean substitution approach may result in biased estimates where data are not missing

completely at random [59]. Imputation is a more sophisticated approach that fills in missing

values with predicted values using model-based methods or conditional imputation, including

multiple imputation (MI), multivariate normal imputation (MVNI), and fully conditional

specification (FCS) [59, 61–66]. In MI, the incomplete dataset is generated multiple times and

missing values are replaced by values drawn from a posterior distribution according to a suit-

able imputation model that utilizes the rest of the data [59, 61]. MVNI fits a joint imputation

model to all the variables containing missing values under the assumption that the variables

follow a multivariate normal distribution [62, 63]. For each variable with missing values, FCS

fits separate univariate regression models and iteratively cycles through the univariate regres-

sion models [64–66]. In our real data analysis, we removed 1354 observations with missing

either phenotypes or covariates from 6784 samples. An alternative approach is to use mean

substitution or imputation approaches to fill in the missing values.
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