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Abstract

Background

Recent studies of functional or effective connectivity in the brain have reported that motor-

related brain regions were activated during motor execution and motor imagery, but the rela-

tionship between motor and cognitive areas has not yet been completely understood. The

objectives of our study were to analyze the effective connectivity between motor and cogni-

tive networks in order to define network dynamics during motor execution and motor imag-

ery in healthy individuals. Second, we analyzed the differences in effective connectivity

between correct and incorrect responses during motor execution and imagery using

dynamic causal modeling (DCM) of electroencephalography (EEG) data.

Method

Twenty healthy subjects performed a sequence of finger tapping trials using either motor

execution or motor imagery, and the performances were recorded. Changes in effective

connectivity between the primary motor cortex (M1), supplementary motor area (SMA), pre-

motor cortex (PMC), and dorsolateral prefrontal cortex (DLPFC) were estimated using

dynamic causal modeling. Bayesian model averaging with family-level inference and fixed-

effects analysis was applied to determine the most likely connectivity model for these

regions.

Results

Motor execution and imagery showed inputs to distinct brain regions, the premotor cortex

and the supplementary motor area, respectively. During motor execution, the coupling

strength of a feedforward network from the DLPFC to the PMC was greater than that during

motor imagery. During motor imagery, the coupling strengths of a feedforward network from

the PMC to the SMA and of a feedback network from M1 to the PMC were higher than that

during motor execution. In imagined movement, although there were connectivity differ-

ences between correct and incorrect task responses, each motor imagery task that included
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correct and incorrect responses showed similar network connectivity characteristics. Cor-

rect motor imagery responses showed connectivity from the PMC to the DLPFC, while the

incorrect responses had characteristic connectivity from the SMA to the DLPFC.

Conclusions

These findings provide an understanding of effective connectivity between motor and cogni-

tive areas during motor execution and imagery as well as the basis for future connectivity

studies for patients with stroke.

Introduction

Motor imagery (MI) constitutes a mentally rehearsed task in which a given movement is imag-

ined without the occurrence of actual movement [1]. Although an MI task is only performed

mentally, imagining a movement recruits areas of the brain that are activated when actual

movement is performed [2]. Motor areas of the cerebral cortex involved in motor execution

(ME) consist of the primary motor cortex (M1) and several premotor areas, including the sup-

plementary motor area (SMA), pre-supplementary motor area (pre-SMA), and ventral and

dorsal parts of the premotor cortex (PMC). Similar to ME, motor areas of the cerebral cortex

involved in MI include M1, SMA, pre-SMA, and ventral and dorsal parts of the PMC, although

activation of M1 during MI is weaker compared to that during ME [3–5]. They also include

areas related to action planning, such as the dorsolateral prefrontal cortex (DLPFC), inferior

frontal cortex (IFC), and posterior parietal cortex (PPC) [6–9]. M1 is typically associated with

ME. Moreover, the amount of M1 activation during MI reflects the level exhibited during exe-

cution [10]. Locations of SMA activity for ME and MI overlap only partially [11, 12]. The SMA

is reportedly the most consistently active area and plays an important role in MI tasks as well

as in high-level motor control [13–17]. The SMA is also involved in the programming of

movements [18, 19]. The SMA plays a role in internally generated movements or actions that

require sequences of movements [20]. The PMC exhibits overlapping activity during ME and

MI and plays a role in the planning and preparation phases before simulation [13, 21]. The

prefrontal and frontal cortices play a significant role in cognitive and motor events that instan-

tiate action planning and programming [22]. Whether the prefrontal cortex is required for

control of movement tasks guided by representations or internalized models of reality remains

unclear [23].

Functional connectivity describes statistically temporal correlations between spatially

remote brain areas during rest, but it does not provide any directional information or how

these correlations are mediated. Functional connectivity is assessed by imaging during task-

free, resting states; whereas the definition of effective connectivity is that one brain region

exerts influence over another brain region by task. Effective connectivity is estimated from

neuroimaging data collected during task performance [24,25]. It has been suggested that effec-

tive connectivity, perceived as experimental and time-dependent, needs the simplest schematic

map that can reproduce the observed timing relationships between recorded network nodes

[26]. When using DCM of functionally relevant signals, the locations of different configura-

tions of sources and their connections can be tested to identify networks generated during

task-related responses [27]. Therefore, DCM is currently used for the analysis of functional

imaging, such as functional magnetic resonance imaging (fMRI), magnetoencephalography

(MEG), and EEG [28, 29].

Functional connectivity during motor imagery and execution
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Previous studies have suggested that the prefrontal area is activated during both executed

and imagined tasks [30]. Sequential organization of cortical neuronal events (action plans) was

shown to be produced during MI. Although this sequential processing was planned simulta-

neously when performing actual motor control, the processing may consist of several separate

parallel sub-processes [31]. Possibly, a similar neuronal substrate through the timing of the

actual voluntary activity could affect temporal organization during MI. The timing of mentally

rehearsed simulated movements is instantiated at a higher level than motor execution [23, 30,

32]. Another study used the Granger causality mapping (GCM) method to investigate effective

connectivity in the brain during MI by selecting the SMA as the region of interest (ROI) [33].

The result showed that forward and backward effective connectivity was present between the

SMA and three regions, including the bilateral dorsal premotor area (PMd), and the contralat-

eral primary and secondary somatosensory cortices (S1). Based on the fMRI data sets obtained

during ME and MI conditions, Kasess et al., [19] concluded that SMA suppression resulted in

absence of M1 activation. This showed the SMA-suppressed movement preparation and per-

formance by the motor system.

As mentioned, previous studies showed the prefrontal area was activated during perfor-

mance of both ME and MI. We hypothesized that subjects’ cognition would show effects in the

motor area of the brain including M1, PMC, and SMA during performance of the ME task, as

the role of the PFC is action planning and programming [6, 23] which affects the ME and MI

tasks. In addition, effective connectivity studies have not included the prefrontal area. There-

fore, the objectives of this study were to analyze the effective connectivity between brain

regions within motor and cognitive networks during ME and MI in healthy subjects. More-

over, the differences in effective connectivity between correct and incorrect responses during

MI were analyzed using DCM on EEG data.

Material and methods

Participants

Twenty healthy subjects (mean ± standard deviation: 25.7±3.1, range 20–35 years, 10 females)

participated in this study. The exclusion criteria were as follows: presence of any medical disor-

der, neurological disorder, orthopedic disorder, or substance abuse, history of taking psycho-

active drugs or intracranial metal insertion. Subjects between 18 and 35 years of age were

selected. During the experiment, subjects sat in a comfortable armchair watching a monitor

from a distance of approximately 1 m. All subjects were right-handed, as determined by the

Edinburgh Handedness Inventory [34]. Prior to the task, all participants were assessed using

the Movement Imagery Questionnaire-Revised second version (MIQ-RS) [35], which consists

of seven visual and seven kinesthetic items. This questionnaire uses a Likert scale, ranging

from 1, “very difficult to see/feel,” to 7, “very easy to see/feel.” All participants provided written

informed consent, and the study protocol was approved by the local ethics committee of Sam-

sung Medical Center, Seoul, Korea.

Motor task experiment

Presentation (Neurobehavioral Systems, Inc., Albany, CA, USA) was used for the motor task.

The task consisted of a motor execution and a motor imagery sequence, which involved imag-

ining the feeling of finger-tapping to mentally rehearse a finger-tapping sequence. Each partic-

ipant performed the task with his or her dominant hand. EEG was recorded during the finger-

tapping task. A motor task paradigm that provided evidence for task compliance by individual

subjects was previously suggested and involved visual presentation of numbers to guide

sequential finger-tapping execution and imagery. The motor task was divided into execution

Functional connectivity during motor imagery and execution
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and imagery sessions. Subjects performed both execution and imagery sessions on the same

day, the sequence of which was assigned randomly. In this study, we altered two aspects of this

previous experimental design. First, instead of number stimuli, we used dot stimuli (range of

dots) to guide the tapping sequence. Second, instead of a fixed quantity of stimuli in individual

trials, we used a varied number of dot stimuli in each trial. We inferred that these modifica-

tions would deter subjects from employing alternative strategies, such as explicit counting,

when performing the task and focus instead on the desired visuomotor strategy. We assumed

that our subjects performed explicit imagery which could be imagined visually or kinestheti-

cally. Before modifications in the motor task, alternative strategies such as explicit counting

could interfere with motor imagery because the subjects might conflate visual information

processing due to visual presentation of numbers to guide and recollect finger movements dur-

ing the imagery task. Dot stimulation in each trial, however, relatively reduced visual informa-

tion processing compared to when numbers were displayed.

The experimental paradigm was designed to observe the motor task and objectively assess

the performance of a task comprised of 20 trial-varied blocks. All blocks had at least three tri-

als, although some blocks included five trials. A total of 20 blocks was defined as a task. In each

block, a cue stimulus that specified the starting finger for tapping was presented for 4.0 sec,

and then a series of at least three dot trials were presented at 1.3-sec intervals. Specifically, a

dot appeared for 0.8 sec, and then a plus sign appeared for 0.5 sec. The subjects imagined or

executed tapping of each finger when presented with only a dot, tapping in order from the

radial to ulnar side and excluding the thumb. In the execution session, subjects tapped the

indicated keyboard keys. In contrast, subjects only imagined the tapping movements during

the imagery session. At the end of each block, the subjects were asked to physically press the

next finger in the sequence in both execution and imagery tasks. Tapping with the correct or

incorrect finger reflected the subject’s compliance with the ME and MI in each block (Fig 1).

We recorded correct or incorrect responses based on the final finger movement when asked to

physically tap a finger at the end of a block. The subject’s performance of the motor task during

the entire paradigm was quantified as the percentage of the number of correct or incorrect fin-

ger-tapping responses among the 20 blocks.

EEG recording and data processing

EEG data were collected using the NEURO PRAX1 EEG system (NeuroConn, Ilmeanau,

Germany) with 32 surface Ag/AgCl electrodes mounted on a recording cap (EASYCAP,

Woerthesee-Etterschla, Germany) according to the international 10–20 system referenced to

the right earlobe electrode.

The continuous EEG signals were processed with MATLAB (8.0.0.783, R2012b, Math-

Works, Natick, MA, USA) and the EEGLAB toolbox (v11.0.54b http://sccn.ucsd.edu/eeglab/).

SPM12b (v6225 http://www.fi.ion.uci.ac.uk/smp) was used for statistical analysis of prepro-

cessed EEG data on a scalp-by-frequency basis.

After data were exported to a research computer, EEG signals were preprocessed with

EEGLAB and SPM12b, an open source toolbox based on MATLAB [36]. For EEGLAB, the

EEG signals were collected at a frequency of 4,000 Hz, down-sampled to 512 Hz, band-pass fil-

tered at a range of 0.1–50 Hz, and epoched between -1000 and 4000 ms with respect to the

onset of dot stimuli in each block. This study divided the frequency dimension into two non-

overlapping frequency bands: a mu band of 8–12 Hz and a beta band of 13–20 Hz [37]. Eye-

blink correction was conducted using independent components analysis via the EEGLAB

toolbox for MATLAB [36]. The data epoch threshold was between -100 and 100 μV. In the

time-frequency domain, epoched data length ranged from 0 sec before displaying the first dot

Functional connectivity during motor imagery and execution
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to 0.8 sec after presenting the first dot. EEG signals were estimated as event-related spectral

perturbations across average blocks of the C3 (contralateral side) and C4 (ipsilateral side) elec-

trodes. A topographic map showed the distribution of the event-related spectral perturbation

(ERSP) of all channels over each correct trial corresponding to dot appearance: first trial of

0.0–0.8 sec, second trial of 1.3–2.1 sec, and third trial of 2.6–3.4 sec.

For SPM12b, the data were epoched offline with a peri-stimulus window of -1000 to 4000

ms. The data were down-sampled to 512 Hz and band-pass filtered in the range of 0.1–50 Hz.

The artifact threshold for eye movements or muscular activity was set between 0 and 100. We

defined the lowest amplitude threshold for artifact rejection as 0.2 uV. We removed artifacts

related to eye movement or muscular activity only in blocks, rather than rejecting each trial,

then interpolation of bad channels was performed.

3D source reconstruction

For DCM using SPM, EEG signals were converted into voxel-based images by generating a

brain map of the scalp images provided by SPM over each correct or incorrect block. EEG-

based 2D brain-frequency scalp images were generated and the 2D brain-frequency scalp

image was transformed to match brain maps provided by SPM. These converted dimensions

of the interpolated brain image were used for statistical analysis. The 2D brain-frequency sta-

tistical image that was used to create the brain map of the scalp was represented by topological

inference [38]. These processes constituted necessary steps to obtain an imaging reconstruc-

tion of EEG data. Because anatomical MRI data were not available for each subject, we used a

template head model. The template head model has been used when individual head models

Fig 1. Motor task block components. The starting finger was indicated with a red dot. The experimental paradigm was divided into two sessions of motor

execution and imagery. Each session was performed individually. A white dot was presented in the middle of the monitor every 1300 ms as a signal to progress to

the next finger, both for motor execution and imagery. Each block was composed of at least three trials. Subjects pressed the appropriate button at the end of the

task block as directed.

https://doi.org/10.1371/journal.pone.0190715.g001
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were not acquired, and the template head model might be precise because EEG electrode posi-

tions were transformed to match the head model template, and SPM employed the template

head model based on the MNI brain. The MNI brain images are a well-defined template and

previous research has validated the match between the template head model corresponding to

structural images that included 8196 vertices of cortical template mesh and EEG electrode

positions. [38]. Although each individual subject’s head is quite different from the template A

match was partly achieved because the 8,196 vertices of the template have been validated as

dense. Source orientations were assumed to be normal with respect to the cortical mesh [38].

The actual lead field matrix was determined using forward computation, which computes the

effect exerted on the sensors for each of the dipoles in the cortical mesh. The result is an N x M

matrix, where N is the number of sensors, and M is the number of mesh vertices. Each column

in this matrix produces a lead field corresponding to one mesh vertex. We computed Max-

well’s equations and assumptions regarding the physical properties of the head. These are

known as “forward models”. When the head model was ready, it was displayed in the graphics

window with the cortical mesh, and sensor locations were verified. The actual lead field matrix

was computed at the beginning of the next step and saved. We used the boundary element

method (BEM) model in order to more accurately model the electric field propagation through

brain tissue; this model produces better results and has been shown to decrease localization

error [38–42]. The localization accuracy of bioelectric source reconstruction is improved by

the BEM method. The forward problem might be solved numerically through transformation

to a boundary integral equation when approximating conductance within the head by a vol-

ume conductor consisting of compartments with constant and isotropic conductivities [43].

For reconstruction based on an empirical Bayesian approach to localize evoked responses,

we chose the time window between -1000 ms and 4000 ms for inversion. This time window

means that, although all subjects performed 20 blocks, the 20 blocks required different time

intervals because each block was assigned trials randomly, although each block always in-

cluded three trials. Therefore, the data from three trials represented one block. The time win-

dow between -1000 and 4000 ms also included the preparation and performance periods. The

reason why we selected this time window was to show the difference between the execution

and imagining states. We used DCM to analyze event-related potentials in order to produce a

spatiotemporal model of the full data set.

Regions of interest (ROI) for DCM

The regions of interest (ROIs) were set as M1, SMA, PMC, and DLPFC (Fig 2). We restricted

ROIs to the left hemisphere because all the subjects who participated in our study were right

handed. We employed the coordinates reported by Hanakawa et al., as prior source location

means, because this experiment used a task paradigm and included the relevant ROIs for the

chosen task [30].

DCM specification

We tested whether the propagation of neuronal activity in the DLPFC affected primary and

secondary motor areas using EEG data. On the basis of anatomical studies [44], a structural

image suggesting the presence of such connections in humans [30], and a computational

model of cognitive and motor control [44], we constructed the following DCM structures: An

extrinsic input through the PPC entering the PMC and connecting to M1, SMA, and DLPFC

and another extrinsic input through the PPC into the SMA and connecting to M1, PMC, and

DLPFC [45, 46]. Input from primary visual cortex to the PPC through visual stimulation is a

common pathway for both ME and MI, and the next connection is either from the PPC to the

Functional connectivity during motor imagery and execution
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PMC or from the PPC to the SMA. We choose input from either the PMC or SMA. We

reduced the nodes of the region and hypothesis model in order to perform exact model selec-

tion through the Bayesian theorem based on prior knowledge, because a larger number of

nodes resulted in poor Bayesian model selection. The DLPFC was connected to the SMA and

PMC. Condition-specific modulation of coupling due to external input did not influence all

intrinsic coupling connections between regions [47, 48]. Based on intrinsic coupling between

regions, we set up 16 models of connectivity representing biologically plausible hypotheses

regarding changes in interregional coupling among ROIs during the performance of the right

finger-tapping task. As the task was visually triggered, although PPC-SMA or PPC-PMC con-

nectivity was supposed to be directly driven by task-dependent influences, the PPC was not

included in the connection matrix because, with a large number of nodes in the region, Bayes-

ian model selection based on the Bayesian theorem was poor. We investigated connections

between the DLPFC and primary and secondary motor areas related to cognition and motor

activity. According to setting up an interregional coupling for plausible hypotheses, we con-

structed 16 models according to exclusion of connections from the DLPFC to M1 and

M1-DLPFC (Fig 2) because interregional couplings between the DLPFC and M1 and M1 and

the DLPFC were functionally vague connections [48].

Fig 2. Regions of interest (ROIs) and connectivity models constructed by anatomical and structural imaging and computational modeling. (A) The regions of

interest (ROIs) were PMC, SMA, DLPFC, and M1. (B) Connectivity models were constructed from anatomical and structural imaging and computational modeling. An

extrinsic input through the posterior parietal cortex (PPC) entered the PMC or SMA, which was connected to M1, SMA, and DLPFC. PMC (+), Premotor Cortex; SMA

(X), Supplementary Motor Area; M1 (O), Primary Motor Cortex; DLPFC (◈), Dorsolateral Prefrontal Cortex.

https://doi.org/10.1371/journal.pone.0190715.g002
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Bayesian model selection (BMS)

We applied Bayesian model selection (BMS) using Bayesian Model Averaging with family-

level inference and fixed-effects analysis (FFX) to determine the most likely model given the

data [44]. First, we identified the region of input. To identify the type of input taking family-

level inference into account, we organized models into families related to the PMC or SMA. A

partition F that divided S into k~1:K disjoint subsets was constituted. Family k, which con-

tained all models, was incorporated by subset and the k-th subset contained Nk models. We

paid particular attention to avoid any unwanted bias in our inferences in order to establish a

uniform prior at the family level [49]:

r
R
k

� �
¼

1

K
ð1Þ

if the equation looked upon this as model level [50]

rð
R
kÞ ¼

P

m�
R

k
rðmÞ; ð2Þ

the value created applied to the uniform family prior [26]

r mð Þ ¼
1

KNk
8m 2

R
k ð3Þ

the relevant posterior model probabilities added up, and then resulted in the posterior distri-

bution over families. [51]

rð
R
kjYÞ ¼

P
m�
R

krðmjYÞ ð4Þ

We divided the two partitions of family level into input regions: the PMC and SMA.

Because the input most likely entered the dominant region, our study depended on the domi-

nant result of family-level inference regarding the modulatory structure. Then, we assigned

each of the models in the dominant family and analyzed BMS using FFX. These processes

were performed on correct ME responses, correct MI responses, incorrect ME responses, and

incorrect MI responses.

Statistical analysis

Statistical analysis was performed using SPSS v20. One-way analysis of variance (ANOVA)

was used to determine whether the selected model using FFX had a significant probability

among the ROIs. For this analysis, we compared subjects and ROIs using the selected model.

The difference between coupling parameters of each response (i.e., between correct ME and

MI responses) was analyzed using Student’s t-tests and alpha slippage was corrected for multi-

ple comparisons using the false discovery rate (FDR) method.

Results

Subjects performed 20 MI and 20 ME blocks on the same day with the task order randomized

between subjects. The accuracy of a task was based on the numbers of correct and incorrect

responses. Some subjects performed perfectly, responding to all tasks as intended. In contrast,

other subjects performed either an exact button press or an inexact button press. The 20 blocks

included both correct and incorrect responses. We collected the responses for all blocks in all

subjects and then divided them into correct and incorrect groups. The total correct task per-

formance of ME was 90.4%, while that of MI was 84.5%. We observed that 11 of 20 subjects
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performed 20 of 20 correct responses during ME, and 9 of 20 subjects performed 20 of 20 cor-

rect responses during MI. The average MIQ-RS score of the participants was 13.03±1.07, the

kinesthetic MIQ-RS was 6.7±0.53, and the visual imagery MIQ-RS was 6.5±0.53 (Table 1). A

two-sample t-test indicated no significant difference between ME and MI performance. As

mentioned in the EEG Recording and Data Processing section, the ERSP analysis was per-

formed as a preprocessing procedure when the EEG signals were preprocessed with EEGLAB.

Results of the ERSP analysis showed ERD appeared at C3 in the mu band during ME. For

the mu band at C4, an ERD pattern also appeared, but was less significant than that at C3.

Although a similar phenomenon was found during MI, the ERD pattern at C3 was less sig-

nificant in the mu band, as well as at C4 (Fig 3A). Spectral power analysis showed when the

mu band was targeted during ME, a distinct result in the sensorimotor area was seen, but MI

was associated with an ambiguous ERD pattern. In the beta band, ERD was observed over the

sensorimotor area during ME and became more distinct during the 3rd trial than the 1st trial

(Fig 3B). MI elicited a vague ERD pattern in the beta band, which also became relatively dis-

tinct by the 3rd trial (Fig 3C). We used family-level inference to determine the dominant

region of input divided into the PMC and SMA. As a result, ME, including correct and incor-

rect responses, was associated with the PMC as its input region (Fig 4A and 4B). As previously

mentioned, we restricted the set models to the predominant input. Accordingly, we analyzed

only PMC models 1–8 using BMS by FFX inference. Consequently, model 2, representing the

connected DCM-B matrix, showed the best fit across the correct PMC ME responses (Fig 4A).

Moreover, when we analyzed only PMC family models for incorrect ME responses, model 2

provided the best fit (Fig 4B). Conversely, MI including correct and incorrect responses was

associated with the SMA as the region of input. Results from family-level inference by FFX

showed that the family of models with SMA as the input to the network had a better fit than

the family of models with PMC as the input (Fig 4C and 4D). When we performed family-level

inference, model 2 with the SMA input as model 10 on the BMS graph had a better fit than the

other models and produced correct MI responses (Fig 4C). Moreover, we demonstrated that

model 3 with the SMA input as model 11 provided the best fit, according to the same proce-

dure used for incorrect MI responses (Fig 4D).

We performed statistical analysis using one-way ANOVA when comparing subjects and

ROIs in model 2 for correct ME and MI responses. We demonstrated that model 2 with both

correct and incorrect ME responses exhibited significant forward and backward interactions

between nodes (p<0.05; Fig 5A and 5B) (Table 2). Model 10 with correct MI responses also

showed significant interactions between nodes. Additionally, a significant interaction was

observed in model 11 with incorrect MI responses (p<0.05; Fig 5C and 5D) (Table 2). We

excluded PMC-DLPFC and SMA-DLPFC when performing the Student’s t-test because model

2 in correct ME responses and model 11 in correct MI responses did not have the same cou-

pling parameters. A significant difference was identified in the DLPFC-PMC coupling parame-

ter for correct ME responses compared with coupling parameters in correct MI responses

using a Student’s t-test corrected for FDR (p<0.05; Fig 5E). The DLPFC-PMC coupling

Table 1. Participant MIQ-RS score.

Mean (SD)

Total MIQ-RS 13.03 (1.07)

Kinesthetic Imagery 6.7 (0.53)

Visual Imagery 6.5 (0.53)

MIQ-RS: Movement Imagery Questionnaire-Revised second version; SD: standard deviation

https://doi.org/10.1371/journal.pone.0190715.t001
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parameter (mean coupling parameter: 0.08, standard deviation: 0.28) was a forward network.

In contrast, for correct MI responses, PMC-SMA and M1-PMC coupling parameters differed

significantly when compared with coupling parameters during correct ME responses using a

Student’s t-test corrected for FDR (p<0.05; Fig 5F). PMC-SMA (mean parameter: 0.08,

Fig 3. Event-related spectral perturbation over the C3 and C4 electrodes and topography for the mu and beta bands in each

trial. (A) Event-related spectral perturbation over the C3 and C4 electrodes during motor execution (ME) and motor imagery

(MI), (B) Topography at the mu band in each trial, (C) Topography at beta bands in each trial.

https://doi.org/10.1371/journal.pone.0190715.g003
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standard deviation: 0.32) was a forward coupling parameter and differed in connectivity value

from PMC to SMA and this connectivity mediated more than correct ME responses during

correct MI responses. Despite the behavioral differences between correct and incorrect

responses in ME, both conditions possessed similar network connectivity characteristics.

However, correct and incorrect MI responses possessed different network connectivity charac-

teristics. Correct MI responses were associated with connectivity from the PMC to the DLPFC

(Fig 5G), while incorrect MI responses were associated with comparable connectivity from the

SMA to the DLPFC when compared to correct MI responses, there was no statistical signifi-

cance in connectivity because of the difference between the groups in terms of SMA to DLPFC

effective connectivity (Fig 5H).

Discussion

We proposed that the DLPFC is part of a network for cognitive and motor activities during

ME and MI based on a past effective connectivity study. As mentioned in the DCM Specifica-

tion in the Methods section, we supposed that ME and MI responses received common stimu-

lation from the PPC and then sent that information to the PMC and SMA, respectively. In a

previous primate study, the parieto-dependent motor area received information from the PPC

that was involved in a series of sensory-motor transformations and connected mainly to area

F5. Area F5 plays a role in the execution of behaviors that include grasping, manipulation, and

Fig 4. Family-level analysis and Bayesian model selection (BMS). (A) Correct responses during motor execution (ME), (B) Incorrect response during ME, (C) Correct

responses during motor imagery (MI), and (D) Incorrect responses during MI.

https://doi.org/10.1371/journal.pone.0190715.g004
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hand movements and the F5 area corresponds to Brodmann area 6, including the premotor

cortex [48]. Therefore, connection from the parieto-dependent motor area to the PPC suggests

a connection between the PPC and PMC in the case of human-beings. Other previous primate

studies showed that the posterior parietal lobe sent information to area F6 [13, 52]. The sug-

gested role for area F6 corresponding to the mesial part of human 6aß (SMA) is that its neu-

rons constitute a system that controls potential actions encoded in the lateral parieto-frontal

circuits. Normally, even when the neurons encoding these potential actions are activated,

movement is not initiated. The control system represented by area F6 causes the initiation

of movement when external contingencies and motivational factors allow [50]. Thus, hypo-

thetically, the PMC played a role in actual motor action in the presence of external stimulation

during correct and incorrect ME responses; however, the SMA might play a role in the pre-

paration of behavior because of inhibition of execution during correct and incorrect MI

responses. For these reasons, the input received originated from different regions depending

on whether the task was ME or MI.

Correct ME and MI responses had effective connectivity nodes shared by the DLPFC-SMA

and the DLPFC-PMC (Fig 5A and 5B). This result agrees with a previous primate study [50].

Fig 5. DCM coupling strength based on modulatory connectivity (DCM-B matrix). (A) Correct responses during motor execution (ME), (B) Incorrect response

during ME, (C) Correct responses during motor imagery (MI), (D) Incorrect responses during MI, (E) Higher coupling strength during ME compared with correct

MI, (F) Higher coupling strength for MI compared with correct ME, (G) Connectivity characteristic of correct MI responses compared with incorrect MI, and (H)

Connectivity characteristics of incorrect MI responses compared with correct MI.

https://doi.org/10.1371/journal.pone.0190715.g005
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Previous studies [48, 50] indicated that the motor system was prefronto-dependent corre-

sponding to the connection between motor areas and prefrontal and parieto-dependent corti-

cal motor areas that correspond to the connection between the parietal area and posterior

motor areas in the human. Higher-order cognitive information associated with long-term

motor plans and motivation was sent to the prefronto-dependent motor areas, while the par-

ieto-dependent motor areas received sensory information derived from the parietal lobe and

used it for action. The prefronto-dependent motor areas received their main cortical connec-

tions from the prefrontal cortex, area F6 and area F7, implying pre-SMA and dorsal PMC,

respectively [50]. In addition, although the input areas were different for correct and incorrect

ME responses and incorrect MI responses, the connectivity patterns were similar.

Research comparing ME and MI using fMRI showed that similar brain areas were activated

during movement and imagery tasks, including the PMC, SMA, and DLPFC [28, 49]. A pre-

vious study showed M1 was more activated during execution than imagination upon time

course analysis. Thus, although M1 produced marked activity during the movement task in

that previous study, minimal activity was observed during the imagery task; these connectivity

results during ME and MI agree with the present results. To compare certain differences be-

tween identical coupling parameters, we analyzed the two responses using Student’s t-tests. As

a result, the two responses showed significantly different coupling parameters for DLPFC-

PMC, PMC-SMA and M1-PMC (Fig 5E and 5F). A previous primate lesion study showed that

area F7 neurons originating in the DLPFC were associated with performance of goal-directed

movements in response to arbitrary external stimuli [52]. Regarding DLPFC-PMC connectiv-

ity (Fig 5E), a study focusing on attention to action suggested that effective connectivity

between the DLPFC and PMC was enhanced by attention to action compared with attended

performance of a simple motor task and unattended performance of the same movements

[53]. As mentioned in the Results section, forward network for the DLPFC-PMC coupling

parameter (mean coupling parameter: 0.08, standard deviation: 0.28) meant that connections

Table 2. Coupling parameters from dynamic causal modeling.

ROI PMC SMA M1 DLPFC

PMC ME Correct 0 0.04 (0.23) -0.15 (0.21) 0.08 (0.28)�

Incorrect 0 0.31 (0.65) 0.13 (0.31) -0.09 (0.17)

MI Correct 0 -0.05 (0.17) 0.08 (0.38)� -0.11 (0.23)

Incorrect 0 -0.05 (0.15) 0.15 (0.29) 0.13 (0.26)

SMA ME Correct -0.09 (0.15) 0 0.09 (0.27) -0.26 (0.5)

Incorrect -0.05 (0.15) 0 0.32 (0.59) 0.33 (0.46)

MI Correct 0.08 (0.32)� 0 -0.02 (0.14) -0.03 (0.13)

Incorrect 0.08 (0.3) 0 -0.09 (0.18) -0.12 (0.2)

M1 ME Correct -0.05 (0.13) 0.04 (0.27) 0 0

Incorrect -0.02 (0.03) 0.07 (0.07) 0 0

MI Correct 0.01 (0.19) -0.04 (0.13) 0 0

Incorrect 0.003 (0.09) 0.01 (0.05) 0 0

DLPFC ME Correct 0 0.05 (0.35) 0 0

Incorrect 0 -0.16 (0.35) 0 0

MI Correct 0.09 (0.2) 0 0 0

Incorrect 0 0.02 (0.06) 0 0

� Asterisk mark indicates a significant result (p<0.05).

Mean (standard deviation, SD); DLPFC, dorsolateral prefrontal cortex; ME, motor execution; MI, motor imagery; M1, primary motor cortex; PMC, premotor cortex;

ROI, region of interest; SMA, supplementary motor area.

https://doi.org/10.1371/journal.pone.0190715.t002
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from the DLPFC to the PMC might modulate more than correct MI responses when finger

tapping with the right hand. In summary, DLPFC-PMC connectivity during movement execu-

tion is possibly involved in attention to action than during imagining movement. In addition,

motor control to perform goal-directed movements was higher during ME than MI because

pressing a button required goal-directed movement. This suggests that DLPFC-PMC coupled

connectivity plays a role in the motor control needed to perform goal-directed movement [54,

55].

As mentioned above, correct ME and MI responses both involved PMC-SMA and

M1-PMC coupling. These findings imply that these areas play major roles in conscious move-

ment intention and movement awareness [46]. These network strengths were stronger for cor-

rect MI responses than correct ME responses (Fig 5F). Imagined movement could represent

the result of conscious access to the content of the intention, which would reflect image expres-

sion in the mind [46]. Therefore, the coupling strength of correct MI responses including

PMC-, SMA-, and M1-related motor intention was higher than for ME responses, possibly

because young healthy subjects were used to perform MI with higher subjective feelings of

conscious intention and movement awareness than when performing ME. We might assume

that, compared with the reference MIQ-RS score from a previous study [35], the present scores

indicate that subjects adequately performed the imagery task.

There were differences in receiving information from the DLPFC between correct and

incorrect MI responses (Fig 5G and 5H). SMA-DLPFC coupling was observed during incor-

rect MI responses, and the presence of connectivity from PMC to DLPFC was observed during

correct MI responses. SMA-DLPFC coupling has been shown to play a role in the motor con-

trol needed to move a finger [3]. Additionally, PMC-DLPFC coupling is involved in prepara-

tion for movement [2]. This finding suggests information is sent from the PMC to the DLPFC

when subjects executed imagined movements during MI and reflects a consistent imagery

intention before imagined movement.

Overall, this study’s results indicated that DLPFC-PMC and DLPFC-SMA connectivity

were similar during ME and MI and based on information from a previous study, the motor

system may recruit prefronto-dependent and parieto-dependent motor areas during ME and

MI. These results showed that cognitive demand was required for the motor control needed to

perform goal-directed movements during both the ME and MI tasks. Correct ME responses

might have required more connectivity for achieving that action than did correct MI

responses, because physically pressing the button evoked DLPFC-PMC coupling. Other com-

mon coupling nodes included PMC-SMA and M1-PMC. These coupled areas are important

components of conscious movement intention and movement awareness. Therefore, the com-

mon characteristics of correct ME and MI responses required attention for the action, but cor-

rect ME responses were higher than those of MI when actually pressing the button. Second,

correct ME and MI responses were associated with the PMC-SMA and M1-PMC coupling

parameters because they required motor intention and motor awareness. These network

strengths might have been stronger for correct MI responses because the young healthy sub-

jects performed MI with higher subjective feelings of conscious intention and movement

awareness than for ME, which was reflected in the MIQ-RS scores.

This study has some limitations. First, our sample size was insufficient to analyze the differ-

ence between the correct response and incorrect response models. Although the correct

response model revealed effective connectivity between motor and cognitive processes during

ME and MI, the incorrect response model was inadequate to permit statistical analysis. In

addition, we could not perform statistical analysis in order to differentiate between the correct

and incorrect response models because this study could not have any more data to make the

estimation using the BEM more accurate. Therefore, further research is needed with a large
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number of subjects and task blocks to investigate the relationship between motor behavior and

cognition during ME and MI. Second, the ROIs were insufficient to examine the networks of

interest within the whole brain related to motor behavior and cognition during ME and MI,

even though we decided to decrease the ROIs based on Bayes theorem in order to approximate

exact model selection. Third, we could not calculate subject-specific head models although we

used a template head model that included a cortical mesh of 8,196 vertices provided by SPM.

In addition, we could not offer a number of channels greater than the channels we measured,

thus even though we used BEM for correction in order to solve some the forward problem, the

BEM had the drawback of being computationally complex. Therefore, further research is

needed to calculate subject-specific head models and the optimum number of channels.

Fourth, we did not consider connectivity from the PPC to the PMC and the PPC to SMA.

Although there are two reasons we did not consider this model, including connections from

the PPC to PMC and PPC to SMA and the accuracy of Bayesian model computation and

restriction of brain areas to only motor and cognition areas, we maintain the connectivity

between motor areas and the posterior parietal cortex should have been considered. Therefore,

further research is needed to analyze a connectivity model that includes the PPC and PMC

model and the PPC and SMA. Fifth, we also could not consider ROIs in the left and right

hemisphere. We considered restricting ROIs to the left hemisphere because all subjects were

right handed. However, we did not contemplate the connection between the right and left

hemisphere. Therefore, further research is needed to map the right and left hemisphere con-

nection. Sixth, we could not use individual scans such as fMRI images. Although we used the

template head model and BEM method, EEG positions were, of necessity, inaccurate relative

to underlying brain structure by individual. Therefore, further research is needed to acquire

individual source reconstruction information. Lastly, we could not consider the interaction of

timing with movement including the occurrence of dynamics during finger tapping between

trials in the DCM analysis. Therefore, further research is needed to analyze the interaction

between timing and movement dynamics between trials.

Conclusion

We showed evidence for effective connectivity between motor and cognitive processes during

ME and MI. First, when the executed movement resulted in either correct or incorrect

responses, the PMC received input from the PPC; however, the SMA received input from the

PPC during the MI task. Moreover, our study showed effective connectivity between the

DLPFC and secondary motor areas as well as connectivity between primary and secondary

motor areas during both ME and MI tasks, in accord with previous primate and brain activa-

tion studies. We found that the DLPFC-PMC were more coupled during correct ME than cor-

rect MI responses, and connectivity between the PMC-SMA and the M1-PMC was stronger

during correct MI compared to correct ME responses. These results indicate that effective con-

nectivity is different during executed and imagined movement, so there might be different

processes between ME and MI. Third, although there was a behavioral difference between cor-

rect and incorrect responses during ME and MI, correct and incorrect responses during MI

were associated with different network connectivity characteristics.
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