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Abstract

Logistic regression models—or “sightability models”—fit to detection/non-detection data

from marked individuals are often used to adjust for visibility bias in later detection-only sur-

veys, with population abundance estimated using a modified Horvitz-Thompson (mHT) esti-

mator. More recently, a model-based alternative for analyzing combined detection/non-

detection and detection-only data was developed. This approach seemed promising, since

it resulted in similar estimates as the mHT when applied to data from moose (Alces alces)

surveys in Minnesota. More importantly, it provided a framework for developing flexible

models for analyzing multiyear detection-only survey data in combination with detection/

non-detection data. During initial attempts to extend the model-based approach to multiple

years of detection-only data, we found that estimates of detection probabilities and popula-

tion abundance were sensitive to the amount of detection-only data included in the com-

bined (detection/non-detection and detection-only) analysis. Subsequently, we developed a

robust hierarchical modeling approach where sightability model parameters are informed

only by the detection/non-detection data, and we used this approach to fit a fixed-effects

model (FE model) with year-specific parameters and a temporally-smoothed model (TS

model) that shares information across years via random effects and a temporal spline. The

abundance estimates from the TS model were more precise, with decreased interannual

variability relative to the FE model and mHT abundance estimates, illustrating the potential

benefits from model-based approaches that allow information to be shared across years.

Introduction

Long-term monitoring of animal populations is necessary for understanding the impacts of

management actions, global change, and animal diseases. Measurement error, resulting from

difficulties in observing or detecting individuals, is common when surveying animal popula-

tions, and typically requires specialized data collection protocols and associated models to

obtain unbiased estimates of ecological parameters [1]. A variety of methods have been
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developed to account specifically for imperfect detection when estimating abundance from

animal surveys. Distance sampling methods, for example, assume the probability of detection

can be modeled as a function of the distance between individuals and the observer [2, 3]. By

collecting additional data (distances between individuals and observers), one can fit models

that correct for imperfect detection in presence-only (or more aptly “detection-only”) data.

Alternatively, marking individuals with devices such as radiocollars provides an opportunity

to quantify detection probability by creating “capture histories,” records of when animals were

and were not detected. Such data are commonly referred to as presence-absence data, although

here we will refer to such data by the more appropriate term “detection/non-detection data.”

Steinhorst and Samuel [4] developed a modified Horvitz-Thompson (mHT) estimator of

animal abundance that allows information from detection/non-detection data to be applied to

subsequent surveys with detection-only data. Specifically, logistic regression models are fit to

detections and non-detections of marked individuals and then used to estimate inclusion

probabilities for individuals observed during detection-only surveys; these models are typically

referred to as “sightability models” [5]. Rather than assume that detection probabilities are

consistent through time and space, sightability models assume that the relationship between

detection and the sightability model covariates is consistent. In other words, sightability mod-

els were developed to account for situations where animals might be distributed on the land-

scape differently from year to year, or even seasonally, by directly relating visibility bias to

covariates that are measured at the time of the surveys. The mHT estimator has been applied

to many wildlife species in various geographies, including desert bighorn sheep (Ovis canaden-
sis) in southwestern Arizona, USA [6], bowhead whales (Balaena mysticetus) in the Bering-

Chukchi-Beaufort Seas [7], and moose (Alces alces) in Minnesota, Wyoming, Washington,

Alaska, USA and Alberta, Canada [8–13]. In northeastern Minnesota, the Minnesota Depart-

ment of Natural Resources (DNR) has used a sightability model, fit to detection/non-detection

data collected from radiocollared moose between 2004 and 2007, to adjust for detection proba-

bilities for moose groups during subsequent annual operational surveys (i.e., detection-only

data) between 2005 and 2017 (see for example DelGiudice [13]). This approach should correct

for seasonal or annual shifts in animal distributions, such as the shift of moose into visibility-

reducing conifer cover during winter in Minnesota [14].

Fieberg et al. [8] developed a fully model-based abundance estimator, using sightability

data, as an alternative to the traditional design-based mHT estimator of Steinhorst and Samuel

[4]. Using two years of Minnesota moose survey data, Fieberg et al. [8] demonstrated that the

model-based approach provided moose population estimates that were similar to the mHT.

Unlike the mHT approach, however, which assumes that the counts from each year and plot

are independent, the model-based approach allowed for time series modeling of multiyear sur-

vey counts and promised to open the door to further spatiotemporal modeling of animal popu-

lations. For instance, a model-based approach offers the potential to share information across

time or space by including random effects or deterministic spatial or temporal trends in model

parameters that influence population abundance.

The main objective of our study was to extend the model-based approach developed by Fie-

berg et al. [8] to allow for time series modeling of animal abundance, using an application to

Minnesota moose survey data as a motivating example. Unfortunately, extending the model-

based approach to multiple years of operational survey data proved to be more challenging

than we originally expected. As will be discussed below, we found that implementing the

model-based approach with more than two years of operational survey data caused model

trends to change in unrealistic ways, restricting the utility of the Fieberg et al. model. We devel-

oped and present here a hierarchical model that is robust to this issue, allowing us to fit models

to moose aerial survey data collected from 2005 to 2016. We show how models that share
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information across years, through the combination of random effects and a temporal spline,

result in estimates with increased precision and smoother time trends relative to the traditional

mHT estimator or a fixed-effects model with year-specific parameters.

In the following sections, we first describe the underlying data structures, the sightability

model assumptions, and the mHT estimator. Then, we describe the model-based estimator

from Fieberg et al. [8] and illustrate how it was expanded to jointly model multiple years of

data. We then illustrate the problem we encountered, i.e., “sensitivity” of the sightability model

parameters to the amount of detection-only data, and describe the hierarchical modeling solu-

tion. With this solution in place, we develop a model that allows information sharing across

years and demonstrate its utility.

Data

The Minnesota DNR conducted four years of sightability trials using radiocollared individuals

from 2004 through 2007 and has conducted annual operational (detection-only) surveys since

2005. For both types of surveys, teams of two observers plus the pilot flew along east-west tran-

sects spaced at 0.5 km in helicopters (Bell OH-58A, Bell Helicopter Textron, Fort Worth, TX)

during mid-winter when snow depth was� 20 cm. We considered sightability trial data (i.e.,

detection/non-detection data; n = 124 independent sightings) from 2005 through 2007 and

operational survey data (i.e., detection-only data; n = 1922 independent sightings) from 2005

through 2016 for this study. All data and analysis programs are openly available from the Data

Repository for the University of Minnesota at https://doi.org/10.13020/D6N30B.

More complete survey information can be found in Giudice et al. [11] and Fieberg and

Lenarz [15], but briefly, during sightability trials, helicopter teams flew along transects and

identified all visible moose within rectangular plots. Whenever they encountered a radiocol-

lared moose, they recorded the number of moose nearby (i.e., group size) and the amount of

screening cover within approximately 10 m of the first animal seen (percent of “visual obstruc-

tion”). Other covariates were also recorded, but visual obstruction has been identified as the

most suitable covariate for modeling detection probabilities for Minnesota moose surveys

[11], and it is the only covariate that we consider for this study. During the sightability trials,

when radiocollared moose were not detected during the initial transect survey, the helicopter

team subsequently located that moose group via VHF telemetry and recorded the same suite

of information. Sightability trial plots were 4.0 x 4.3 km in size and were delineated in such a

way as to contain at least one radiocollared moose group most of the time. The resultant sight-

ability trial data consisted of 65 non-detection records and 59 detection records.

The protocol for the annual operational surveys was similar to the sightability trial proto-

col, except the helicopter team recorded all observed moose regardless of whether or not they

were radiocollared, and they did not relocate any radiocollared moose after surveying each

plot. Thus, the operational surveys resulted in detection-only data. The operational survey

plots were 8.04 x 4.29 km and stratified based on expected moose density (Stratum 1:� 7

moose km-2; Stratum 2: 8-20 moose km-2; Stratum 3:� 21 moose km-2) [15]. We ignored a

fourth stratum comprised of nine plots, which were designated in 2012 to look specifically at

the relationship between moose distribution and habitat management. Surveyed plots were

selected each year for the operational survey with a stratified random sampling design, in

which approximately 20% of Stratum 3 plots were sampled, approximately 11% of Stratum 2

plots were sampled and approximately 6% of Stratum 1 were sampled. Plot stratification is

reviewed every year and updated to reflect land use changes, past survey results, and expert

opinion.
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Sightability model and the modified Horvitz-Thompson estimator

For the sightability data, let:

R ¼ the number of sightability trials ðhere R ¼ 124Þ

zl ¼ a random variable equal to 1 when the lth group is detected and 0 otherwise

ðl ¼ 1; 2; . . . ;RÞ

xl ¼ the percent visual obstruction ðfrom 0 to 1Þ associated with the lth group

ðl ¼ 1; 2; . . . ;RÞ

gl ¼ the probability of detecting the lth group ðl ¼ 1; 2; . . . ;RÞ

For each year t of operational survey data (t = 2005, 2006, . . ., 2016), let:

Ht ¼ the number of strata ðhere Ht ¼ 3Þ

Nh;t ¼ the total number of plots in stratum h

nh;t ¼ the number of sampled plots in stratum h

Mh;i;t ¼ the number of animal groups in plot i located in stratum h

ðan unknown that has to be estimatedÞ

mh;i;t ¼ the number of detected animal groups in plot i located in stratum h

yh;i;j;t ¼ the number of animals in the jth group in plot i located in stratum h

xh;i;j;t ¼ the percent visual obstruction ðfrom 0 to 1Þ of the jth group in plot i

located in stratum h

gh;i;j;t ¼ the probability of detecting the jth group in plot i located in stratum h

Note, the subscripts h, i, and j refer to data from the operational surveys whereas the sub-

script l refers to data from the sightability trials.

Sightability models assume the probability, gl, of detecting an animal group l can be mod-

eled using logistic regression with one or more covariates (xl):

logitðglÞ ¼ b0g þ b1gxl ð1Þ

We consider a single covariate (xl) measuring the percent of visual obstruction associated with

each animal group (see Giudice et al. [11]).

For the mHT estimator, the fitted sightability model is used to adjust for unobserved ani-

mals in operational surveys, assuming the model remains appropriate (i.e., the factors influ-

encing detection have not changed). (The mHT estimator also assumes a closed population,

independently observed groups of animals, and a statistically valid survey design [4].) First, the

logistic regression model (Eq 1) is fit using xl and zl. Then, the model parameter estimates, b̂0g

and b̂1g , and their covariance matrix are used to estimate a sightability inflation factor. The

year-specific mHT estimator of abundance (t̂mHT
t ) is then given by:

t̂mHT
t ¼

XHt

h¼1

Xnh;t

i¼1

Xmh;i;t

j¼1

yh;i;j;tŷh;i;j;t

ph;i;t

where ŷh;i;j;t is the sightability inflation factor (ŷh;i;j;t � 1=ĝ h;i;j;t) and πh,i,t is the probability that

the ith plot is sampled in year t. More details can be found in Fieberg [5], Giudice et al. [11],

and Steinhorst and Samuel [4].
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In this study we used the Sight.Est function in the R package SightabilityModel [5, 16] to

estimate abundance with the mHT estimator. We specified the variance option “Wong,” log-

normally distributed confidence intervals, and α = 0.10 [5].

Review of Fieberg et al. (2013) model-based approach

Hierarchical models, such as the Fieberg et al. [8] model, are often based on two conditional

and partially observable random processes [17–19]. Here, the first process represents the abun-

dance of animals within each plot, which is determined by the number and size of animal

groups present. The second process represents the detection process, which is conditional on

the presence of animals (and the plot being included in the survey).

Population model

The abundance in year t is a function of the number of animal groups (Mh,i,t) and the size of

each animal group (yh,i,j,t). The number of animal groups per plot is an unknown parameter,

which creates a computational challenge when using Markov chain Monte Carlo (MCMC)

methods to fit the model. Specifically, the dimension of yh,i,j,t, and any other variables defined

at the group level (e.g., xh,i,j,t), would potentially change with each new iteration of the MCMC

sampler. This problem is commonly solved by using parameter-expanded data augmentation

[20–22]. Data augmentation offers a general approach to abundance estimation in a Bayesian

framework by creating a zero-inflated version of the complete dataset likelihood (taking into

account a large number of unobserved data records) in order to fix the dimension of the

parameter space. In this case, Fieberg et al. [8] augmented each plot with Bh − mh,i,t unobserved

records, where Bh = (40, 60, 100) for plots in stratum 1, 2, and 3, respectively; the actual values

of Bh are not important as long as Bh,i,t�Mh,i,t. The unobserved records represent animal

groups that were not a part of the population or were present but were not detected. Fieberg

et al. [8] represented this partially observed state (part of the population or not) with a binary

indicator variable qh,i,j,t * Bernoulli(ψh,i,t); here, ψh,i,t is the probability that each group in plot

i in stratum h belongs to the “true” population.

Fieberg et al. [8] modeled ψh,i,t for all plots in the operational survey data using a

Beta(ac

h;t; b
c

h;t) distribution that varied by year and stratum. Here, we will apply the alterna-

tive parameterization from the Fieberg et al. [8] supplementary information, which leads

to better mixing of the MCMC chains. Specifically, we induced priors for ac

h;t and bc

h;t by

specifying hyperpriors (m
c

h;t and r
c

h;t), where m
c

h;t is the expected value of ψh,i,t,

E½ch;i;t� ¼ m
c

h;t ¼ ac

h;t=ða
c

h;t þ bc

h;tÞ, and r
c

h;t ¼ ða
c

h;t þ bc

h;tÞ:

m
c

h;t � Uniformð0:01; 0:99Þ

r
c

h;t � Nð5; 1Þ; truncated to ð0:01; 10Þ

ac

h;t ¼ m
c

h;tr
c

h;t

bc

h;t ¼ r
c

h;t � m
c

h;tr
c

h;t

For the model-based estimator, we also need to make a parametric assumption about the

distribution of yh,i,j,t. Fieberg et al. [8] modeled moose group sizes using a shifted Poisson dis-

tribution:

yh;i;j;t � 1 � Poissonðlh;tÞ

Time series sightability modeling of animal populations
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and specified N(0, 3.16) priors for each log(λh,t). Note that counts, such as yh,i,j,t, can be mod-

eled with any discrete positive distribution (e.g., Poisson or negative binomial). Also, one

could use a truncated distribution to ensure Pr(yh,i,j,t = 0) = 0 rather than a shifted distribution

as above.

Detection model

In their model-based approach, Fieberg et al. [8] assumed that the same sightability model

applied to both the sightability and operational data sets and thus they jointly modeled the

sightability model parameters, β0g and β1g, with data from both surveys:

logitðglÞ ¼ b0g þ b1gxl; and

logitðgh;i;j;tÞ ¼ b0g þ b1gxh;i;j;t

The complete data likelihood also requires a model for the marginal distribution of xh,i,j,t in

the operational survey data. Since xh,i,j,t values are between 0 and 1, Fieberg et al. [8] chose a

Beta distribution. Here, we will use the same parameterization for xh;i;j;t � Betaðax
h;t; b

x
h;tÞ as we

used for ψh,i,t (i.e., we specify priors for mx
h;t and rx

h;t). We specified Gaussian priors for the

sightability model parameters, β0g * β1g * N(0, 3.16). This specification allowed both the

detection/non-detection data from the sightability trials and the detection-only data from the

operational surveys to inform the detection process. (We will later see that this becomes

problematic.)

Now, let zh,i,j,t be random variables equal to 1 if the jth group was detected and 0 otherwise.

Fieberg et al. [8] assumed that zh,i,j,t are independent Bernoulli trials with probability gh,i,j,t con-

ditional on both visual obstruction (xh,i,j,t) and presence (qh,i,j,t):

zh;i;j;tjxh;i;j;t; qh;i;j;t � Bernoulliðgh;i;j;tqh;i;j;tÞ

Abundance estimator

Fieberg et al. [8] estimated abundance (t̂JAGS
t ) using the modeled counts (yh,i,j,t) and the pres-

ence indicators (qh,i,j,t):

t̂JAGS
t ¼

XHt

h¼1

XNh;t

i¼1

XBh;i;t

j¼1

yh;i;j;tqh;i;j;t ð2Þ

Note, the presence indicators, qh,i,j,t, were set to 1 for all observed moose groups and were

imputed for all augmented moose groups. For the unsampled plots, Fieberg et al. [8] generated

samples from the posterior-predictive distributions of ψh,i,t, qh,i,j,t, and yh,i,j,t.

Time series sightability modeling of animal populations
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Expansion of Fieberg et al. (2013) approach to multiyear surveys

Fixed-effect model-based estimator

We begin by exploring a fixed-effect, model-based approach for multiyear surveys where sight-

ability model parameters are shared across years, but all other parameters are year-specific:

zl � BernoulliðglÞ

yh;i;j;t � 1 � Poissonðlh;tÞ

qh;i;j;t � Bernoulliðch;i;tÞ

ch;i;t � Betaðac

h;t; b
c

h;tÞ

zh;i;j;tjxh;i;j;tqh;i;j;t � Bernoulliðgh;i;j;tqh;i;j;tÞ

logitðglÞ ¼ b0g þ b1gxl

logitðgh;i;j;tÞ ¼ b0g þ b1gxh;i;j;t

xh;i;j;t � Betaðax
h;t; b

x
h;tÞ

for every year t (t = 2005, 2006, . . ., 2016). We used the same prior distributions as described

earlier (i.e., each year was treated separately, with no information sharing across years). We

refer to this model as the “FE model” for short.

Temporal model-based estimator

We created a temporally-smoothed, model-based estimator to jointly model all 12 years of

operational survey data (2005 through 2016) with random effects and a temporal spline,

thereby allowing information to be shared across years. We refer to this approach as the tem-

poral-spline model-based estimator or “TS model” for short. Specifically, we modeled mean

stratum- and year-specific group sizes, via λh,t, using exchangeable random effects:

logðlh;tÞ ¼ mh þ dh;t

mh � Nð0; 3:16Þ

dh;t � Nð0;s2
hÞ

sh � Uniformð0;3Þ

for each year t.
For the TS model, we modeled the mean of ψh,i,t using a temporal spline with stratum-spe-

cific intercepts:

logitðmc

h;i;tÞ ¼ b0cφ
1
þ b1cφ

2
þ b2cφ

3
þ b3cg1 þ b4cg2 þ b5cg3 ð3Þ

where φh are dummy variables for stratum 1, 2 and 3, respectively, and γ are basis vectors from

a natural cubic spline. We chose to include stratum-specific intercepts to capture variation in

the expected abundance of moose by strata. We derived the basis vectors using the function ns
() from the splines library with three degrees of freedom and knots placed at the default loca-

tions (2010 and 2014) based on quantiles of the years of the operational survey [16]. We chose

to use three degrees of freedom to allow for a non-linear response of ψh,i,t across years. We

used vague N(0, 5) priors for all of the m
c

h;i;t regression parameters (e.g., β0ψ, β1ψ, . . ., β5ψ).

We used fixed-effects to model the distribution of xh,i,j,t in each year rather than allow infor-

mation about the distribution of visual obstruction to be shared across years. This decision is

consistent with the general assumption underlying the sightability model approach—i.e.,

Time series sightability modeling of animal populations
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animals shift in their distribution annually, and it is possible to adjust for the resulting changes

in detectability using covariates (i.e., xh,i,j,t).

Sensitivity to the amount of detection-only data

We initially used the R2jags package [23] to implement the FE model with the sightability trial

data and varying amounts of the operational survey data collected from 2006 through 2016.

We sampled from two chains, each with 40,000 MCMC iterations, with the first 20,000 dis-

carded for burn-in. We retained every other sample, leaving us with 20,000 MCMC iterations

to summarize posterior distributions. For this and all subsequent implementations of the

model-based approaches, we examined the chains to determine mixing and convergence and

verified that R̂ < 1:1 for each model parameter [23]. We calculated abundance as the mean of

the posterior distribution of t̂JAGS
t (Eq 2) with 90% credible intervals based on quantiles of the

posterior-predictive distributions.

When we implemented the FE model in JAGS with multiple years of operational survey

data, we discovered that the estimates of the sightability model parameters and abundance esti-

mates were sensitive to the amount of operational survey data included in the analysis (Fig 1).

Specifically, the estimated sightability model curve became flattened and eventually switched

signs (Fig 1A), and the marginal distributions of xh,i,j,t shifted towards lower values of visual

obstruction with each subsequent year of operational survey data added (e.g., see posteriors of

Fig 1. Sensitivity to the amount of detection-only data. A: Sightability model curves demonstrating the relationship

between predicted detection probability (ĝ h;i;j;t) and visual obstruction (xh,i,j,t) for each moose group j in plot i in

stratum h in year t, B: abundance estimates (t̂) by year with 90% credible intervals, and C: the posterior distribution of

mean voc by strata h in 2006 (mx
2006

) for the fixed-effect, joint model-based approach following Fieberg et al. [8] with

varying numbers of years of operational survey data included in the model. Gray bands and lines in (A) and (B)

represent estimates and 90% confidence intervals for the sightability model curve and abundance estimates using the

modified Horvitz-Thompson approach, respectively.

https://doi.org/10.1371/journal.pone.0190706.g001
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mx
h;2006

; Fig 1C). Consequentially, the abundance estimates increased as more years of opera-

tional survey data were included (Fig 1B).

When we jointly modeled 2 years of operational survey data (2006 and 2007), the sample

sizes for the sightability data, the operational survey data, and the augmented operational sur-

vey data were R = 124, m = 372, and maug = 4380, respectively, with a final ratio of sightability

data to augmented operational data of 0.028. When we jointly modeled 5 years of operational

survey data (2006 to 2010) and the sightability model “flipped”, the ratio of sightability to aug-

mented survey data was 0.011 (m = 1039 and maug = 11,440). Finally, when 11 years of opera-

tional survey data (2006 to 2016) were jointly modeled, the ratio of sightability to augmented

operational survey data was 0.005 (m = 1922 and maug = 26,960). Considered together with Fig

1, these results seem to suggest that the operational survey data informed the sightability

model parameters and the marginal distribution of xh,i,j,t, and eventually the operational survey

(detection-only) data overwhelmed the information present in the sightability trial (detection/

non-detection) data.

Model specification

To describe the modeling framework for the model-based approach applied to multiyear sur-

veys, we will use common likelihood notation including brackets “[ ]” to refer to probability

density functions and “|” for conditional relationships (e.g., [a|b, c] can be read as the condi-

tional density of a given b and c) [24].

Let Θ represent all of the parameters in the operational survey model except β0g and β1g, F

represent the sightability model parameters, β0g and β1g, Y represent the data from the opera-

tional surveys (e.g., mh,i,j,t, yh,i,j,t, xh,i,j,t, zh,i,j,t), and Z represent the sightability trial data, Z = (z1,

z2, . . ., zR)0. The unnormalized posterior density of Θ and F with our original specification of

the FE model is given by:

½Y;FjY;Z� / ½YjY;F�½ZjF�½F�½Y� ð4Þ

where [Y|Θ, F] is the likelihood of the operational survey data, which depends on both Θ and

F, [Z|F] is the likelihood for the sightability data, and [Θ] and [F] are the prior densities for

the parameters. With this specification, the posterior distribution for the sightability model

parameters will be informed by both the sightability trial and the operational survey data

(Fig 2):

½Y;FjY;Z� / ½YjY;F�½FjZ;Y�½Y�

Alternative hierarchical model specification

We developed an alternative hierarchical model in which the sightability parameters, β0g and

β1g are informed by only the sightability data. In this specification, F is assumed to be condi-

tionally independent of the operational survey data given the sightability data, i.e.:

½FjZ;Y� ¼ ½FjZ� / ½ZjF�½F�

In this case, the posterior density of Θ and F can be written as:

½Y;FjY;Z� / ½YjY;F�½FjZ�½Y� ð5Þ

To fit this hierarchical model (Fig 2), we:

1. Generated MCMC samples that converge in distribution to [F|Z]/ [Z|F][F].
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2. Randomly sampled s values from [F|Z], giving us F(1), F(2), . . ., F(s).

3. For each F(s), we used JAGS to generate MCMC samples that converge in distribution to

[Θ|Y, F(s)]/ [Y|Θ, F(s)][Θ], by passing F(s) as “data.”

4. Pooled the samples from [3] across the different values of F(s) to summarize posteriors with

density [Θ, F|Y, Z] (i.e., Eq 5).

To summarize the posterior distributions for step [1] of the two-step approach for imple-

menting the alternative hierarchical model, we ran 2 chains with 10,000 iterations each, a

burn-in of 3000 iterations, and a thinning rate of 2, thus providing 7000 MCMC samples to

summarize [F|Z]. To determine an appropriate burn-in period for [Θ|Y, F(s)] in step [3], we

ran the TS model with two chains with dispersed starting values and examined the resultant

trace plots (e.g., S1 Fig). Chains appeared to converge quickly (within approximately 500 itera-

tions) when sightability model parameters were treated as “data” (S1 Fig). Thus for fitting the

FE and TS models, we used s = 75, and ran 2 chains of 3000 MCMC iterations each with 2000

discarded for burn-in, and a thinning rate of 2 for each sample of F(s). Pooling the samples

from step [3] gave us 75,000 MCMC iterations to summarize the posteriors in step [4].

Our two-step approach to model fitting was motivated by a desire to use existing software,

such as JAGS. While JAGS can fit the full hierarchical model (i.e., the Fieberg et al. [8]

approach) in one step, there is no way that we know of to fit the alternative hierarchical model

Fig 2. Model comparison diagram. Diagram comparing the original joint hierarchical model of Fieberg et al. [8] and

the alternative hierarchical model implemented using the two-step approach. The left shows the original, Fieberg et al.
[8] approach, which jointly models the detection-only data (Y) and the detection/non-detection data (Z) together. The

right shows the alternative, hierarchical model, with parameters estimated by: (1) generating MCMC samples that

converge in distribution to [F|Z]/ [Z|F][F]; this is accomplished by fitting the sightability model to Z only; (2)

sampling from [F|Z] s times to get FðsÞ ¼ ðb
ðsÞ
0g ; b

ðsÞ
1g Þ, which we subsequently treat as “data” in step [3]; and (3)

generating MCMC samples that converge in distribution to [Θ|Y, F(s)]/ [Y|Θ, F(s)][Θ]. Finally, we pool all posteriors

from [3] together to create a pooled, unconditional posterior predictive distribution for estimating abundance (t̂JAGS).

https://doi.org/10.1371/journal.pone.0190706.g002
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in one step using JAGS since the model requires the sightability model parameters and opera-

tional survey data to be independent given the sightability trial data. The two-step approach,

while practical, is less direct and less efficient than if we had derived and used our own MCMC

algorithm to fit the model. For example, the unnormalized posterior density function for the

sightability model parameters β0g and β1g (F) depends only on the resightings of moose groups

Z as follows:

½FjZ� / ½F�½ZjF�

/ ½F�
YR

l¼1

½zljF�

where [zl|F] denotes the probability of Bernoulli outcome zl conditional on detection probabil-

ity gl = logit−1(β0g + β1gxl) (see Eq 1). Therefore, if we had constructed a MCMC algorithm,

values of β0g and β1g would be computed during each iteration of the algorithm simply by sam-

pling a distribution with the above density function. These same values of β0g and β1g then

would be used to compute the probability of detecting a moose group in the operational survey

as follows: gh,i,j,t = logit−1(β0g + β1gxh,i,j,t). In this way our MCMC algorithm could fit a model

of all the data (i.e., from both sightability trials and operational surveys) with joint posterior

density equivalent to Eq (5).

Results

Compared with the mHT and fixed-effect model based approaches, the temporal, model-

based approach exhibited a smoother, and hence more realistic, trend in population estimates

from one year to the next (Fig 3). Estimates from the TS model approach were also more pre-

cise (i.e., width of 90% credible intervals were, on average, reduced by 993 animals for TS

model compared to mHT) (Fig 3A). Likewise, the log rate of change from one year to the next

was also much smoother over time in the TS model compared to the FE model or the mHT

estimates (Fig 3B). In particular, the TS model supports a conclusion that the moose popula-

tion decreased in 2011 and 2012, whereas the mHT and FE model are inconclusive due to

larger confidence intervals that overlap zero. Similarly, the mHT and FE model estimators sug-

gest a positive increase in moose abundance in 2014, whereas the TS model supports the

notion that moose population numbers have been stable since 2014.

Estimates of λh,t were similar when using the FE and TS models, except for the low stratum

(i.e., h = 1) in 2015 (S2 Fig). The estimate of λ1,2015 from the FE model was highly uncertain.

By contrast, the exchangeable random effects in the TS model allowed information to be

shared across years, resulting in an estimate of λ1,2015 with less uncertainty and one that was

pulled toward the overall mean. In addition, the use of a natural cubic spline to model changes

in the mean ψh,i,t (i.e., m
c

h;t) resulted in less year-to-year variability and increased the precision

of mean ψh,i,t compared to the FE model (S3 Fig).

Discussion

Studies with marked individuals are expensive and are often cost-prohibitive to apply annually

across large spatial scales. Sightability models require an initial investment to develop a model

of detection using marked individuals, but are more cost-efficient since the model can then be

applied to detection-only surveys in subsequent years, assuming the relationship between

covariates and detection probabilities is consistent over time. Hence, the sightability model

approach is popular for monitoring many wildlife species, such as moose [8, 9, 11, 15], elk
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(Cervus elaphus) [25, 26], mountain goats (Oreamnos americanus) [27, 28], desert bighorn

sheep [6], and bowhead whales [7].

The traditional mHT approach, like other survey design-based estimators, can have high

sampling variability and can perform poorly when a few large counts occur in a low-density

stratum. For instance, the Minnesota DNR conducts annual operational surveys following a

stratified random sampling design, assuming that the expected moose density varies between

strata, which are defined (and occasionally re-defined) using results from previous surveys,

expert opinion, and land cover information [15]. In the Minnesota DNR’s sampling scheme,

the high-density stratum (h = 3) is sampled at a higher rate than the medium- or low-density

strata (h = 2 and h = 1, respectively), and thus, years with higher mHT uncertainties have been

ascribed to atypically high numbers of moose detected in one or more lower-density strata

plots (e.g., 2014 mHT abundance) [13]. Similarly, mHT estimates and their standard errors

can be sensitive to a small number of observations in heavy cover (animals with low detection

probabilities) [29].

Fieberg et al. [8] developed the model-based approach with the hope that it might improve

precision and also offer additional flexibility when analyzing multi-year surveys. We have

shown that a fixed-effects model (with stratum- and year-specific parameters) can produce

abundance estimates that closely follow those from the mHT approach. The advantages of the

model-based approach are more apparent, however, when models are formulated in a way that

allows information to be shared across years. In particular, the TS model provided a smoother,

more realistic trend in population through time and abundance estimates with increased pre-

cision. To be consistent with the sampling design, the TS model also included stratum-specific

Fig 3. Population estimates by year. A: Population estimates (t̂) by year t and B: the log rate of change of t̂ between

years from the modified Horvitz-Thompson (mHT) approach (grey bands and lines), the fixed-effect, model-based

approach (FE model), and the temporal model-based approach (TS model). Error bars are 90% confidence intervals

for mHT and 90% credible intervals for the TS and FE models.

https://doi.org/10.1371/journal.pone.0190706.g003
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intercepts to allow variability in the number of animal groups in each of the strata. Model-

based approaches, particularly those with random effects as we illustrate here, can expand the

applicability and inference space of design-based estimators (e.g., Royle and Kéry [30]).

With the mHT approach, sightability model parameters are estimated using only the detec-

tion/non-detection data. We originally thought that there might be some information in the

detection-only data that could be used to inform sightability model parameters (e.g., informa-

tion about the marginal distribution of visual obstruction), and that joint models (e.g., Eq 4)

might lead to improved precision for these parameters. We found that estimates of sightability

model parameters were sensitive to the amount of detection-only data, but also that estimates

became unreliable as additional detection-only data were included in the analysis. Our alterna-

tive hierarchical model formulation, fit using a two-step approach, allows sightability model

parameters to be informed only by the detection/non-detection data, similar to the mHT

approach.

In the joint hierarchical modeling approach of Fieberg et al. [8], we generated one or more

long Markov Chains, whereas in the two-step approach, we generated several shorter chains,

each with a different set of sightability model parameters in step [3]. The two-step modeling

approach substantially increased the computational burden required to fit these models (e.g.,

increased runtime by almost an order of magnitude). There may be ways to make model fitting

more efficient. Step [3] requires a burn-in for each new value of F(s). It might be possible to get

better starting values to reduce the burn-in requirement, such as by initially running a longer

chain with F(1) set to posterior means of [F|Z], then using posterior means from [Θ|Y, F(1)] as

starting values for subsequent model runs. Or, a smaller number of dispersed F(s) values could

be chosen (using quantiles of [F|Z]), with samples from [Θ|Y, F(s)] properly weighted when

estimating [Θ, F|Y, Z] in step [4]. The most efficient approach would be to build our own

MCMC sampler. However, most ecologists that fit models in a Bayesian framework do so

using Bayesian software (e.g., WinBugs, JAGS, or Stan; see preface of Kéry and Royle [1]). The

advantages of the two-step approach are that it will likely be easier for most ecologists to adapt

to their own applications, and the use of a consistent software platform (e.g., JAGS) may allow

for better cross-study comparisons.

In addition to the increased computational load, a potential shortcoming in how we applied

our two-step approach is that s = 75 may be too small to adequately capture the variability in

[F|Z]. Ideally, we would have used a much larger value of s, and saved only the last iteration in

step [3]. This would have increased runtime further, but would reduce Monte Carlo Error in

our estimates of [Θ|Y, Z] by more closely mimicking a custom built MCMC algorithm.

It is possible that the sensitivity to the amount of detection-only data is related in some way

to prior distributions and/or also the need to specify a distribution for xh,i,j,t for both observed

and unobserved moose groups. Lele et al. [31] developed “data cloning” techniques to evaluate

model identifiability and to implement frequentist estimators using Bayesian software. These

approaches work by making many copies of the data (to swamp out any information coming

from the prior distributions), with post-hoc adjustments to account for the effect of data clon-

ing on variance estimators. Initially, we explored the possibility of fitting the original hierarchi-

cal model, as in Fieberg et al. [8], using JAGS with a “partial data cloning” approach in which

we made multiple copies of (only) the detection/non-detection data. This approach also led to

robust abundance estimators, as sightability model parameters were then effectively informed

using only the detection/non-detection data. However, it was not readily apparent how to

adjust variances post-hoc to account for the inflated sample size.

In summary, we have developed a robust model-based approach that allows us to increase

the precision and reduce the interannual variability of population abundance estimates from

multiyear detection-only surveys when combined with a set of detection/non-detection data.

Time series sightability modeling of animal populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0190706 January 12, 2018 13 / 16

https://doi.org/10.1371/journal.pone.0190706


In future work, we hope to develop spatially-explicit models for animal abundance, by incor-

porating plot-specific landscape characteristics such as habitat diversity, snow depth, or forage

availability that might affect animal distribution and abundance (e.g., Michaud et al. [32]).

Supporting information

S1 Fig. Example JAGS traceplot. Example traceplot for the Eq (3) (e.g., β0ψ, β1ψ, . . ., β5ψ)

parameters in the temporal model-based approach (TS model) run with 2 chains, 4000

MCMC samples, no thinning, and no burn-in. For this plot, MCMC samples were generated

with sightability model parameters fixed at b̂0g ¼ 0:33 and b̂1g ¼ � 0:99.

(TIFF)

S2 Fig. Distribution of λh,t by year and stratum. Median and 90% quantiles of the posterior

distributions of λh,t for each stratum h (top to bottom panels) and year t from the fixed-effect,

hierarchical model-based estimator (FE model) and the temporal hierarchial model-based esti-

mator (TS model). In the temporal model-based estimator approach, λh,t were modeled with

exchangeable random effects. Plots were stratified based on expected moose density (Stratum

1:� 7 moose km-2; Stratum 2: 8-20 moose km-2; Stratum 3:� 21 moose km-2).

(TIFF)

S3 Fig. Distribution of mean ψh,t by year and stratum. Median and 90% quantiles of the pos-

terior distributions of mean ψh,t (i.e., m
c

h;t) for each stratum h (top to bottom panels) and year t
from the fixed-effect, hierarchical model-based estimator (FE model) and the temporal hierar-

chial model-based estimator (TS model). In the temporal model-based estimator approach, ψh,

t were modeled with a natural cubic regression spline with stratum-specific intercepts. Plots

were stratified based on expected moose density (Stratum 1:� 7 moose km-2; Stratum 2: 8-20

moose km-2; Stratum 3:� 21 moose km-2).

(TIFF)
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