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Abstract

Traffic congestion brings not only delay and inconvenience, but other associated national

concerns, such as greenhouse gases, air pollutants, road safety issues and risks. Identifica-

tion, measurement, tracking, and control of urban recurrent congestion are vital for building

a livable and smart community. A considerable amount of works has made contributions to

tackle the problem. Several methods, such as time-based approaches and level of service,

can be effective for characterizing congestion on urban streets. However, studies with sys-

temic perspectives have been minor in congestion quantification. Resilience, on the other

hand, is an emerging concept that focuses on comprehensive systemic performance and

characterizes the ability of a system to cope with disturbance and to recover its functionality.

In this paper, we symbolized recurrent congestion as internal disturbance and proposed a

modified metric inspired by the well-applied “R4” resilience-triangle framework. We con-

structed the metric with generic dimensions from both resilience engineering and transport

science to quantify recurrent congestion based on spatial-temporal traffic patterns and

made the comparison with other two approaches in freeway and signal-controlled arterial

cases. Results showed that the metric can effectively capture congestion patterns in the

study area and provides a quantitative benchmark for comparison. Also, it suggested not

only a good comparative performance in measuring strength of proposed metric, but also its

capability of considering the discharging process in congestion. The sensitivity tests showed

that proposed metric possesses robustness against parameter perturbation in Robustness

Range (RR), but the number of identified congestion patterns can be influenced by the exis-

tence of �. In addition, the Elasticity Threshold (ET) and the spatial dimension of cell-based

platform differ the congestion results significantly on both the detected number and intensity.

By tackling this conventional problem with emerging concept, our metric provides a systemic

alternative approach and enriches the toolbox for congestion assessment. Future work will

be conducted on a larger scale with multiplex scenarios in various traffic conditions.
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Introduction

Continuous growth of motor vehicles has made urban congestion become a serious national

problem, one which has been receiving considerable attention from engineers, planners,

researchers, and policymakers. The congestion issue in urban areas has always intertwined

with other concerns which significantly affect our quality of life, such as air quality, urban

noise, energy use, road safety and economic growth [1]. Traditionally, congestion can be

categorized as recurrent and non-recurrent (incident-based). Apart from the latter, recurrent

congestion influence road operation in a significant way and contribute to a large portion of

urban traffic delay [2, 3] and its quantitative characterization has always been important for

managing traffic in the urban context.

Studies about quantifying congestion abound, by and large, in literature as people attempted

difference approaches to address it. For instance, measures with statistical perspectives were

investigated by Federal Highway Administration. Lindley [4] promoted and studied the effec-

tiveness of potential solutions to congestion. The statistical analysis indicates that the demand

reduction strategies should be effective when looking for potential solutions. The study provides

a first cut at estimating cost and congestion reduction potential giving available options. More-

over, Highway Performance Monitoring System (HPMS) [5] provided a solid database for

statistical analysis of congestion. The work also estimates an aggregated impact of several tech-

niques for reducing freeway congestion. D’abadie and Ehrlich [6] discussed various approaches

for quantifying congestion and their effectiveness. They also compared two measures of conges-

tion (distance-based and time-based) to describe the magnitude of congestion in a case study of

New Jersey counties. The results showed that the time-based approach is more likely to have a

high impact as it effectively provides a different perception of congestion and also a stronger

guidance on major issue identification. Also, Milojevic and Rakocevic [7] proposed an algo-

rithm, VANET, to enable vehicles in the network to be aware of the level of traffic congestion in

a distributed way. The work tackles the congestion issue by enhancing the vehicle information

communication to prevent early-form congestion and provides overall knowledge about con-

gestion to drivers. On the other hand, Armah et al [8] attempted to study congestion and one of

its side effects, air pollution, with a systemic approach. They provided overall systemic thinking

flowcharts on urban congestion issue. But the assessment was largely qualitative. Kerner et al

[9–11] conducted a series of deep investigation on bottleneck congestion and proposed a three-

phase traffic theory for controlling and tracking spatial-temporal congestion in highway traffic

patterns. There are many others and readers can refer to an incomplete list includes: [12–15].

With such ample options of various methods and approaches, an investigation emphasized on

comprehensive systemic perspective is still missing for quantitative congestion assessment.

The concept of resilience originated in engineering mechanics, which can be retrospected

back to the early 19th Century [16] and currently found in a wide range of areas [17] including

engineering systems [18], ecology [19], psychology [20, 21], social science [22] and so forth.

Even though the concept is still struggling for reaching an agreed definition [23], it is most

commonly described as the ability of a system to cope with disturbance and recover its func-

tionality afterwards [24]. In this way, Bruneau et al [25–27] proposed a quantitative framework

to assess system resilience with “Resilience-Triangle” based on the level of functionality perfor-

mance, and this is the so-called “R4” framework (Robustness, Redundancy, Resourcefulness,

and Rapidity). They argued that resilience loss of system functionality can be assessed by calcu-

lating the area of the triangle on time-series performance. A large area of triangle denotes a

less resilient system functionality. For congestion occurred in traffic flow it has the similar

preference. However, some of its fundamental dimensions should be adjusted for traffic con-

gestion studies.

A resilience-oriented approach for assessing congestion
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A key differentiation with previous proposals is that the quantification of congestion was

addressed, in this paper, using a new-build resilience-based metric that consists multiple

dimensions and combined with emerging concept to provide a novel solution for the conven-

tional issue. Our criterion bases on rethinking an urban highway as an integrated system and

traffic quantities as its functionality indications. Hence, we examined and improved the “R4”

framework, and adopted the “triangle” idea to quantify the congestion with a resilience-ori-

ented approach in spatial-temporal performance.

Materials and methods

Data descriptions and conceptual discrete platform

All three datasets used for numerical studies were collected by the Next Generation Simulation

Programme from the United States Federal Highway Administration [28]. The datasets con-

tain detailed time-resolution vehicle trajectory information, including trajectory location,

time, speed, acceleration, etc. Here, traffic in the first dataset was monitored on eastbound

Interstate 80 (I-80) in the San Francisco Bay area near Emeryville, CA, on 13 April 2005. The

study area is 1650 feet (approx. 503m) long and comprises six freeway lanes that include one

heavy-goods vehicle (HGV) lane and one on-ramp (Fig 1A). The full dataset covers a span of

45 minutes in total and is segmented into three 15-minute subsets, i.e., 16:00 p.m. to 16:15

p.m., 17:00 p.m. to 17:15 p.m., and 17:15 p.m. to 17:30 p.m.

The vehicle trajectory data from the second dataset was collected on southbound of freeway

US-101, also known as the Hollywood Freeway in Los Angeles, on 15 June 2005. The study

area is approximately 2100 ft (approx. 640m) in length and consists of five mainline lanes

throughout the section and one auxiliary lane as lane 6 (Fig 1B). A total of 45 minutes of data

from morning peak is segmented as well into three 15-minute periods: 7:50 a.m. to 8:05 a.m.;

8:05 a.m. to 8:20 a.m.; and 8:20 a.m. to 8:35 a.m. The first two freeway cases all contain various

vehicle types, and because normal traffic in the HGV lane and the ramps differ from that

found in the other lanes, they were eliminated from our consideration. More details of these

two study areas can be found in [29, 30].

Having first two cases selected from freeway vehicle data, the third dataset was from a sec-

tion of an urban arterial. The data was collected on Lankershim Boulevard (LB) in the Univer-

sal City neighborhood of Los Angeles, CA, on 16 June 2005. This arterial area covers three

signalized junctions and is about 1600 ft (approx. 500m) in length, which contains three to

four lanes in dual-way directions (Fig 1C). The observation period was 30 minutes in total:

8:30 a.m. to 8:45 a.m. and 8:45 a.m. to 9:00 a.m during morning peak hours. The data contains

various vehicle types and different lane layout and there is no special vehicle or lane types

excluded for analysis of this case, whereas the main portion of traffic was still passenger vehi-

cles [31]. Table 1 summarizes the basic information about all datasets. Because we would like

to capture the steady and comprehensive patterns and also to avoid inactive cells in spatial-

temporal profiles, the first and last 150 seconds in the temporal dimension and 100 feet

(approx. 30.5m) in the spatial dimension were removed.

In Fig 1D, development of the conceptual platform begins with establishing the discrete

cells. The study areas were depicted into cells with dimensions of 4 seconds × 70 feet (approx.

21.34m). We calibrated dimensions to ensure an efficient discretization. If, however, the cell is

too small, then the number of vehicles in each cell would not be representative. Likewise, the

propagation pattern of congestion would have been ambiguous if those cells were too large

(see details in sensitivity test section). Because the spatial-related dimensions of raw data for

this study were expressed using “foot” or “feet (ft.)” as the unit of measurement, our results

A resilience-oriented approach for assessing congestion
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applied the same unit to keep consistency. But where possible, those values have been con-

verted into the International System of Units.

Resilience-oriented approach

The performance of a system decreases after a shock, and if possible, recovers within a certain

time. This can be observed in many cases, like formation and dissolution of congestion in traf-

fic. Accordingly, the “R4” resilience-triangle metric [25] was proposed upon a very straightfor-

ward proxy: a system’s resilience loss is the loss of performance. And it is defined by (a) the

draw-down line (the downturn section which starts from performance prior to shock to lowest

level after the shock), (b) the draw-up line (the recovery section), and (c) the time period

required for whole process (from the head of draw-down line to the end of draw-up line). A

Fig 1. The study areas (not in scale) and discrete platform. Aerial view of lane configuration of (A) I-80; (B) US-101;

and (C) Lankershim Boulevard, LB. (D) Conceptual cells constructed for spatial-temporal analysis.

https://doi.org/10.1371/journal.pone.0190616.g001

A resilience-oriented approach for assessing congestion

PLOS ONE | https://doi.org/10.1371/journal.pone.0190616 January 2, 2018 4 / 22

https://doi.org/10.1371/journal.pone.0190616.g001
https://doi.org/10.1371/journal.pone.0190616


pair of down-and-up lines forms a draw-down and draw-up cycle. Thereby, it is convincing

that using triangle’s area to represent the resilience loss is sensible (area of triangle ΔABD in

Fig 2). Nevertheless, we split this triangle into two segments, Resilience Loss (RL) and Resil-

ience Gain (RG), since it would be more sensible to understand downturn and upturn sepa-

rately. In this way, congestion can then be effectively represented by RL in time-series traffic

performance.

Even the “R4” framework set a good paradigm to characterize system resilience, it over-

looked the effects of different recovery paths and other essential fundamental dimensions. It

is commonly held that there are four possible recovery paths that a system performance could

behave: adaptive recovery, just recovery, insufficient recovery, and collapse. Hence we improve

the framework and establish novel dimensions for congestion assessment as follows.

Table 1. Brief summary of datasets [29–31].

ID & Type Time span Direction Length, vehicle, and lane types

I-80

Freeway

45 mins

16:00 p.m. to 16:15 p.m.

(working hours)

17:00 p.m. to 17:30 p.m.

(evening peak hours)

Eastbound 1650 ft

Four passenger-vehicle lanes with one HGVs and one ramp lanes

Freeway lanes

WITHOUT signal control

US-101

Freeway

45 mins

7:50 a.m. to 8:35 a.m.

(morning peak hours)

Southbound 2100 ft

Five passenger-vehicle lanes and one ramp lane

Freeway lanes

WITHOUT signal control

Lankershim

Boulevard (LB)

Urban street

30 mins

8:30 a.m. to 9:00 a.m.

(morning peak hours)

Dual way 1600 ft

Three to four main lanes for mixed Passenger vehicles,

Trucks, and Motorcycles

Three to six lanes at junctions

WITH signal control junctions

https://doi.org/10.1371/journal.pone.0190616.t001

Fig 2. Typical draw-down and draw-up cycle. In this case, external shock occurs at time tpre and the performance

recovers at tpost. Time-series performance is able to have several cycles as the process could be dynamic. The grey band

is the Robustness Range, which can be dynamic and adaptive in each cycle as if in P0
ðtÞ. ΔABD represents the

“Resilience-triangle”. Colour-pattern shades denote the areas we consider in our quantification metric and

fundamental dimensions are defined accordingly.

https://doi.org/10.1371/journal.pone.0190616.g002
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Given that:

• Function P(t) represents performance behavior of just recovery, which is the normal case for

a system performance. And P0
ðtÞ is another possible recovery path with adaptive recovery.

• The head and the tail of draw-down section are expressed as tpre (pre-event) and tevent respec-

tively, and the successive draw-up terminates at time tpost (post-event).

We define the following fundamental dimensions in terms of congestion:

Elasticity Threshold (ET): Similar to the concept of elasticity in material mechanics, traffic

performance should have a threshold at which the self-organizing ability and free-flow state

start to deteriorate. Variety of studies suggest the existence of phase transition in traffic status

[32–34]. We assume that losing a mild amount of elasticity will result in performance being

above the ET. Nevertheless, with an overdose of elasticity loss, the performance would fall

below ET, then extra effort is needed to push it back into the region of elasticity. In this study,

the values of ET were determined by critical density in traffic data (details on the determina-

tion of ET can be found in the following sections).

Robustness Range (RR): Of particular note is the fact that a certain range of robustness

ubiquitously exists (e.g., blood pressure is always monitored as acceptable within a certain

range). General system performance naturally varies in time with tolerable fluctuations.

Because the target is recurrent congestion, we need to identify the extent to which a decrement

in performance can be considered as congestion rather than a random oscillation of the traffic.

In principle, we assume the drop or raise, as long as it is in RR, are not effective in our quantifi-

cation consideration. The width of the range is defined as 1/10 of ET in the analysis. Unlike ET

fixed for entire time series, one should note that the RR in different cycles could be dynami-

cally updated.

Congestion Magnitude (Cm): This is a straightforward dimension that indicates the extent

to which recurrent congestion occurs. Of note is that half of RR should be ruled out from the

calculation of Cm since only the amount of drop outside the RR would be effective for quantifi-

cation purpose. Thus the effective draw-down starts at t0pre.

Cm ¼ Pðt0preÞ � Pðtevent Þ ð1Þ

Congestion Time (Ct): defined as ratio of congestion formation time to total cycle time.

Similarly, because of the effect of RR the values of Ct should be adjusted, from t0pre to tevent.

Ct ¼
tevent � t0pre
t0post � t0pre

ð2Þ

Recovery Scenario (Rs): or the recovery ability, is the dimension that illustrates the recovery

path in each draw-down and draw-up cycle. In order to differentiate major congestion (insuf-

ficient recovery or collapse, i.e., the congestion is discharged partially or never discharged)

and other congestion (just and adaptive recovery, i.e., congestion is mitigated and discharged

completely), we define the sign of Rs: Negative (-) for insufficient recovery or collapse, and pos-

itive (+) for just and adaptive recovery. A large positive Rs means P(tpost) > P(tpre), which denotes

a severe congestion occurred but with a sufficient discharging process after its formation.

Rs ¼

1 if PðtpostÞ⩾PðtpreÞ

� 1 if PðtpostÞ < PðtpreÞ

8
<

:
ð3Þ

A resilience-oriented approach for assessing congestion
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Resistance coefficient (Re): It is a quantity that characterizes the input effort for resisting

the downturn tendency and is strongly associated with ET, i.e., if the minimum level drops

below ET, Re has a value greater than zero because a large amount of effort would be input to

resist the drop and more effort would be needed to restore performance, and let Re equals to

zero when the minimum level is above the ET, that is, no phase transition occurs. Thus deter-

mination of Re is positively related to the minimum level of performance P(tevent). One may note

that Re has no interaction with the draw-up section as it is mainly described as a dimension

from the draw-down section. This is because the effective resistance naturally happens during

downturn process, lasting until performance reaches the minimum level, then it would be

ready to recover after it.

Re ¼

ET � PðteventÞ if PðteventÞ < ET

0 if Pðtevent Þ > ET

8
<

:
ð4Þ

As mentioned, ΔABD is split into RL and RG (Fig 2). General speaking, RL represents the

cumulative effect of resilience loss in drawdown process (in our case, drawdown process

denotes the formation process of congestion, because congestion is a type of performance loss

in terms of traffic condition). Thus, by approximating the shaded areas as triangles the Con-

gestion Index (CI) of a time-dependent observation can be expressed as:

Congestion Index ¼
Cm � Ct

2
þ Re

� �

� Rs ð5Þ

The rationale of Eq 5 is as follows: A recurrent congestion pattern can be depicted with two

portions. One is the cumulative loss in its formation process, which is denoted as (Cm × Ct)/2,

and another is the jamming severity contributed by phase transition, which is Re. What’s next,

these two portions are all associated with dynamic and repeating form-and-resolve process

(draw-down and draw-up cycles). Thus the term Rs is brought into play to depict various

recovery behavior in discharging process.

Approaches based on travel time and volume-to-capacity ratio

Even there is no common definition of traffic congestion [35], many approaches and measures

have been developed to scale its magnitude and intensity. Traditionally, two approaches are

particularly popular and well-applied: travel time based and volume-to-capacity (V/C ratio)

based. Two measures for metric comparison purpose are selected: Relative Congestion Index

(RCI) and Level of Service (LoS).

RCI is conventionally defined as the ratio of delay time (DT) and free-flow travel time (Tff),
which can be defined as [36]:

RCI ¼
DT
Tff
¼
Tac � Tff

Tff
ð6Þ

where Tac is the actual travel time needed. The RCI of zero denotes a very low level of conges-

tion while values greater than two show significant congested states. Because our analysis is

based on spatial-mean performance of the traffic, the Tac and Tff can be obtained also with spa-

tial-mean quantities as:

Tac ¼
Spatial length

Spatial � mean speed
ð7Þ

A resilience-oriented approach for assessing congestion
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and

Tff ¼
Spatial length

Free � flow speed ðvff Þ
ð8Þ

LoS approach is a more interpretable and straightforward measure to represent various

static traffic states. As adopted in Highway Capacity Manual (HCM) [37], this method has

become extremely popular in practice, especially for non-technical users [38]. The LoS can be

determined by various traffic quantities, such as density, speed, V/C and maximum service

flow rate. Rather than assigning quantitative values, the LoS assesses traffic conditions based

on scale intervals (Table 2). The V/C ratio can be calculated as:

V=C ¼
Spatial � mean volume

Nmax
ð9Þ

where, Nmax is the maximum number of vehicles that one cell is able to contain, which repre-

sents the capacity. This term can be approximated by assuming an average vehicle length occu-

pancy. We write:

Nmax ¼
Lcell

Loccupancy
� Nlanes ð10Þ

Lcell is the spatial length of cells, Nlanes is the number of lanes and Loccupancy is the average

vehicle length occupancy and it comprises two parts: vehicle length Lv and safety distance Ls.
Because it is normally assumed that Lv is about 14 ft. (approx. 4.27m) [39], we assume Loccupancy
is about 15 ft. (approx. 4.57m). The Nlanes is four in I-80 and five in US-101, recall that the

HGV and ramp lanes are not considered, and we take 4.5 for the number of lanes in both

northbound and southbound direction on LB to average its various lane layout through sec-

tions and at junctions. Once the V/C ratio is obtained, the LoS can be determined according to

Table 2.

Although both measures are widely adopted in various studies, they unavoidably possess

some weaknesses and disadvantages [38]: Firstly, for RCI approach it has been argued that the

ratio is limited and heavily relied on particular road type and facility. Secondly, for LoS approach,

it cannot provide a continuous range of values to represent the intensity of congestion.

Results

In this section, the proposed metric is implemented and tested in empirical studies. Compari-

sons of measuring strength and metric sensitivity are investigated as well. Having all data

descriptions, testbed setup and methodological frameworks constructed and outlined, next

Table 2. Level of Service (LoS) and its corresponding V/C ratio and traffic states [37].

LoS class Traffic state and condition V/C ratio

A Free flow 0*0.60

B Stable flow with unaffected speed 0.61*0.70

C Stable flow but speed is affected 0.71*0.80

D High-density but stable flow 0.81*0.90

E Traffic volume near or at capacity level with low speed 0.91*1.00

F Breakdown flow >1.00

https://doi.org/10.1371/journal.pone.0190616.t002
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following step act as a guideline for readers to well understand the entire experimental proce-

dure and to facilitate further analysis.

Step 1. Understanding the traffic data: An unambiguous and fundamental properties of

data must be obtained, such as critical density, jam density, and free-flow speed.

Step 2. Selecting appropriate Key Performance Indicator (KPI) and preparing the spa-

tial-temporal profiles: The resilience-oriented approach is performance-based and an appro-

priate KPI is needed for indicating various performance levels. Also, the spatial-temporal

traffic patterns are obtained for exploratory analysis.

Step 3. Denoising, normalizing and identifying filtered draw-down and draw-up cycles:

In this step, we need to de-noise and normalize the selected KPI first and then identify reason-

able forming-and-discharging congestion cycles.

Step 4. Estimating values for Elasticity Threshold (ET) and Robustness Range (RR):

These parameters need to be set next since many elemental functions in proposed metric rely

on these two parameters.

Step 5. Implementing metrics and further analysis: Calculation and measuring results are

conducted and further sensitivity tests analyses are presented.

Jam density, critical density and free-flow speed

With discrete cells conceptualized on the study area, the first-order traffic quantities, density,

speed and flow, can then be determined. The density k(i,j) within each cell C(i,j) was computed

as k(i,j) = n(i,j)/l(i,j), where n(i,j) denotes the number of vehicles in cell C(i,j) at time i at j location,

and the l(i,j) is the spatial length of the cell, which in this case is a fixed term of 70 ft (approx.

21.34m).

The dataset also contains speed information at each trajectory point. Thus the v(i,j) was

estimated by taking the average speed of all trajectory points in C(i,j). The flow in that cell was

calculated as the product of the speed and the density q(i,j) = k(i,j) × v(i,j). In Fig 3A1, kjam is

roughly estimated as 0.30 veh/ft for I-80. To verify this, we applied a linear regression model to

its density-speed plot (Fig 3B1) and found that the intersection with x-axis accredits the esti-

mation of jam density. In this way, the jam density for US-101 case can be approximated as

0.33 veh/ft, and 0.30 veh/ft for both northbound and southbound in LB case.

The critical density, kcritical, can be determined in each density-flow relationship plots as

well. It lies on the point when traffic state transforms from free-flow phase to congestion phase

(Let us only consider traditional two-phase traffic theory here for simplification. The three-

phase traffic theory [40] will not be discussed). Therefore, it was estimated by finding the

crossing point of linear approximation in free-flow phase and upper envelope in congestion

phase while keeping a high data containment. In addition, the slope of this linear approxima-

tion in free-flow phase is the free-flow speed vff, or forward wave speed. This quantity can be

verified by the maximum speed fitted in linear regression in the density-speed relationship.

Thus, the kcritical and vff were estimated as 0.15 veh/ft and 40 ft/s for I-80, 0.20 veh/ft and 65 ft/s

for US-101, 0.18 veh/ft and 52 ft/s for both northbound and southbound in LB, respectively.

Key Performance Indicator (KPI) and spatial-temporal density

performance

Next, we need to illustrate overall performance with appropriate measurement. Those mea-

surements identify current performance states of the system and act as indications on how

and where the gaps between current and desired Level of Performance (LoP) [41]. Key Perfor-

mance Indicator (KPI) is a unique or a set of performance measurements which is deliberately

selected for representing LoP [42]. The selection criteria should ensure that (1) selected KPI

A resilience-oriented approach for assessing congestion
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can be tied into the overall study purpose and goals; (2) the KPI should directly reflects the

LoP changes over time; (3) the KPI should allow you to establish measurable tracks for

management.

In our cases, we used aggregated spatial-mean density capacity as KPI. It denotes spatial-

mean capacity of a road section to accommodate traffic, and can be defined as k0
ðiÞ ¼ kjam � �kðiÞ,

where �kðiÞ is the spatial-mean density of study area at time i. We selected this density capacity

as KPI for recurrent congestion as it is a direct, measurable and representative indicator for

traffic, i.e., drops of this KPI indicate system performance loss as decreasing density capacity

represents formation of congestion, which has consistent logic with proposed metric.

Once the KPI is determined, analysis of spatial-temporal patterns can then be conducted

accordingly. This technique of analysis is not uncommon in congestion studies, as it is always

useful to identify the congestion and offers a direct visualization of traffic conditions within

the study area. Fig 4 illustrates the process from construction of spatial-temporal profile to KPI

conversion in I-80 case. With clear visual indication, the reconstructed spatial-temporal map

enables one to identify jamming patterns quickly and facilitate the further analysis.

Congestion Index (CI)

We implement and test all metrics on their measuring strength and analyze their comparative

performance in this section. The “SGOLAY” algorithm in MATLAB package [43] was applied

to smooth and de-noise KPI since vehicle trajectory data usually collected with unavoidable

background noise. Prior to identification of draw-down and draw-up cycles, it is better to nor-

malize the KPI to set up a uniform scale so that it falls in the range [0, 1]. Here, normalized

KPI was achieved by finding simple statistical normalization of spatial-mean density capacity

Fig 3. Density-flow and density-speed relationship of fundamental diagrams. (A) Density-flow relationship. (B) Density-speed relationship. (1) Case

I-80. (2) Case US-101. (3) Northbound of LB, and (4) Southbound of LB. Red line: linear regression model; Red dotted line: linear approximation in

free-flow phase with a slope as free-flow speed, which can also be determined by maximum speed in density-speed plots. Black dotted line: envelopes

constructed for data containment of more than 95%, and the vertical black dotted line is the location of estimated critical density.

https://doi.org/10.1371/journal.pone.0190616.g003
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at each time step, k0
ðiÞ, to the maximum density capacity, k0max. Thus, the normalized KPI of

study area at time i can be realized as k0
ðiÞ=k

0
max.

The identification of draw-down and draw-up cycles was then conducted according to

studies [44, 45] of �−filtering algorithm, which detects the significance of upturns and down-

turns by a constant threshold of α% on its magnitude. The reasons for performing such filter-

ing identification process before metric implementation are as follows: (1) The proposed

metric is constructed based on draw-down and draw-up cycles, therefore, one should ensure

all the cycles identified are representative for each recurrent congestion pattern in spatial-tem-

poral profile; (2) Without �− filtering process, it would yield pure draw-downs and draw-ups

(every single fluctuation), which is obviously unnecessary for those insignificant oscillations to

participate in congestion measurement. However, it still requires the detection of pure downs

and ups before conducting �− filter. The α in �− filtering algorithm was set as 50% since we

were only interested in significant congestion (i.e., a draw-down/draw-up will only be recog-

nized if its magnitude is more than half of its preceding draw-up/draw-down. A simplified

pseudocode is given in S1 Code). Taking I-80 as an illustrative example, the identification pro-

cess returned 18 recognizable draw-down and draw-up cycles, which indicates 18 congestion

patterns were detected.

The initial values of Elasticity Threshold and Robustness Range were determined by critical

density kcritical, because it is the threshold where phase transition occurs. But for the normal-

ized KPI, those two parameters also need to be normalized to keep consistency on the scale.

Fig 4. I-80 spatial-temporal pattern and KPI. (A) Full range of spatial-temporal density profile, which contains a

45-minutes time gap in the middle with I-80 16:00-16:15 before the gap and I-80 17:00-17:30 after it. (B) Aggregated

spatial-mean density plot. (C) The KPI density capacity, which should be noted that it forms a mirror image with

density performance.

https://doi.org/10.1371/journal.pone.0190616.g004
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Recall that the kcritical for I-80 case was determined as 0.15 veh/ft, the density capacity at this

threshold k0 = kjam − kcritical = 0.27 − 0.15 = 0.12 veh/ft, and this critical capacity value is then

normalized as ET ¼ k0=k0max ¼ 0:12=0:18 ¼ 0:67 (k0max in I-80 is 0.18 veh/ft). And RR was

assumed as 10% of ET. Hereafter, ET and RR in US-101 and LB can be determined accordingly

and all metrics can be implemented.

One numeric example of how to calculate CI with proposed metric is given for a step-by-

step demonstration in Fig 5. In this illustration, we have ET given as 0.2. All key points for

computing each elemental functions in proposed metric are also numerically presented.

Therefore, we have:

1. ET is given as 0.2. Therefore, RR = 1/10 × 0.2 = 0.02.

2. Congestion Magnitude Cm ¼ Pðt0preÞ � Pðtevent Þ ¼ 0:39 � 0:1 ¼ 0:29

3. Congestion Time Ct ¼ ðtevent � t0preÞ=ðt
0
post � t0preÞ ¼ ð2 � 1:5Þ=ð3 � 1:5Þ ¼ 0:33

4. Recovery Scenario Because P(tpost) > P(tpre). Then the Recovery Scenario Rs = 1 with a posi-

tive sign “+”.

5. Resistance Coefficient Because ET> P(tevent), Re = 0.2 − 0.1 = 0.1

6. Overall congestion index for this example cycle is calculated as

CI ¼ 0:29�0:33

2
þ 0:1

� �
� ðþ1Þ ¼ þ0:148

Following the normalization illustrated in Fig 6A and recalling Eqs 6 and 9, resultant CI,

RCI and LoS for I-80 are shown in Fig 6B–6D with their statistics in Table 3. By comparing

with the ground-truth spatial-temporal patterns (Fig 6E), it can be seen that all the significant

congestion patterns were captured by CI metric. In order to represent a complete down-

and-up cycle and also to capture the local maxima in RCI and LoS results, all the congestion

indexes were plotted at tevent in each cycle. In first 200 time steps, there is no severe congestion

occurred, as three notable patterns are all indicated as CI less than 0.2, RCI less than 2 and LoS

Fig 5. Illustrative example. Demonstration of an adaptive-recovery case for Congestion Index (CI) calculation.

https://doi.org/10.1371/journal.pone.0190616.g005
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in level A. Nevertheless, at around 800th time steps, several significant congestions occurred as

indexes quickly turn to negative readings with increasing intensity over 0.2. It indicates that

the traffic condition in latter observation of I-80 (17:00 p.m. to 17:30 p.m.) was far more con-

gested than former 15 minutes (16:00 p.m. to 16:15 p.m.). Moreover, successive and large neg-

ative CI denote insufficient discharging processes in these congestion cycles, which further

enhance our interpretation of their relative severity.

Comparing CI with RCI and LoS at the local maximum at tevent in each cycle, we found the

intensity of CI, RCI and LoS have similar indications. What’s different by comparing with lat-

ter two metrics is that CI not only provides relative intensity differences among congestion

patterns, but also reasonably amplify the scales to differentiate major and minor congestion.

For instance, there are three successive jam patterns occurred around 700th time slot, and CI

Fig 6. Congestion indexes of I-80. Congestion quantification results of all three metrics compare with the ground-truth

pattern. (A) Normalized KPI with ET = 0.67. (B) CI. (C) RCI. (D) LoS. (E) Ground-truth pattern. The positive and

negative signs denote different Rs in down-and-up cycles, which provide dynamic information about congestion

recovery.

https://doi.org/10.1371/journal.pone.0190616.g006
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detected them as minor patterns with small values while RCI and LoS assigned relatively high

values to them (yet still quantified as un-congested flow by RCI and LoS). A rule-of-thumb

judging criterion of CI can be made—that is—patterns will be considered as major congestion

when the absolute value of their CI is greater than 0.2.

Most importantly, unlike traditional congestion measure methods, CI metric can also indi-

cate the situation of post-event recovery as well. For instance, those short but negative indica-

tions are of particular interest. They indicate small-scale congestion with an insufficient

discharging outcome. In other words, the I-80 freeway did not fully recover or completely dis-

solve the previous congestion queue before next one occurred at that point. Such implication

could be hardly identified on spatial-temporal patterns by visual judgment and other conven-

tional metrics, like RCI and LoS. Also, those small but positive indications illustrate immediate

congestion formations with quick discharge. Together, they might be prefigured as signs for

coming massive jams.

Fig 7 demonstrates the CI results for US-101, northbound and southbound of LB cases.

Tables 4 and 5 contain the numerical measuring results of all metrics. As illustrated in Fig 7A

and 7B, the morning peak-hour traffic was somehow less congested than expected. It may be

due to the fact that southbound of US-101 in morning is not in high traffic demand (away

from the attractor such as city center). Even so, CI metric still performs well in this case. In

Table 4, the absolute intensity of its quantified congestion, again, have similar variations as the

outcomes obtained by other two. However, the only difference is that several congestion pat-

terns in CI were not as significant as quantified in RCI and LoS. This could be the result of the

observations that US-101 was less saturated and discharging processes of its congestion pat-

terns were rather quick.

The results from LB cases show interesting features (Fig 7C–7F). Because it is a section of

an urban arterial with signal-controlled junctions and mixed groups of road users, regularized

jam patterns can be clearly spotted. One may also notice the directions of propagation waves

Table 3. The quantification results for 18 draw-down and draw-up cycles and congestion evaluation of all three

metrics. The values for RCI and LoS are obtained by finding local maximum at tevent.

No. Rs Time slot at tevent CI RCI V/C (LoS)

1 - 49 -0.011 0.321 0.391

2 + 62 0.003 0.618 0.463

3 + 93 0.032 1.248 0.565

4 + 126 0.063 1.534 0.573

5 + 165 0.076 1.600 0.613

6 - 657 -0.001 0.580 0.477

7 + 692 0.025 1.007 0.512

8 + 718 0.005 1.747 0.589

9 + 748 0.027 1.660 0.587

10 + 827 0.398 6.569 0.809

11 - 907 -0.007 0.758 0.477

12 + 929 0.153 2.431 0.656

13 - 955 -0.013 0.629 0.466

14 - 961 -0.009 0.744 0.477

15 - 970 -0.008 0.745 0.485

16 - 1012 -0.204 6.364 0.836

17 - 1051 -0.202 4.501 0.761

18 + 1066 0.199 3.207 0.715

https://doi.org/10.1371/journal.pone.0190616.t003
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on two bounds are distinct. Even so, CI metric showed adequate measuring strength to charac-

terize recurrent and controlled congestion patterns. Overall, the spatial-mean traffic condition

on LB was unsaturated without residual queues. In contrast, RCI performs badly in this case as

the values obtained at local maxima are dramatically high as shown in Table 5. This could be

a result of regularized traffic on this type of road. Signal-controlled junctions signify that the

spatial-mean speed along study area could be extremely small at some time step if most of

the vehicles were stopped by junction signals, and this leads to very high values of Tac in Eq 7.

Since Tff is constant, the RCI could have a very large value when Tac is large, and therefore,

makes the indexes unrepresentative for actual overall traffic condition in the study area. This

exactly proves its shortcoming mentioned in the previous section.

Fig 7. Congestion indexes for US-101 and LB. Results of CI compared with the ground-truth pattern. (A), (C), and (E)

are the ground-truth spatial-temporal profiles for US-101, northbound and southbound of LB. (B), (D), and (F) are

congestion indexes calculated by proposed metric correspondingly.

https://doi.org/10.1371/journal.pone.0190616.g007
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Sensitivity analysis

Sensitivity results of three critical parameters in the metric and different cell size are evaluated

in this subsection. Since the metric heavily rely on the determination of parameters, the sensi-

tivity of �, RR, ET and cell size need to be studied. There are two facets in this analysis as we

Table 4. The quantification results for US-101 using all three metrics. The values for RCI and LoS are obtained by

finding local maximum at tevent.

No. Time slot at tevent CI RCI LoS

1 34 0.008 0.572 0.575 (A)

2 50 -0.007 0.505 0.512 (A)

3 60 0.001 0.594 0.538 (A)

4 87 -0.004 0.420 0.508 (A)

5 115 0.010 0.729 0.544 (A)

6 171 0.129 2.199 0.742 (B)

7 215 -0.008 0.420 0.494 (A)

8 257 0.110 2.078 0.736 (B)

9 317 -0.002 0.606 0.542 (A)

10 360 0.229 3.185 0.793 (B)

11 413 0.010 1.319 0.621 (B)

12 451 0.149 2.586 0.758 (B)

13 501 0.019 1.386 0.647 (B)

14 547 -0.065 2.986 0.789 (B)

15 585 0.029 1.757 0.714 (B)

16 608 -0.012 0.961 0.585 (A)

https://doi.org/10.1371/journal.pone.0190616.t004

Table 5. The quantification results for Lankershim Boulevard (LB). The values for RCI and LoS are obtained by finding local maximum at tevent. 18 recurrent and regu-

larized patterns can be observed in both directions.

Northbound Southbound

No. tevent CI RCI LoS tevent CI RCI LoS

1 44 0.061 26.373 0.533 (A) 44 0.056 22.713 0.595 (A)

2 66 0.071 80.114 0.526 (A) 66 0.062 41.509 0.624 (B)

3 96 0.017 11.861 0.531 (A) 96 0.040 3356.005 0.552 (A)

4 121 0.041 25.501 0.524 (A) 121 0.071 1990.326 0.579 (A)

5 142 0.040 29.713 0.543 (A) 142 0.052 82.635 0.571 (A)

6 167 0.032 39.027 0.548 (A) 167 0.053 199.322 0.574 (A)

7 191 0.035 14.980 0.533 (A) 191 0.085 20.544 0.581 (A)

8 202 0.070 24.187 0.521 (A) 202 0.008 1.146 0.536 (A)

9 217 0.060 31.177 0.552 (A) 217 0.031 8.181 0.567 (A)

10 242 0.078 194.181 0.548 (A) 242 0.066 20.568 0.598 (A)

11 266 0.095 1618.633 0.567 (A) 266 0.054 13.711 0.583 (A)

12 293 0.068 61.873 0.598 (A) 293 0.066 25.947 0.598 (A)

13 318 0.053 74.996 0.610 (B) 318 0.147 1467.761 0.643 (B)

14 341 0.082 23.220 0.576 (A) 341 0.108 36.551 0.629 (B)

15 366 0.086 1226.453 0.552 (A) 366 0.083 29.909 0.614 (B)

16 392 0.052 66.122 0.569 (A) 392 0.027 905.763 0.631 (B)

17 416 0.067 15.108 0.574 (A) 416 0.075 72.630 0.617 (B)

18 445 0.047 26.754 0.586 (A) 445 0.066 998.680 0.574 (A)

https://doi.org/10.1371/journal.pone.0190616.t005
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want to know how variation of these parameters affect (1) the number of congestion cycles

detected, and (2) the measured absolute intensity of congestion.

We tested the � from 0 to 0.6, i.e., from pure draw-down and draw-up to 60% of filtering

threshold. By sorting the absolute values of congestion indexes in ascending order, Fig 8A1–

8A4 illustrate that the number of congestion index is significantly affected by � (as the value

of it increases, the number of identified cycles decreases). However, the scales of the indexes

show low sensitivity to variation once the � is established, especially the major congestion, the

change in � does not significantly alter the detection of those major congestion and their scales

roughly remain stable.

Interestingly when it comes to the test on Elasticity Threshold (ET), results show high sensi-

tivity to small variation of ET (from 0.2 to 0.7). In Fig 8B1–8B4 the difference between major

and minor congestion indexes, in the beginning, is hardly detected, it makes sense since small

Fig 8. Sensitivity analysis on �, ET and RR values. (A) Sensitivity test on �. (B) Test on ET, and (C) Test on RR. (1) Case I-80.

(2) Case US-101. (3) Northbound of LB, and (4) Southbound of LB.

https://doi.org/10.1371/journal.pone.0190616.g008
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ET indicates that no phase transition occurred. And with increasing ET, the difference starts

to be revealed. It verifies that the existence of phase transition is vital in quantification process,

especially for identifying and differentiating major patterns. On the other hand, ET has no

effect on the number of cycles detected.

The overall scale of indexes shows a low sensitivity to the variation of Robustness Range

(RR) from 0 to 0.09 (1/10 of ET) in Fig 8C1–8C4. As can be seen, the measuring strength

of our proposed metric is not dramatically sensitive to RR. But we can also observe different

features from Fig 8C3 and 8C4, the intensity of indexes gradually decreases as RR increases.

This is due to the regularized feature in controlled traffic as all congestion cycles have similar

depth and shape so that increasing amount of RR causes a similar amount of deduction on Cm.

Meanwhile, RR cannot influence the detected number either.

Fig 9 demonstrates the sensitivity results on cell size. From Fig 9A1–9A4 analysis were per-

formed based on changing spatial length but keeping a constant temporal length, and Fig 9B1–

9B4 were, in contrast, subjected to changing temporal length with a constant spatial length.

There is a common pattern throughout all four cases, which indicates that a small dimensional

change of cell size could drastically affect the measuring outcomes on both facets. One can

see that with changes on spatial length as from 4 seconds × 10 feet (approx. 3.05m) to 4 sec-

onds × 150 feet (approx. 45.72m), the absolute intensity of detected congestion were constantly

shifting. From both freeway and arterial cases, we can see that spatial length of cell tends to

have relatively more sensitive leaps on the intensity of CI rather than the number. However, in

Fig 9B1–9B4 all cases show relatively high sensitivity on both number and intensity of indexes

to the variation in temporal length. For instance, only a few cycles can be identified when the

temporal length is 24 seconds in LB cases. This could possibly imply that, with too small cell

size, too many frivolous fluctuation details were captured and they influence the overall mea-

suring outcomes with an unrepresentative number of vehicles in each cell. On the other hand,

some congestion wave would be missed out if the cell size is too large, causing dropping num-

ber of identified congestion cycles. Also, the metric implementation outcome seems to be

more sensitive to the temporal length of cells since the traffic patterns were studied in spatial-

mean along the temporal dimension.

Discussion and conclusion

There are some potential limitations about this metric and the vehicle trajectory data used [46,

47]. Traffic operators should be particularly aware of these limitations in practice.

• Data availability and type, such as dirty and mutilated data, would significantly influence

implementation of the metric. As we found during the tests, inactive cells in spatial-temporal

profile could alter the outline of the spatial-mean density capacity. Such attribute requires a

good data treatment which could limit potential applications of the metric. For example, if

the trajectory data is collected from GPS or other types of onboard mobile sensors, a bad

penetration or sampling rate could destabilize the metric performance.

• The initial implementation of CI metric involves multiple steps and can be potentially com-

plex for non-technical users. However, similar limitations are often solved by a proper built-

in function in tools. We found that the processing time of the whole experiment is heavily

depending on the input data but the processing time of metric per se in a total run is rather

quick.

• Both temporal and spatial coverage of study areas are insufficient, especially considering

the fact that a peak hour usually lasts for longer period of time, and congestion propagation

could also last for longer distance.
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• The type of roads and traffic conditions are limited. The datasets merely cover US freeways

and urban arterials, leading to impossible investigations on other road types or in other

countries. Furthermore, the traffic in US-101 and LB lack saturated conditions, which lead

to a lot of uncertainty on metric compatibility in extreme traffics.

In conclusion, our study addressed the issue of quantifying recurrent congestion based

on spatial-temporal patterns on both urban freeways and streets. We constructed a metric

inspired by the principle of well-applied “R4 resilience-triangle” approach, with the goal of

quantitatively assessing and comparing congestion occurred repeatedly in various temporal

steps. The representativeness of the metric and associated generic dimensions presented a

strong capability for quantification and assessment. Our main conclusions are summarized

below.

Fig 9. Sensitivity analysis on cell size. (A) Sensitivity test on spatial dimension with constant temporal length. (B)

Sensitivity test on temporal dimension with constant spatial length. (1) I-80. (2) US-101. (3) Northbound of LB, and

(4) Southbound of LB.

https://doi.org/10.1371/journal.pone.0190616.g009
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The resilience-based approach provides a unique and different angle for tackling the con-

gestion quantification issue, and its new-build characteristic dimensions are effective for cap-

turing and differentiating major congestion. The signs of congestion indexes (positive or

negative based on recovery performance) illustrate not only the overall congestion intensity

but also indicate the discharging process after its formation. Our study amplifies the conges-

tion quantification toolbox and establishes a combination of system resilience analysis.

The proposed metric shows relative merits in measuring and characterizing strength as

compared with other two traditional metrics, RCI and LoS. Because the construction of the

metric is based on generic traffic dimensions, it has been found to be applicable to both free-

way and arterial cases. The metric performs adequately in signal-controlled traffic and outper-

forms RCI as shown in Lankershim Boulevard case.

Sensitivity tests verify that the phase transition mechanism plays an indispensable role in

congestion analysis as the metric showed sensitive behavior to the Elasticity Threshold (ET).

The testing results on � and RR show relatively low sensitivity on detecting major congestion

but the number of identified congestion patterns can be influenced by the existence of �. The

tests on various cell size demonstrate a sensitive behavior of metric to its discrete platform con-

struction. Particularly we found that both number and intensity of detected congestion pat-

terns are highly sensitive to the spatial dimension.

This study provides insights into the quantification of recurrent traffic congestion inspired

by emerging resilience concept. The metric we constructed showed strength in quantitative

analysis of congestion in a systemic perspective and potentially offers an alternative for conges-

tion study across different scenarios. Future research will further investigate the application of

the metric to various traffic conditions in other countries and expand understandings of its

application in road networks.
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