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Abstract

Commensal bacteria and their pathogenic components in the gastrointestinal tract and oral

cavity may play pathological roles in autoimmune diseases. To study the possible involve-

ment of bacterial pathogens in autoimmune diseases, IgG and IgA antibodies against patho-

genic components produced by three strains of commensal bacteria, Escherichia coli-

lipopolysaccharide (E. coli-LPS), Porphyromonas gingivalis-LPS (Pg-LPS) and peptidogly-

can polysaccharide (PG-PS) from Streptococcus pyogenes, were determined by an

improved ELISA system for sera from two groups of patients with rheumatoid arthritis (RA),

who met rapid radiographic progression (RRP) criteria and non-RRP, and compared to nor-

mal (NL) controls. Antibody responses to these bacterial pathogens are unique and consis-

tent in individuals, and no fundamental difference was observed between RA and NL

controls. Despite the similar antibody responses to pathogens, lower IgG or higher IgA and

consequent higher IgA/IgG antibody ratio among the patients with RA related to disease

marker levels and disease activity. Peculiarly, the IgA/IgG anti-Pg-LPS antibody ratio

resulted from lower IgG and higher IgA antibody responses to Pg-LPS strongly correlated

not only with rheumatoid factor (RF), but also correlated with erythrocyte sedimentation rate

(ESR), C-reactive protein (CRP) and disease activity score of 28 joints with ESR (DAS28-

ESR) in the RRP group. In contrast, the IgA/IgG anti-E. coli-LPS and anti-PG-PS antibody

ratio correlated or tended to correlate with RF, ESR, CRP, and DAS28-ESR in the non-RRP

group, whereas either the IgG or IgA anti-Pg-LPS antibody levels and consequent IgA/IgG

anti-Pg-LPS antibody ratio did not correlate with any clinical marker levels in this group.

Notably, anti-circular-citrullinated peptide (CCP) antibody levels, which did not correlate with

either IgG or IgA antibody levels to any pathogens, did not correlate with severity of arthritis

in both RRP and non-RRP. Taken together, we propose that multiple environmental patho-

gens, which overwhelm the host antibody defense function, contribute independently or
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concomitantly to evoking disease makers and aggravating disease activity, and affect dis-

ease outcomes.

Trial registration: UMIN CTR UMIN000012200

Introduction

A variety of chronic and progressive inflammatory diseases are classified as autoimmune dis-

eases. To search for disease-causative pathogens, numerous studies on antibody responses to

putative pathogens were conducted, and commonly concluded that antibodies against putative

pathogens are higher, or cross-react with major histocompatibility complex (MHC) molecules

or other autologous components such as collagen in rheumatoid arthritis (RA) [1], and cardiac

myosin in rheumatic heart disease [2]. Thus, autoimmunity in rheumatic diseases is thought

to be induced by microbial infections via cross-reactivity or molecular mimicry [3].

Based on these concepts, antibody responses to variety of potential pathogenic environmen-

tal agents have been studied: for example, antibody responses to Escherichia coli (E. coli), Kleb-
siella pneumonia, Proteus mirabilis, Serratia marcescebs [3–8], Porphyromonas gingivalis (P.

gingivalis) [6, 9], and lipopolysaccharides (LPS) produced by commensal bacteria [10]. Unfor-

tunately, these studies were conducted using immunoassay systems such as radioimmunoassay

(RIA) and enzyme-linked immunosorbent assay (ELISA) without considering the intense

background (BG) noise reaction caused by hydrophobic binding of immunoglobulins and

immune-complexes in sample specimens to plastic surfaces. Consequently, misinterpretation

of serological antibody assay data, which are largely influenced by the strong BG noise reaction

and other false positive reactions, has led to uncertain conclusions and misunderstandings as

discussed in detail [11–14].

Meanwhile, a growing body of research has indicated a potential association between intes-

tinal bacteria and autoimmune diseases [15–22]. More specifically, dysbiosis, or imbalance of

intestinal bacterial flora in RA was suggested by many studies on possible composition changes

in intestinal microbes [23–28]. Especially, Scher [29] clearly showed that an increase of Prevo-
tella copri (P. copri) and a decrease of Bacteroides populations in stool were associated with dis-

ease in new-onset, untreated patients with RA. These observations and hypotheses were

supported by a variety of studies on potential disease-causative pathogens in animal models.

For example, possible involvement of bacterial cell wall components in the pathogenesis of RA

was suggested by studies on the arthropathic properties of bacterial cell wall polymers such as

peptidoglycan-polysaccharide (PG-PS) from Streptococcus pyrogens (S. pyrogen) [30–32], S.

faecium and other normal flora [33]. Furthermore, striking effects of a variety of bacterial tox-

ins, such asMycoplasma arthritidis mitogen (MAM) [34, 35], E. coli-LPS [35, 36], and staphylo-
coccus super-antigen B (SEB) [37], in triggering and exacerbating arthritis were shown in

mouse collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA)

models.

Likewise, increasing evidence suggests a possible link between RA and periodontal infec-

tious diseases caused by P. gingivalis [38–40] and Aggregatibacter actinomycetemcomitans (A.

actinomycetemcomitans) [41]. This prediction is supported by studies in a mouse CIA model.

Indeed, P. gingivalis infection significantly facilitates the development and progression of

arthritis, including bone absorption and cartilage destruction [42–45]. Based on these observa-

tions, it is assumed that some of these pathogens are implicated in enhancing and perpetuating

inflammatory arthritis, leading to severe joint damage, such as rapid radiographic progression

(RRP) observed in a subset of RA patients [46–49].

Disease causative pathogens in RA
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In addition to potential pathogenic agents, it is also important to consider possible disor-

ders in the host that increase susceptibility to disease-causative pathogens. For example, if the

immunological and mechanical barriers of the gastrointestinal tract are disturbed by intestinal

disease, the aging process, or other factors, it is highly likely that abnormal amounts of mimic

antigens and bacteria-derived pathogens will be absorbed from the gastrointestinal tract. In

fact, it was clearly demonstrated that bacterial toxins absorbed from the intestine are directly

implicated in the development of arthritis in animal models. For example, oral administration

of E. coli-LPS relapses arthritis at a late stage of CIA [36]. Similarly, a single oral administration

of E. coli-LPS increases serum IL-6 levels within 2 hours, and triggers CAI within 48 hours in

mice older than 8 months, but not in young mice [50]. Furthermore, long term oral adminis-

tration of heterologous type II collagen (CII), E. coli-LPS, or a combination of these induces

mild, but chronic arthritis in DBA/1 mice [51]. More importantly, E. coli-LPS alone induces

severe destructive arthritis in mice whose immune system was disturbed by a long term oral

administration of a combination of indomethacin and ovoinhibitor [51].

From this standpoint, we hypothesized that lowered immune defense function or dysbiosis

in the intestinal and oral environments may be the fundamental disorder in autoimmune dis-

ease, and consequently, patients are consistently exposed to excessive amounts of a variety of

potential disease-causative bacterial pathogens [50, 52]. To test this hypothesis, IgG and IgA

antibody responses against pathogenic components of three strains of bacteria were deter-

mined for sera from two groups of RA patients, who met RRP criteria and non-RRP, and

normal (NL) controls by ELISA using the ChonBlockTM buffer system, which prevents virtu-

ally all types of non-specific reactions involved the indirect ELISA as reported [13]. Antibody

responses against individual pathogens were analyzed for potential correlation with serological

disease maker levels and disease activity. In this study, we found that various types of bacterial

pathogens, which overwhelm IgG and IgA antibody responses, may play critical pathological

roles independently or concomitantly. Importantly, disease outcomes differ noticeably

depending on the types of pathogens dominantly involved.

Patients and methods

RA patients and clinical assessment

Two hundred sixty-four patients with RA were enrolled in a clinical study to examine the

effects of non-biological disease-modifying anti-rheumatic drugs (DMARDs) and biological

DMARDs (biologics) on intestinal immunity in patients with RA at Katayama Orthopedic

Rheumatology Clinic (Trial Registration Number: UMIN000012200 approved by Asahikawa

Medical University Ethics Committee). The study purposes and procedures were provided in

written form, and informed consent was obtained from all patients and normal subjects before

performing any study procedure according the Declaration of Helsinki. Patients with RA were

diagnosed based on the American College of Rheumatology (ACR) 1987 revised criteria [53].

Clinical disease activity was assessed by measuring tender 28 joint count (TJC28), swollen 28

joint count (SJC28), disease activity score of 28 joints with erythrocyte sedimentation rate

(DAS28-ESR), and visual analogue scale of patients’ global estimate for RA (pVAS). In addi-

tion, radiographic films of patients’ hands and feet were assessed by modified total sharp score

(mTSS) [54] at first serum collection, and compared with those obtained 1 year before, to

determine the annual change of mTSS (ΔmTSS/y). The patients whose mTSS value increased

�5 units over a 1 year period were classified as RRP, since the complete destruction of one

joint during a 1 year period corresponds to an increase of 5 units [49, 54]. Furthermore, the

presence of osteitis and precise osteitis area were determined by magnetic resonance imaging

(MRI) (HITACHI 0.3T Open MRI system AIRIS Elite) using Short T1 Inversion Recovery

Disease causative pathogens in RA
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(STIR) method as reported [55]. In this test, we confirmed that moderate to severe osteitis was

present in small joints (finger, wrist, foot) in these patients as described [56, 57]. In addition,

in the patients with rapid progression of middle to large joints, regardless of the ΔmTSS/y of

small joints, severe osteitis was observed at all small, middle and large joints. Therefore, these

patients were included in the RRP group, because we considered that rapid progression of

middle to large joints is one of the features of this disease phenotype, and should be distin-

guished from other RA phenotypes. Accordingly, it was confirmed that no patients in the non-

RRP group have either apparent osteitis or destructive progression at middle to large joints.

Blood and serum samples

Blood and serum samples were collected from all patients under treatment with current drugs

before switching to other therapeutics to obtain the baseline data; ESR, C-reactive protein

(CRP), matrix metalloproteinase-3 (MMP3), IgM-RF (RF), lymphocytes, white blood cells

(WBC), red blood cells (RBC) and hemoglobin (Hb). One aliquot of serum sample for each

patient was kept at -20˚C, and assayed for serum tumor necrosis factor-α (TNF-α), interleukin

6 (IL-6), and antibodies against bacterial pathogens and circular-citrullinated peptide (CCP)

For the purposes of this study, the baseline data from the selected patients, who were not

accompanied by severe comorbidity and currently not treated with biological therapeutics,

were collected for analysis in this study. Consequently, complete baseline data were available

for 54 patients with RRP and 101 patients with non-RRP as shown in Table 1. Sera from 38

healthy NL controls (Age: 42±14) were used as a reference.

Antibody assay

IgG and IgA antibody responses to three bacterial pathogens, LPS from E. coli O-111B4 (E.

coli-LPS) (ultra-pure E. coli-LPS, List Biological Laboratories, Campbell, CA), LPS from P.
gingivalis (Pg-LPS) (InvivoGen, San Diego, CA), PG-PS from S. pyogenes (Lee Laboratories,

Grayson, GA), and CCP synthesized at Biosynthesis (Lewisville, TX) were assayed by ELISA

using the ChonBlockTM buffer system as described in detail [13, 58]. A detailed ELISA protocol

is available in the attached supplemental information (S1 Appendix). Briefly, human sera from

both patients with RA and NL controls were diluted with ChonBlockTM blocking/sample dilu-

tion buffer as follows: for IgG and IgA antibodies against E. coli-LPS: 1/1,000 & 1/1,000 (for

both IgG and IgA), Pg-LPS: 1/10,000 & 1/500, PG-PS: 1/20,000 & 1/10,000, and IgG antibodies

against CCP: 1/500. Antibody levels were determined by comparing to standards prepared

from normal sera, and expressed as x103 units /ml. The highest dose of standard was adjusted

to give an OD at 450nm of 2.8±0.1, and defined as 32 units/ml.

To determine the comprehensive immune function of individual patients, IgG and IgA

antibody titers against individual pathogens were standardized by dividing with a mean anti-

body value of NL controls, and defined as IgG and IgA Antibody Index, respectively. The sum

of index values calculated based on antibody levels against “E. coli-LPS and Pg-LPS “was

defined as Index 1, “E. coli-LPS plus PG-PS” as Index 2, “E. coli-LPS plus Pg-LPS and PG-PS”

as Index 3.

Cytokine assay

Serum levels of TNF-α and IL-6 were assayed by high sensitivity human ELISA kits (Quanti-

kine HS ELISA, R&D Systems, MIN, USA), and shown as pg/ml.

Disease causative pathogens in RA
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Statistical analysis

Serum IgG and IgA antibody levels against all pathogens tested indicated non-normal distribu-

tions among NL, RRP and non-RRP groups. Accordingly, the statistical relationships between

antibody levels, serological marker levels and disease activity were analyzed by Spearman’s

non-parametric rank correlation analysis, and expressed as Spearman’s rank correlation coeffi-

cient “ρ” (JMP10 SAS Institute Inc., Cary, NC, USA). Similarly, the relationship between IgG

and IgA antibody responses to individual pathogens was also determined by Spearman’s non-

parametric rank correlation analysis. Data were shown as nominal p-values without adjust-

ment for multiple testing. To demonstrate the relationship between two variables in log-log

scale scattered graphs, 0 value was converted to 0.01 for practical convenience.

Table 1. Baseline demographics of RA patients in RRP and Non-RRP groups.

RRP (n = 54) Non-RRP (n = 101) Normal (n = 38)

Age 62±14 66±11 42±14�

Sex Female/Male 50/4 86/15 16/22

Duration (Month) 48 (23–151) 116 (52–174) /

Therapeutics AU 0 2 (2.0%) /

BUC 5 (9.3%) 11 (10.9%) /

Celecoxib 0 1 (1.0%) /

LEF 0 3 (3.0%) /

Minocyclin 0 1 (1.0%) /

Mizoribine 1 (1.9%) 0 /

MTX 38 (70.4%) 65 (64.4%)

SASP 3 (5.6%) 16 (15.8%) /

TAC 7 (13.0%) 2 (2.0%) /

Disease

Activity Score

SJC28 5 (3–7.5) 5 (3–7) /

TJC28 2 (1–7) 5 (2–8) /

DAS28-ESR 4.4 ± 1.4 4.7 ± 1.2 /

pVAS 48 (26–66) 40 (30–65) /

Serological Disease Markers CRP (mg/dl) 0.7 (0.1–1.9) 0.5 (0.1–1.9) /

ESR (mm/hour) 22.5 (12.8–44) 27 (12–46) /

IgM-RF (IU/ml) 84 (24.1–219) 51 (11.5–167) /

Anti-CCP Ab (units/ml) 3.7 (0.8–8.7) 1.1 (0.2–20) 0.08 (0.047–0.099)

Inflammatory Markers TNF-α (pg/ml) 1.4 (0.9–2.2) 1.3 (1.1–1.9) /

IL-6 (pg/ml) 2.5 (1.0–8.2) 6.1(2.3–16.5) /

MMP3 (ng/ml) 128 (74.6–240 120 (64.4–217) /

Hematological

Markers

RBC (106/μl) 415±32.6 417±48 /

WBC (count/μl) 7211±2687 6478±1757 /

Lymphocytes (count/μl) 1539 ± 481 1442 ± 476 /

Hb (g/dl) 12.3 ± 1.4 12.5 ± 1.4 /

Radiographic mTSS 37 (14–68) 23 (12–76) /

Assessment ΔmTSS/year 5.8 (2.2–11)�� 0.0 (0–0.8) /

�: P<0.05,

��: P< 0.0001 by Wilcoxon signed-rank test,

AU: Auranofin, BUC: Bucillamine, LEF: Leflunomide, MTX: Methotrexate, SASP: Salzosulfapyridine, TAC: Tacrolimus, RRP: Rapid radiographic progression, mTSS:

modified total sharp scoring, ΔmTSS/y: annual change of mTSS during a 1 year. Clinical diagnostic data, which were distributed non-symmetrically, are shown as

median (interquartile range), and others are shown as mean ± SD.

https://doi.org/10.1371/journal.pone.0190588.t001
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Results

1. Characterization of IgG and IgA antibody responses to bacterial

pathogens in NL, RRP, and non-RRP groups

Clinical demographics of 54 RRP and 101 non-RRP patients were similar, and 38 (70.4%)

patients with RRP and 65 (60.4%) patients with non-RRP were treated with methotrexate

(MTX) (Table 1).

The mTSS values at the first serum collection (shown as median and interquartile range

(IQR)), in the RRP group were 37 (14–68), slightly higher than 23 (17–76) in the non-RRP

group, but was not statistically significant. However, the median (IQR) of disease duration in

RRP group was 48 (23–151) months, and shorter than 116 (52–174) months in the non-RRP

group, indicating joint destruction progresses more rapidly in the RRP group than in non-

RRP group. As expected, the annual change of mTSS during a 1 year period (ΔmTSS/y) deter-

mined at joints of the hands and feet was 5.8 (2.2–11) in the RRP group, and significantly

higher than the annual change value of 0.0 (0–0.8) in the non-RRP group (p<0.0001). On the

other hand, there was no difference in either the prevalence or antibody level of anti-CCP anti-

body between the RRP and the non-RRP groups. The median (IQR) of anti-CCP antibody

titer was 3.7 (0.8–8.7) units/ml in RRP and 1.1 (0.2–20) units/ml in the non-RRP group com-

pared to 0.08 (0.047–0.099) in NL controls. If sera contained more than 0.1 units/ml of anti-

CCP antibody (higher than the 3rd quartile of NL controls), they were considered “positive”

for anti-CCP antibody. Accordingly, 51/54 (94%) in the RRP group were positive for anti-CCP

antibody, while 87/101 (84%) were positive in the non-RRP group. In addition, the average

age of the NL group (42±14 years old) was significantly younger than that of patients with RRP

(62±14) and non-RRP (66±11). Despite of these differences, there were no significant differ-

ences in IgG and IgA antibody levels against all environmental pathogens and their IgA/IgG

antibody ratio between NL, RRP and non-RRP groups as shown in Fig 1.

Firstly, to characterize the antibody responses to environmental pathogens, the possible

effects of aging and disease duration on antibody levels were examined. Importantly, no age

and no disease duration-associated changes in antibody levels were observed in NL, RRP, and

non-RRP groups (S1 Fig and S2 Fig), with one exception. IgG anti-Pg-LPS antibody levels

increased with age in NL group (p = 0.0433) (S1 Fig). These observations were confirmed by

assaying IgG and IgA antibody levels against these pathogens in sera from 10 patients with RA

treated with MTX for 13–113 months. Importantly, IgG and IgA antibody levels against all

antigens assayed, except Pg-LPS, remained unchanged, regardless of the long-term treatment

with MTX (S3 Fig). Based on these observations, it was considered that the antibody responses

to environmental pathogens are unique to individuals, and generally remain at the same levels.

Interestingly, apparent increases in IgG and especially IgA antibody responses to Pg-LPS were

observed in these patients treated with MTX, indicating a possible adverse effect of MTX. To

address this possibility, further detailed studies are required to reveal whether MTX affects

oral and/or intestinal bacterial components.

To further characterize the antibody responses to environmental pathogens, the relation-

ship between IgG and IgA antibody responses to individual pathogens was analyzed (S4 Fig).

IgG and IgA antibody levels against E. coli-LPS, Pg-LPS and PG-PS positively correlated

(p<0.05) in all groups, indicating that IgG and IgA antibody production is orchestrated

depending on the intestinal and oral environment of individuals. Importantly, no correlation

was observed between IgG antibody levels against individual pathogens in the NL group. To

the contrary, IgG anti-Pg-LPS antibody levels positively correlated with IgG anti-PG-PS anti-

body levels (p<0.0001) in RRP, whereas IgG anti-E. coli-LPS antibody levels correlated with

IgG anti-PG-PS antibody levels (p = 0.0454) in non-RRP. Similarly, no correlation was

Disease causative pathogens in RA
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observed between IgA antibody levels against individual pathogens in all groups, except IgA

anti-Pg-LPS and IgA anti-PG-PS antibody levels correlated well in non-RRP (p<0.0063).

These observations indicated potential differences in the bacterial compositions of the diges-

tive system between NL, RRP and non-RRP. Importantly, the positive correlation of IgG

Fig 1. Comparison of antibody responses to potential pathogenic environmental agents between RA and NL controls. IgG

and IgA antibody levels against E. coli-LPS, Pg-LPS and PG-PS were determined in sera from 38 NL controls, 54 patients with

RRP and 101 patients with non-RRP (a). IgG and IgA antibody levels of individual patients were divided by the average values

of NL controls, and shown as IgG and IgA index values (b). Data are shown as median and interquartile range (IQR). E. coli:
Escherichia coli, Pg: Porphyromonas gingivalis, LPS: lipopolysaccharide, PG-PS: peptidoglycan polysaccharide from Streptococcus
pyogenes, RRP: rapid radiographic progression, NOTE: Index 1: sum of anti-E. coli-LPS + anti-Pg-LPS, Index 2: sum of anti-E.

coli-LPS + anti-PG-PS, Index 3: sum of anti-E. coli-LPS + anti-Pg-LPS + anti-PG-PS.

https://doi.org/10.1371/journal.pone.0190588.g001
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antibody responses with certain pairs of pathogens in RA indicate a possibility that patients

with low IgG antibody response against one pathogen have lower antibody response to other

pathogens. Based on these basic features of antibodies, the comprehensive IgG and IgA anti-

body responses in individual patients were calculated, and expressed as IgG and IgA index 1–3,

respectively. However, as shown in Fig 1B, no difference was observed in either IgG or IgA

Indexes between NL and RA in this study employing a limited number of pathogenic agents.

2. Linkage of antibody responses to bacterial pathogens with disease

markers

To understand the etiology of RA, it is important to consider that the disease process may

begin many years before the clinical diagnosis of RA, and arthritis is just one distinctive symp-

tom among multiple symptoms caused by systemic disorders. From this point of view, it is

critical to identify the putative pathogens, which evoke disease markers, such as RF, ESR, CRP

and anti-CCP antibody and cause hematological abnormality, and ultimately are implicated in

developing autoimmune diseases.

At first, to clarify a possible involvement of environmental pathogens in RA, the relationship

between antibody responses to three bacterial pathogens and serological disease marker levels

was analyzed by Spearman’s non-parametric rank correlation analysis. As shown in Fig 2A, RF

levels in the RRP group inversely correlated with IgG antibody levels against E. coli-LPS

(p = 0.0028), Pg-LPS (p = 0.0083) and PG-PS (p = 0.0190), and tended to correlate with IgA

anti-E. coli-LPS (p = 0.2186) and anti-PG-PS (p = 0.1415) antibody levels. Consequently, RF lev-

els correlated well with the IgA/IgG anti-Pg-LPS antibody ratio (p = 0.0013) and tended to cor-

relate with the IgA/IgG anti-E. coli-LPS antibody ratio (p = 0.0692). On the other hand, no

apparent relationship between RF and both IgG and IgA antibody levels against any pathogens

was observed in the non-RRP group. However, it was notable that RF levels in this group appar-

ently correlated with the IgA/IgG anti-PG-PS antibody ratio (p = 0.0075) as shown in Fig 2B.

Similarly, ESR in the RRP group tended to correlate inversely with IgG (p = 0.1451) and

positively with IgA anti-Pg-LPS (p = 0.0754) antibody levels, and consequently correlated well

with the IgA/IgG anti-Pg-LPS antibody ratio (p = 0.0231) (Fig 3A). On the other hand, ESR in

non-RRP tended to be associated with lower IgG antibody responses to E. coli-LPS (p =

0.0881) and high IgA antibody responses to E. coli-LPS (p = 0.1281) and PG-PS (p = 0.0220),

and consequently correlated well with the IgA/IgG anti-E. coli-LPS (p = 0.0117) and anti-

PG-PS antibody ratio (p = 0.0037) (Fig 3B).

Like ESR, CRP levels correlated with the IgA/IgG anti-Pg-LPS (p = 0.0397) antibody ratio

in RRP (Fig 4A), whereas these correlated with the IgA/IgG anti-PG-PS antibody ratio

(p = 0.0366) in non-RRP (Fig 4B).

On the other hand, no apparent correlation was observed between anti-CCP antibody levels and

antibody responses to any pathogens in both RRP and non-RRP, although anti-CCP antibody levels

tended to inversely correlate with IgG anti-E. coli-LPS (p = 0.0706), and positively correlate with

IgA anti-PG-PS (p = 0.0697) and the IgA/IgG anti-PG-PS ratio (p = 0.0599) in non-RRP (data not

shown). These observations indicate that anti-CCP antibody production is not directly influenced

by these pathogens tested, and likely to be elicited by a combination of multiple pathogens as dis-

cussed later, or by other pathogens such as leukotoxin A as suggested by Konig et al [59].

3. Linkage of antibody responses to bacterial pathogens with severity of

arthritis

The observations described above indicate a possibility that a variety of environmental patho-

gens, which overwhelm the host’s antibody responses for an extended period of time, may play
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Fig 2. Linkage of RF with IgG and IgA antibody responses to bacterial pathogens in RA patients. IgG and IgA antibody

levels against individual pathogens and their IgA/IgG antibody ratio were analyzed for possible correlation with RF levels in

54 patients with RRP (a) and 101 patients with non-RRP (b) by Spearman’s rank correlation coefficient analysis. NOTE:

Pink: significant correlation at p<0.05, Blue: trending toward correlation at 0.05�p<0.15, No color: no correlation.

https://doi.org/10.1371/journal.pone.0190588.g002
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Fig 3. Linkage of ESR with IgG and IgA antibody responses to bacterial pathogens in RA patients. IgG and IgA antibody levels

against individual pathogens and their IgA/IgG antibody ratio were compared with ESR in 54 patients with RRP (a) and 101 patients

with non-RRP (b) by Spearman’s rank correlation coefficient analysis. NOTE: Pink: significant correlation at p<0.05, Blue: trending

toward correlation at 0.05�p<0.15, No color: no correlation.

https://doi.org/10.1371/journal.pone.0190588.g003
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Fig 4. Linkage of CRP with IgG and IgA antibody responses to bacterial pathogens in RA patients. IgG and IgA antibody

levels against individual pathogens and their IgA/IgG antibody ratio were compared with CRP levels in 54 patients with RRP

(a) and 101 patients with non-RRP (b) by Spearman’s rank correlation coefficient analysis. NOTE: Pink: significant

correlation at p<0.05, Blue: trending toward correlation at 0.05�p<0.15, No color: no correlation.

https://doi.org/10.1371/journal.pone.0190588.g004
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essential roles in evoking and increasing disease marker levels, and consequently perpetuating

and aggravating inflammatory arthritis. To examine this possibility, we analyzed potential

association between IgG and IgA antibody levels against individual pathogens and severity of

arthritis by Spearman’s non-parametric rank correlation analysis. As shown in Fig 5A,

DAS28-ESR values correlated specifically with IgA anti-Pg-LPS antibody levels (p = 0.0042)

and the IgA/IgG anti-Pg-LPS antibody ratio (p<0.0001) in the RRP group as well as RF (Fig

2A), ESR (Fig 3A) and CRP (Fig 4A) levels. Importantly, SJC28 and TJC28 correlated with

IgA/IgG anti-Pg-LPS ratio (p = 0.0042 and p = 0.0025), and pVAS scores correlated with IgA

anti-Pg-LPS antibody levels (p = 0.0198) in the RRP group (data not shown).

On the other hand, DAS28-ESR values in the non-RRP group positively correlated with the

IgA/IgG anti-E. coli-LPS antibody ratio (p = 0.0149), but did not correlate with either anti-Pg-

LPS or anti-PG-PS antibodies as shown in Fig 5B. However, pVAS score inversely correlated

with IgG anti-Pg-LPS antibody levels (p = 0.0006) and positively correlated with the IgA/IgG

anti-Pg-LPS antibody ratio (p = 0.0040) (data not shown), indicating that Pg-LPS also contrib-

utes to pathogenesis the non-RRP group. Importantly, no correlation was observed between

IgG and IgA anti-PG-PS antibody levels and the severity of arthritis in this group (Fig 5B),

even though PG-PS seems to contribute to evoking RF, ESR and CRP (Figs 2B, 3B & 4B).

These discrepancies indicate that multiple pathogens, which have unique pathogenic effects,

play different pathological roles independently or concomitantly in individual patients with

RA, and may affect disease outcomes with distinct disease phenotypes, such as RRP and non-

RRP.

4. Linkage of serological disease maker levels with severity of arthritis

To obtain a clear picture of the etiopathogenesis of RA, we investigated the relationship of

serological disease marker (RF, ERS, CRP and anti-CCP antibody) levels with arthritis severity

(SJC28, TJC28, DAS28-ESR and pVAS), and hematological maker (lymphocytes, WBC and

Hb) levels (Figs 6–9). In the RRP group, RF levels, which inversely correlated with IgG anti-E.

coli-LPS, Pg-LPS and PG-PS, inversely correlated with IgG index 1–3 values as expected (Fig

6). Importantly, RF levels correlated well with severity of arthritis (SJC28, TJC28, DAS28-ESR

and pVAS), serological disease maker (ESR, CRP, anti-CCP antibody) and inflammatory

marker (TNF, MMP3) levels in RRP as shown in Fig 6. These observations indicate that patho-

gens evoking RF may directly contribute to triggering and exacerbating inflammatory reaction

in the RRP group. On the other hand, RF levels in the non-RRP group did not correlate with

either IgG or IgA index values, and furthermore either arthritis or inflammatory marker levels,

although RF levels correlated well with ESR, CRP, and anti-CCP antibody levels (Fig 6). These

data indicate that different pathogens or different combinations of pathogens are involved in

evoking RF in the RRP and non-RRP groups. Notably, RF levels correlated well with anti-CCP

antibody levels in both RRP and non-RRP groups, regardless of the significant differences in

the profiles of RF and the progression of arthritis between the two groups. This indicates that

RF may trigger CCPs and subsequent anti-CCP antibody production, regardless of the pheno-

type of disease, as suggested by Carmona-Rivera et. al. [60].

On the other hand, ESR tended to correlate with IgA index values rather than IgG index

values in both RRP and non-RRP (Fig 7). Importantly, like RF, ESR correlates with arthritis

(SJC28, TJC28, DAS28-ESR and pVAS) scores and inflammatory maker (TNF and MMP-3)

levels in the RRP group as shown in Fig 7, indicating that Pg-LPS, which contributes to

increasing ESR (Fig 3), may also be implicated in developing arthritis in the RRP group. Simi-

larly, ESR in the non-RRP group also correlated well with DAS28-ESR, but did not correlate

with other arthritis marker levels in this group. This indicates that E. coli-LPS, PG-PS or both,
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Fig 5. Linkage of DAS28-ESR with IgG and IgA antibody responses to bacterial pathogens in RA patients. IgG and IgA

antibody levels against individual pathogens and their IgA/IgG antibody ratio were compared with DAS28-ESR score values

in 54 patients with RRP (a) and 101 patients with non-RRP (b), using Spearman’s rank correlation coefficient analysis.

NOTE: Pink: significant correlation at p<0.05, Blue: trending toward correlation at 0.05�p<0.15, No color: no correlation.

https://doi.org/10.1371/journal.pone.0190588.g005
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rather than Pg-LPS, are implicated in the severity of arthritis in the non-RRP group. Due to

the possible difference in the pathogens involved in evoking ESR in the RRP and non-RRP

groups, a significant difference was observed in the ESR profiles between the RRP and non-

RRP groups; ESR did not correlate with anti-CCP antibody levels (p = 0.7819) in the RRP

group, but correlated well (p = 0.0048) in the non-RRP group. Importantly, ESR correlated

well with WBC in both RRP and non-RRP, indicating that the pathogens which evoke ESR

may contribute to acute inflammatory reaction regardless of RA phenotype (Fig 7).

Similar patterns to those observed in ESR were observed in the relationship between CRP

levels and arthritis scores and inflammatory marker levels, including WBC and Hb in both

RRP and non-RRP groups (Fig 8). This indicates that the pathogens that increase ESR also

contribute to increasing CRP levels in RA.

Furthermore, Hb levels were inversely correlated with ESR and CRP levels, but not with

RF levels in both RRP and non-RRP groups (Figs 7 & 8), indicating pathogens that evoke ESR

and CRP exert an adverse effect on Hb levels in RA. In fact, Hb levels strongly correlated with

IgA anti-E. coli-LPS antibody levels (P = 0.0005) and IgA/IgG anti-E. coli antibody ratio (p =

0.0181) in the non-RRP group (data not shown). On the other hand, no correlation was

observed between Hb levels and either IgG or IgA antibody responses to any pathogens in the

RRP group. However, it is likely that Pg-LPS alone or in combination with E. coli-LPS may

contribute to reducing Hb levels in the RRP group. This is evidenced by the fact that Hb levels

were tightly correlated with ESR and CRP levels, which are linked to low IgG and high IgA

antibody responses to Pg-LPS in this group.

Unlike these classic disease makers, anti-CCP antibody levels, which did not correlate with

antibody responses to any pathogens, did not correlate with either IgG or IgA Index values in

Fig 6. Relationship of RF with antibody response functions and clinical maker levels in patients with RRP and non-RRP. RF levels were

compared with IgG and IgA index values, severity of arthritis, disease marker levels, serum cytokine levels, and hematological values in 54

patients with RRP and 101 patients with non-RRP, using Spearman’s rank correlation coefficient analysis. NOTE: Plot: Visual display for

positive and negative “ρ” value of Spearmen correlation coefficient. Cells highlighted with yellow indicate significant correlation at p<0.05.

Index 1: sum of anti-E. coli-LPS + anti-Pg-LPS, Index 2: sum of anti-E. coli-LPS + anti-PG-PS, Index 3: sum of anti-E. coli-LPS + anti-Pg-LPS

+ anti-PG-PS.

https://doi.org/10.1371/journal.pone.0190588.g006
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both RRP and non-RRP groups, but correlated well with RF levels in both groups (Fig 9).

Although anti-CCP antibody levels did not correlate with DAS28-ESR and inflammatory

marker levels (IL-6, TNF and MMP-3) unlike RF, ESR and CRP, but correlated with SJC28

(p = 0.0180) in the RRP group, and IL-6 (p = 0.0002) in the non-RRP group.

These data indicate that anti-CCP antibodies may not play a dominant arthritogenic role,

but are implicated in joint tissue damage at some stage of the inflammatory process. A remark-

able difference between the RRP and non-RRP groups was that anti-CCP antibody levels did

not correlate with CRP and ESR levels in RRP (Fig 10A), but closely correlated with these in

the non-RRP group as shown Fig 10B. These differences indicate that bacterial pathogenic

components such as Pg-LPS, which are assumed to dominantly contribute to increasing CRP

and ESR in the RRP group, are less likely to be involved in eliciting anti-CCP antibody in the

RRP group. On the other hand, E. coli-LPS, PG-PS or both combined, which affect CRP and

ESR levels in the non-RRP group, may contribute to eliciting anti-CCP antibody by enhancing

neutrophil extracellular traps (NETs) formation or activating synovial cells [60] as discussed

later.

Taken together, we concluded that various types of bacterial pathogens, which exert unique

pathological effects, may be actively involved in evoking and aggravating disease maker levels

and disease activity independently and collectively, and play critical roles in the pathogenesis

of RA as summarized in Fig 11.

Discussion

The most important finding in this study is that IgG antibody responses to environmental

pathogens inversely correlate or tend to correlate with serological disease marker levels and

Fig 7. Relationship of ESR with antibody response functions and clinical marker levels in patients with RRP and non-RRP. ESR values

were compared with IgG and IgA index values, severity of arthritis, disease marker levels, serum cytokine levels, and hematological values in 54

patients with RRP and 101 patients with non-RRP, using Spearman’s rank correlation coefficient analysis. NOTE: Plot: Visual display for

positive and negative “ρ” value of Spearmen correlation coefficient. Cells highlighted with yellow indicate significant correlation at p<0.05.

Index 1: sum of anti-E. coli-LPS + anti-Pg-LPS, Index 2: sum of anti-E. coli-LPS + anti-PG-PS, Index 3: sum of anti-E. coli-LPS + anti-Pg-LPS

+ anti-PG-PS.

https://doi.org/10.1371/journal.pone.0190588.g007
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severity of arthritis, whereas IgA antibody levels and the IgA/IgG antibody ratio positively cor-

relate or tend to correlate with those marker levels among the patients with RA despite no

apparent defect in the antibody response function as shown in Fig 1. More specifically, IgG

anti-E. coli-LPS, Pg-LPS and PG-PS antibody levels inversely correlated with RF levels,

whereas the IgA/IgG anti-Pg-LPS antibody ratio positively correlated not only with RF levels,

but also ESR, CRP and DAS28-ESR in the RRP group (Figs 2A, 3A, 4A and 5A). In contrast,

no apparent relationship was observed between IgG antibody levels and either serological dis-

ease marker levels or severity of arthritis in the non-RRP group, but IgA anti-E. coli-LPS and

PG-PS antibody levels and the IgA/IgG anti-E. coli-LPS and anti-PG-PS antibody ratios posi-

tively correlated or tended to correlate with those marker levels (Figs 2B, 3B, 4B and 5B).

One of the unique features of the mucosal immune system is the production of a large

amount of non-specific poly-reactive IgA and antigen-specific IgA antibodies, which prevent

the penetration or translocation of pathogenic substances such as bacteria and their compo-

nents into the lamina propria and the blood stream [61, 62]. On the other hand, antigen-spe-

cific IgG is produced by B-cells stimulated by antigens escaped from the IgA barrier, and may

play a critical role in protecting the host from pathogens that enter the body. Therefore, we

assume that the correlation between IgA/IgG antibody ratio and disease activity in RA, in spite

of no apparent defect in either IgA or IgG antibody responses to the pathogens, indicates that

RA patients are exposed to excessive amounts of pathogens, which overwhelm IgA and IgG

antibody defense functions.

Taken together, we speculate that a fundamental disorder in RA may be dysbiosis in the

intestinal tract and oral cavity or dysfunction of the gastrointestinal mucosal barrier system

rather than abnormality in immune function. However, our current findings do not prove that

Fig 8. Relationship of CRP with antibody response functions and clinical marker levels in patients with RRP and non-RRP. CRP levels

were compared with IgG and IgA index values, severity of arthritis, disease marker levels, serum cytokine levels, and hematological analytical

values in 54 patients with RRP and 101 patients with non-RRP, using Spearman’s rank correlation coefficient analysis. NOTE: Plot: Visual

display for positive and negative “ρ” value of Spearmen correlation coefficient. Cells highlighted with yellow indicate significant correlation at

p<0.05. Index 1: sum of anti-E. coli-LPS + anti-Pg-LPS, Index 2: sum of anti-E. coli-LPS + anti-PG-PS, Index 3: sum of anti-E. coli-LPS + anti-

Pg-LPS + anti-PG-PS.

https://doi.org/10.1371/journal.pone.0190588.g008
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individual pathogens tested in this study actually play critical pathological roles in RA. For

example, there is no evidence yet that Pg-LPS actually evokes RF, ESR and CRP, and exacer-

bates arthritis in the RRP group. In this aspect, it is also important to take into consideration

that antibody levels to individual pathogens may reflect the immune defense function not only

to the pathogens tested, but also represent the overall immune defense function against related

pathogens. We speculate that anti-Pg-LPS antibody levels may reflect the immune defense

function not only to Pg-LPS, but also to P. gigivalis and other periodontal bacteria, and their

pathogenic components. Similarly, anti-E. coli-LPS antibody reponse reflects immune defense

function against not only E. coli-LPS, but also to E. coli and other intestinal bacteria, and thier

pathogenic components. Therefore, futher studies are required to clarify the pathogenic effects

of individual pathogens and their combinations in conjunction with studies on dysbiosis of

the intestinal tract and oral cavity.

Regarding the etiological signifcance of RF, an apparent difference was observed between

the RRP and non-RRP groups. RF levels correlate well with other serological disease markers,

arthritis score, and inflammatory marker levels in the RRP group, but not in the non-RRP

group (Fig 6), indicating possible differences in the types of pathogens dominantly involved in

evoking RF in RRP and non-RRP groups as shown in Fig 2. It was reported that RF production

is triggered by serum immune complexes and antigen-primed T-cells [63]. However, our data

indicate that a vareity of bacterial pathogens, such as E. coli-LPS, Pg-LPS and PG-PS, may

directly contribute to evoking RF in RA as well as luekotoxin A produced by A. actinomycetem-
comitans [59]. An additional intriguing finding is that ESR and CRP values correlate well not

only with severity of arthritis and inflammatory marker levels, but also with Hb levels in both

RRP and non-RRP groups (Figs 7 & 8). This evidence indicates that the pathogens that

Fig 9. Relationship of anti-CCP antibody levels with antibody response functions and clinical marker levels in patients with RRP and

non-RRP. Anti-CPP antibody levels were compared with IgG and IgA index values, severity of arthritis, disease marker levels, serum cytokine

levels, and hematological analytical values in 54 patients with RRP and 101 patients with non-RRP, using Spearman’s rank correlation

coefficient analysis. NOTE: Plot: Visual display for positive and negative “ρ” value of Spearmen correlation coefficient. Cells highlighted with

yellow indicate significant correlation at p<0.05. Index 1: sum of anti-E. coli-LPS + anti-Pg-LPS, Index 2: sum of anti-E. coli-LPS + anti-PG-PS,

Index 3: sum of anti-E. coli-LPS + anti-Pg-LPS + anti-PG-PS.

https://doi.org/10.1371/journal.pone.0190588.g009
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contribute to evoking ESR and CRP have an adverse influence on Hb levels, whereas the path-

ogens that evoke RF do not. These results again indicate that multiple pathogens with different

pathological effects are involved independently and concomitantly in the pathogeneisis of RA.

Consequently, the clinical phenotype will vary depending on the dominant pathogens and the

combinations of pathogens as shown in Fig 11.

In contrast to these classic serological disease markers, the significance of anti-CCP anti-

body in the pathogenesis of RA remains unknown, since anti-CCP antibody levels do not

Fig 10. Differences in the relationships between individual disease markers in the RRP and non-RRP groups. Potential

correlations between individual disease marker levels in 54 patients with RRP and 101 patients with non-RRP were confirmed by

Spearman’s rank correlation coefficient analysis. NOTE: Pink: significant correlation at p<0.01, No color: no correlation.

https://doi.org/10.1371/journal.pone.0190588.g010
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correlate either with antibody levels against any pathogens tested or severity of arthritis in

both RRP and non-RRP groups (Fig 9). Based on the assumption that RA is linked to peri-

odontitis, it is widely believed that P. gingivalis peptidylarginine deiminase (PAD) is implicated

in the autoimmunity of RA by creating mimic antigen, CCP, by autocitrulination [64–66].

Contrary to the P. gingivalis PAD hypothesis, Konig et al. [67] reported that A. actinomycetem-
comitans, which releases leukotoxin A, mediates CCP production, but P. gingivalis and other

periodontal pathogens do not. Furthermore, Carmona-Rivera et. al. [60] paid great attention

to NETs formed by stimulation with IgM-RF stimulation [68], the source of CCP antigens,

which are then internalized by RA synovial fibroblast-like synoviocytes. These synoviocytes

act as antigen-presenting cells, which lead to antibody production against CCPs. This observa-

tion that RF is involved in eliciting anti-CCP antibodies is rational, and would explain the

tight correlation between RF levels and anti-CCP antibody levels in RA (Figs 9 & 10). Impor-

tantly, the antigen internalization activity is observed in synoviocytes from RA patients and

dermal fibroblasts from psoriasis patients, but not in normal dermal fibroblasts. This indicates

that RA synovial cells already display a pro-inflammatory phenotype under the influence of

disease-causative pathogens. Therefore, we consider CCPs and subsequent anti-CCP antibody

Fig 11. Multiple bacterial pathogens are implicated in evoking serological disease markers and consequently aggravating disease

activity in the RRP and non-RRP groups. Low IgG antibody responses to E. coli-LPS, Pg-LPS and PG-PS are linked to RF, ESR and CRP

levels in RRP. Among these putative pathogens, Pg-LPS and related pathogens derived from oral bacteria may play critical pathological roles

in the RRP group. On the other hand, E. coli-LPS, PG-PS and other related pathogenic components, instead of Pg-LPS, may contribute to

increasing RF, ESR and CRP levels in non-RRP. Anti-CCP antibody levels clearly correlate with RF in both RRP and non-RRP groups, but

are not linked to severity of arthritis. NOTE: Arrows with solid line: Linkage, Arrows with dotted line: Possible linkage, Dashed line with X:

No apparent linkage.

https://doi.org/10.1371/journal.pone.0190588.g011
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production is not a primary event, which is implicated in the severity and progression of

arthritis.

In the clinical field, it is considered that patients positive for IgM-RF or anti-CCP antibod-

ies are at risk for developing RRP [69], which is observed in 10–40% of RA patients despite

immediate treatment with MTX [46–48]. Since RRP in the first year of early RA was reported

to be a predictive indicator for further disability and joint damage progression [70], it is

important to determine whether periodontal pathogenic bacteria contribute to the progression

of arthritis or not. Contrary to our expectations, our data indicate that anti-CCP antibody pos-

itivity does not reflect either disease activity or prognosis of RA. However, anti-CCP antibody

seems not to be a simple hallmark of exposure to A. actinomycetemcomitans or other periodon-

tal bacteria in patients with RA, because of the significant differences in the anti-CCP antibody

profiles between the RRP and non-RRP groups. For example, anti-CCP antibody levels do not

correlate with ESR and CRP levels in the RRP group, but correlate well with these in the non-

RRP groups (Figs 9 & 10), despite good correlation with RF levels in both groups. These differ-

ences between RRP and non-RRP can be explained by the difference in the types of pathogens

dominantly involved in evoking RF, which may subsequently elicit anti-CCP antibodies. For

instance, Pg-LPS may be the dominant pathogen that contributes to evoking RF in the RRP

group, while PG-PS might be the main contributor in the non-RRP group.

These observations indicate that the patients in the RRP group are under the influence of

oral pathogenic bacteria or their pathogenic components, such as Pg-LPS produced by P. gingi-
valis, leukotoxin-A produced by A. actinomycetemcomitans, or other related pathogens. On the

other hand, patients in the non-RRP group might be affected by intestinal bacteria or their

pathogenic components such as E. coli-LPS and PG-PS. In this regard, it is important to take

into consideration that IgG and especially IgA antibody responses to Pg-LPS are significantly

increased by prolonged treatment with MTX (S4 Fig). This indicates that MTX may enhance

the growth of oral pathogenic bacteria or may disturb the homeostasis of oral and intestinal

microbiota composition. Indeed, recent studies indicate the potential of an oral chronic infec-

tion to alter arthritis progression in susceptible patients, although the pathological mechanisms

involved are not clearly understood. At this point, Nakajima et al. [71] have reported critical

findings to explain the possible pathogenic roles of periodontal bacteria. A single oral adminis-

tration of P. gingivalis in mice induced significant diversity of microbial communities in the

gut, which coincided with the dissemination of enterobacteria to the liver, and decreased

mRNA expression of tight junction proteins, leading to an increase in serum endotoxin levels.

Importantly, the alteration of gut microbiota composition was not caused by the growth of P.

gingivalis in the intestine, but daily influx of P. gingivalis to the intestinal lumen affects not

only intestinal bacterial flora, but also affects immune defense function at the intestinal

mucosa, and increases susceptibility to various types of bacteria and their toxins. Furthermore,

Van der Post et al. [72] reported that P. gingivalis, which is abundant in the oral cavity, but is

also found in the colon, produces a proteinase, Arg-gingipain B (RgpB), which is capable of

cleaving the mucin layer that protects the colonic epithelial surfaces from the penetration of

commensal bacteria, and may play a key role in triggering colitis. We believe that these propos-

als are a rational way to explain the potential risk of periodontitis for a certain subset of RA

patients. Since periodontitis is not specific to RA, and widely distributed even in the general

population, we assume that P. gingivalis influxed into gastrointestinal tract may play critical

pathological roles in susceptible patients. In this regard, we consider that immune defense

function in the gastrointestinal tract may differ among the NL, RRP and non-RRP groups. For

example, it is highly likely that periodontal bacteria and their components may contribute to

dysbiosis development or to damage of the mucosal barrier system in the gastrointestinal tract

of a certain subset of RA patients such as those with RRP. Therefore, we believe it is important

Disease causative pathogens in RA

PLOS ONE | https://doi.org/10.1371/journal.pone.0190588 February 6, 2018 20 / 27

https://doi.org/10.1371/journal.pone.0190588


to consider the possible implication of oral pathogenic bacteria in augmentation of disease

activity in RA regardless of whether patients have infectious periodontitis or not.

In fact, imbalance of intestinal bacteria was considered as a possible factor in the etiopatho-

genesis of RA [73, 74]. To study the possible contribution of dysbiotic gut microbiota to the

pathogenesis of RA, we treated patients with RA with a natural milk antibody preparation,

which contains high levels of antibodies against pathogenic entromicrobes and their toxins.

We found that supplemental treatment with this milk antibody preparation effectively reduced

arthritis symptoms and improved intestinal disorders in a certain subset of RA patients [75].

Recent studies more clearly indicate dysbiosis in RA as reviewed [27]. More importantly,

recent studies show a genetic influence on the composition of the dominant eubacterial popu-

lation in mice [76] and children [77, 78]. In addition, Gomez et. al. [79] reported that the intes-

tinal bacterial population of CIA-susceptible DRβ1 0401 transgenic mice is dominated by a

Clostridium-like bacterium, whereas the guts of CIA-resistant 0402 transgenic mice are

enriched for members of the Porphyromonadaceae family and Bifidobacteria. Furthermore,

Totaro et al. [80] reported that patients with undifferentiated peripheral inflammatory arthritis

and RA, who carry the HLA-DRB1�04 allele, showed a high positivity for P. gingivalis DNA in

the synovial tissues compared to patients negative for the allele. These observations indicate

that oral and intestinal bacteria composition is under the influence of HLA types, and the gut

microbiome will be a potential biomarker for susceptibility to arthritis.

Importantly, regardless of being pathogenic or non-pathogenic, bacteria commonly carry

pathogen-associated molecular patterns on their surfaces, which are recognized by pattern rec-

ognition receptors (PRRs) such as toll-like receptor (TLRs), and may activate host innate and

adaptive immune systems. Therefore, it is highly likely that excess amounts of a variety of

potential pathogens, which overwhelm the host immune defense functions, stimulate the

PRRs, and trigger an uncontrollable inflammatory reaction, leading to the development of

autoimmune diseases under certain conditions [22, 81, 82]. In this study, we tested antibody

responses to three potential pathogens in patients with RA, and concluded that a variety of

commensal and pathogenic microbes and their components may play pathological roles under

certain conditions. Lastly, we believe that oral pathogenic bacteria such as P. gingivalis and oth-

ers influxed into the intestinal tract might play indirect but critical pathogenic roles in enhanc-

ing and perpetuating inflammatory synovitis and osteitis, leading to severe joint damage in a

subset of RA patients such as classified into the RRP group, regardless these patients are

affected by periodontal infection or not.

Conclusion

A variety of bacterial pathogens overwhelming host defense function may play critical patho-

genic roles independently, collectively, and/or synergistically, and contribute to evoking sero-

logical disease marker levels and aggravating disease activity in RA. The outcomes of disease

vary significantly depending on the types and combinations of pathogens dominantly involved.

This concept will be applied for studying the pathogenesis of other autoimmune diseases.
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S1 Appendix. “An ELISA protocol to improve the accuracy and reliability of serological

antibody assays”.
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S1 Fig. Effect of aging on IgG and IgA antibody responses to bacterial pathogens. IgG and

IgA antibody levels against E. coli-LPS, Pg-LPS and PG-PS were determined in sera from 38
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NL controls, 54 patients with RRP and 101 patients with non-RRP, and plotted against age.

Antibody levels against these pathogens were not affected by age in both NL and RA groups,

except IgG anti-Pg-LPS antibody, which increased with age in the NL controls, whereas tended

to decrease in the RRP group. NOTE: Pink: significant correlation at p<0.05, Blue: trending

toward correlation at 0.05≦p<0.15, No color: no correlation.

(TIF)

S2 Fig. Effect of disease duration on IgG and IgA antibody responses to bacterial patho-

gens. IgG and IgA antibody levels against E. coli-LPS, Pg-LPS and PG-PS were determined in

sera from 54 patients with RRP and 101 patients with non-RRP, and plotted against disease

duration (months). No apparent antibody level change associated with disease duration was

observed. This evidence was confirmed in a separate study on the effect of therapeutics on IgG

and IgA antibody responses in patients with RA.

(TIF)

S3 Fig. Effect of MTX on IgG and IgA antibody responses to potential pathogens. IgG and

IgA antibody levels against E. coli-LPS, Pg-LPS and PG-PS were determined in sera collected

multiple times from 7 patients with RRP and 3 patients with non-RRP, who were treated with

MTX for 13 to 113 months. MTX treatment did not affect anti-E. coli-LPS and PG-PS, but

apparently increased IgG and IgA antibody responses to Pg-LPS. NOTE: dotted black line:

RRP, dotted red line: non-RRP, solid black line: an average ± SD at 20 months. Pink: signifi-

cant correlation at p<0.05. No color: no correlation.

(TIF)

S4 Fig. Characterization of IgG and IgA antibody responses to pathogens in NL and RA.

IgG and IgA antibody levels against E. coli-LPS, Pg-LPS and PG-PS were determined in sera from

38 NL controls, 54 patients with RRP and 101 patients with non-RRP, and analyzed potential cor-

relation between antibody responses against individual pathogens by Spearman non-parametric

rank correlation analysis. IgG antibody levels against individual pathogens correlated or tended

to correlate with IgA antibody levels in both NL and RA. By contrast, IgG antibody levels to indi-

vidual pathogens did not correlate with IgG antibody levels against other pathogens in NL con-

trols, indicating that IgG antibody responses to individual pathogens are unrelated independent

event. However, IgG anti-Pg-LPS antibody levels correlated with IgG anti-PG-PS antibody levels

in RRP, and IgG anti-E. coli-LPS antibody levels correlated with IgG anti-PG-PS antibody levels

in non-RRP, indicating antibody responses to Pg-LPS and PG-PS in RRP and antibody responses

to E. coli-LPS and PG-PS in non-RRP are orchestrated.

NOTE: Plot: Visual display for positive and negative “ρ” value of Spearmen correlation coeffi-

cient. Cells highlighted with yellow indicate significant correlation at p<0.05, and blue indicate a

trend at p<0.0.1.

(TIF)

S1 File. Study protocol.

(PDF)

S2 File. Study protocol–English.

(DOCX)
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