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Abstract

Reduced antimicrobial susceptibility due to resistance and tolerance has become a serious

threat to human health. An approach to overcome this reduced susceptibility is the use of

antibiotic adjuvants, also known as potentiators. These are compounds that have little or no

antibacterial effect on their own but increase the susceptibility of bacterial cells towards anti-

microbial agents. Baicalin hydrate, previously described as a quorum sensing inhibitor, is

such a potentiator that increases the susceptibility of Burkholderia cenocepacia J2315 bio-

films towards tobramycin. The goal of the present study is to elucidate the molecular mecha-

nisms behind the potentiating activity of baicalin hydrate and related flavonoids. We first

determined the effect of multiple flavonoids on susceptibility of B. cenocepacia J2315

towards tobramycin. Increased antibiotic susceptibility was most pronounced in combination

with apigenin 7-O-glucoside and baicalin hydrate. For baicalin hydrate, also other B. cepacia

complex strains and other antibiotics were tested. The potentiating effect was only observed

for aminoglycosides and was both strain- and aminoglycoside-dependent. Subsequently,

gene expression was compared between baicalin hydrate treated and untreated cells, in the

presence and absence of tobramycin. This revealed that baicalin hydrate affected cellular

respiration, resulting in increased reactive oxygen species production in the presence of

tobramycin. We subsequently showed that baicalin hydrate has an impact on oxidative

stress via several pathways including oxidative phosphorylation, glucarate metabolism and

by modulating biosynthesis of putrescine. Furthermore, our data strongly suggest that the

influence of baicalin hydrate on oxidative stress is unrelated to quorum sensing. Our data

indicate that the potentiating effect of baicalin hydrate is due to modulating the oxidative

stress response, which in turn leads to increased tobramycin-mediated killing.

Introduction

Burkholderia cepacia complex (Bcc) bacteria are opportunistic pathogens, which cause severe

lung infections in immunocompromised persons, such as cystic fibrosis (CF) patients [1]. The

most frequently isolated Bcc species from these patients are Burkholderia cenocepacia and
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Burkholderia multivorans [2]. Infections with these pathogens are particularly difficult to treat

due to their ability to form biofilms [3]. Biofilms are defined as communities of microbial cells

embedded in a self-produced matrix that, compared to their planktonic counterparts, show

reduced susceptibility towards antimicrobial therapy [4]. The process of biofilm formation is

partially controlled by quorum sensing (QS), a cell-density-dependent communication system,

that coordinates expression of various virulence factors [5,6]. B. cenocepacia has two acylho-

moserine lactone (AHL) based systems, namely CepIR and CciIR. The CepIR system is present

in all Bcc strains, while the CciIR system is only present in highly transmissible ET12 strains

containing the cci genomic island. The CepIR system is generally responsible for positive regu-

lation of QS-regulated genes while CciIR mainly acts as a negative regulator [7]. Another QS

system in B. cenocepacia uses cis-2-dodecenoic acid, also referred to as BDSF (Burkholderia
Diffusible Signal Factor) as signalling molecule. BDSF is synthesized by RpfF and sensed by

RpfR [8]. There is a complex interplay between the AHL- and BDSF-based QS systems [9].

One of the mechanisms contributing to biofilm tolerance is the protection against oxidative

stress [10]. These responses to oxidative stress are controlled by two major transcriptional reg-

ulators, OxyR and SoxRS [11], and include the production of polyamines, such as putrescine,

which reduce intracellular reactive oxygen species (ROS) levels and protect membranes from

lipid peroxidation [12,13].

It was previously described [14,15] that antibiotics also induce intracellular ROS production

and it was shown that this also occurs in Bcc strains [16]. The primary drug-target interactions

are thought to stimulate the oxidation of nicotinamide adenine dinucleotide (NADH) through

the electron transport chain (ETC), which depends on the tricarboxylic acid cycle (TCA)

[15,17]. Hyperactivation of the ETC leads to increased superoxide (O2
-) production. These

highly toxic ROS damage iron-sulphur clusters in proteins, making ferrous iron available for

the Fenton reaction [15]. In this reaction, ferrous iron (Fe2+) will be oxidized by hydrogen per-

oxide (H2O2) to produce ferric iron (Fe3+) and deleterious hydroxyl radicals (�OH). ROS can

directly damage macromolecules such as DNA, lipids and proteins [18] or indirectly damage

DNA by oxidizing the deoxynucleotide pool [19].

A decreased activity of the tricarboxylic acid (TCA) cycle leads to a larger fraction of meta-

bolically less active cells, in which endogenous ROS production is reduced [20]. This leads to

increased tolerance towards antibiotics [21,22]. A lower activity of the TCA cycle is typically

associated with an induction of the glyoxylate shunt. This shunt allows the cells to avoid NADH

formation in the TCA cycle and thus avoid ROS production. This was already described for P.

aeruginosa and B. cenocepacia strains exposed to lethal doses of aminoglycosides [11,16,20].

A promising approach to overcome tolerance and/or resistance is the use of antibiotic adju-

vants, also described as potentiators. These are compounds with little or no intrinsic antibiotic

activity that increase the susceptibility of bacterial cells towards antimicrobial therapy [23].

Brackman et al. [24] already demonstrated an increased susceptibility of B. cenocepacia bio-

films towards tobramycin (TOB) when it was combined with the potentiator baicalin hydrate

(BH). Baicalin (5,6-dihydroxy-7-O-glucuronide flavone), a flavonoid isolated from the roots of

Scutellaria baicalensis, was described as an inhibitor of QS [24] and has a long history of use in

Chinese medicine [25]. The goal of the present research is to elucidate the molecular mecha-

nism behind the potentiating activity of BH and other flavonoids.

Materials and methods

Strains and culture conditions

The strains used in the present study are listed in Table 1. The strains were stored at -80˚C

using Microbank vials (Prolab Diagnostics, Richmond Hill, ON, Canada) and subcultured at
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37˚C on Trypton Soy agar (TSA; Lab M, Lancashire, UK) or TSA supplemented with 800 μg/

ml trimethoprim (Ludeco, Brussels, Belgium) for MDL2. Overnight cultures were grown aero-

bically in Mueller Hinton broth (MHB; Lab M) at 37˚C. Except for cultures on which the

H2DCFDA assay was performed, Luria Bertoni agar (LBA; Lab M) and Luria Bertoni broth

(LBB; Lab M) were used.

Reagents

The following antibiotics were tested during the present study: tobramycin (TOB; TCI Europe,

Zwijndrecht, Belgium), gentamicin (GN; Sigma-Aldrich), kanamycin (KN; Sigma-Aldrich),

neomycin (NEO; Sigma-Aldrich), ceftazidime (CEF; Sigma-Aldrich), meropenem (MEM; Fre-

senius Kabi, Schelle, Belgium), minocycline (MIN; Sigma-Aldrich), ciprofloxacin (CIP; Sigma-

Aldrich) and trimethoprim/sulfamethoxazole (Sigma-Aldrich) (co-trimoxazole, SXT). All

antibiotics were dissolved in either MilliQ water (MQ water) (Millipore, Billerce, MA, US) to

determine the minimal inhibitory concentration (MIC) or in physiological saline (PS) (0.9%

w/v NaCl) (Applichem, Darmstadt, Germany) to treat biofilms. Stock solutions were filter ster-

ilized (0.22 μm Whatman, Dassel, Germany) and stored at 4˚C until use.

Structural derivatives of BH (Sigma-Aldrich, Bornem, Belgium) were selected to determine

their potentiating activity in combination with TOB. These derivatives were scutellarin

(Sigma-Aldrich), luteolin 7-O-glucoside (Sigma-Aldrich), schaftoside (Extrasynthese, Genay

Cedex, France), myricitrin (Sigma-Aldrich) and apigenin 7-O-glucoside (Sigma-Aldrich).

Stock solutions of the flavonoids were prepared in dimethyl sulfoxide (DMSO; Sigma-Aldrich)

and diluted to a final solution of 1% with MQ water to determine the MIC or with PS to treat

biofilms. A control with the same percentage of DMSO was included. A stock solution of

sodium azide (NaN3) (Sigma-Aldrich) was prepared in MQ and further diluted in MHB prior

to use.

Table 1. Strains used in the present study.

Strain Strain info Source and/or reference

B. cenocepacia strains

J2315 (LMG 16656T) CF patient, UK, ET12 strain BCCM/LMG bacteria collection (Ghent, University,

Belgium)

Triple QS deletion

mutant

J2315 ΔcepIΔcciIΔrpfF G. Riccardi [26]

C5424 (LMG 18827) CF patient, Canada, ET12

strain

BCCM/LMG bacteria collection

MDL2 C5424 ΔkatB M. Valvano [27]

K56-2 (LMG 18863) CF patient, Canada, ET12

strain

BCCM/LMG bacteria collection

OME11 K56-2 ΔBCAL2641 M. Valvano [28]

HI2424 (LMG 24507) Soil, USA, PHDC strain BCCM/LMG bacteria collection

AU1054 (LMG 24506) CF patient, USA, PHDC

strain

BCCM/LMG bacteria collection

C6433 (LMG 18828) CF patient, Canada BCCM/LMG bacteria collection

PC184 (LMG 18829) CF patient, USA BCCM/LMG bacteria collection

B.multivorans strains

LMG 13010T CF patient, Belgium BCCM/LMG bacteria collection

LMG 18825 CF patient, UK BCCM/LMG bacteria collection

B. ambifaria LMG 19182T Pea rhizosphere, USA BCCM/LMG bacteria collection

https://doi.org/10.1371/journal.pone.0190533.t001
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Determination of the minimal inhibitory concentration

MICs were determined according to the EUCAST broth microdilution assay using flat-bottom

96-well microtiter plates (MTP; SPL Lifescience, Korea) [29]. The flavonoid concentrations

ranged from 4 μM to 500 μM. CEF, MEM, MIN and CIP concentrations tested ranged from

0.5 μg/ml to 512 μg/ml; SXT concentrations tested ranged from 0.25/4 μg/ml to 256/4864 μg/

ml. All aminoglycosides (TOB, GN, KN and NEO) were tested in a concentration range from

0.5 μg/ml to 4096 μg/ml. The MIC was defined as the lowest concentration with a similar opti-

cal density as un-inoculated growth medium. Absorbance was measured at 590 nm with a

multilabel MTP reader (EnVision, Perkin Elmer LAS, Waltham, MA). All MIC determinations

were performed in triplicate.

Biofilm formation

Biofilms were grown in clear round-bottomed 96-well plates (SPL) to evaluate their survival

after treatment, or in black flat-bottomed 96-well plates (Perkin Elmer) for measuring fluores-

cence. An inoculum of approximately 5x107 CFU/ml was prepared in fresh medium from an

overnight culture. 100 μl of this inoculum was added to the wells of a MTP. After 4 hours of

adhesion the supernatant was removed and the wells were rinsed with PS. Subsequently, fresh

medium was added to the wells and the MTP was further incubated for 20 hours at 37˚C.

Biofilm treatment

To evaluate the effect of flavonoids on the susceptibility of biofilms towards antibiotics, bio-

films were treated with following components: the antibiotic alone, the flavonoid alone, a com-

bination of both, or PS as a control. All antibiotics were tested at concentrations of 4xMIC.

The concentration of flavonoids was 100 μM to initially detect their potentiating activity. In

subsequent experiments, a concentration of 250 μM was used for BH. All solutions were

diluted in PS. When a stock solution was prepared in DMSO, a control with the same percent-

age DMSO was included. Biofilms were grown as described above. After 24 hours of biofilm

formation the supernatant was removed and the wells were rinsed with PS. Subsequently, PS

(= control), the antibiotic alone, the flavonoid alone or a combination of both was added to

the wells. After 24 hours at 37˚C, the supernatant was removed and the wells were rinsed with

PS. Sessile cells were harvested from the MTP by two cycles of shaking (5 min, 900 rpm; Titra-

max 1000, Heidolph Instruments, Schwabach, Germany) and sonicating (5 min; Branson

3510, Branson Ultrasonics Corp, Danbury, CT, USA). The number of surviving cells (CFU/

ml) was determined by plating the resulting bacterial suspension.

Transcriptomic analysis

To elucidate the molecular mechanism by which BH affects biofilm susceptibility towards

TOB, transcriptomes of treated and untreated B. cenocepacia J2315 biofilm cells were com-

pared using RNA sequencing. Gene expression was determined in 24 hour-old B. cenocepacia
J2315 biofilms that were exposed to TOB alone (3 x MIC), BH alone (250 μM), a combination

of both, or PS (= control) for 24 hours. These concentrations were selected because sufficient

living cells remained for the RNA extraction, while a significant difference between TOB and

TOB+BH could be observed. For each treatment, three biological replicates were included.

Biofilm cells were harvested as described above with two cycles of vortexing and sonicating.

Total RNA was extracted using Ambion RiboPure Bacteria Kit (Ambion, Austin, TX) accord-

ing to the manufacturers’ instructions, including DNAse treatment for 1 hour at 37˚C. The

concentration and quality of the total extracted RNA was determined by using the Quant-it
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ribogreen RNA assay (Life Technologies, Grand Island, NY, USA) and the RNA 6000 pico

chip (Agilent Technologies, Santa Clara, CA, USA), respectively. Subsequently, 200 ng of RNA

was depleted for rRNA using the Ribo-Zero Magnetic Kit for Gram-negative Bacteria (Epicen-

tre, Madison, WI, USA). Library preparation was performed using the Truseq stranded Total

RNA library prep (Illumina, San Diego, CA, USA) according to manufacturer’s instructions.

Libraries were quantified by qPCR, according to Illumina’s Sequencing Library qPCR Quanti-

fication protocol guide, version February 2011. A DNA 1000 chip (Agilent Technologies,

Santa Clara, CA, US) was used to verify the library’s size distribution and quality. Sequencing

was performed on a high throughput Illumina NextSeq 500 flow cell generating 75 bp single

reads. After an initial quality control using CLC Genomics Workbench version 8.5.1 (Qiagen,

Venlo, Netherlands), the reads for each condition were mapped to the reference genome

sequences (accession numbers AM747720, AM747721, AM747722, and AM747723) [30]

(Cut-offs: 90% length and 80% similarity). The number of reads per transcript were divided by

the transcript length and then normalized to the total amount of reads, obtaining reads per kb

per million (RPKM) expression values. Statistical analysis was performed using Empirical

DGE test in CLC genomics Workbench version 8.5.1. The effect of the addition of BH to

treated cells (TOB) or untreated cells (PS) on gene expression was evaluated. The combination

of TOB+BH was compared to treatment with TOB alone, and treatment with BH alone was

compared to an untreated control (PS) to analyse the effect of BH on both treated and

untreated cells. Only genes that were significantly differentially expressed (p-value < 0.05) and

with at least a 1.5-fold change were considered. Results were evaluated using the KEGG Path-

way Database [31] and Burkholderia Genome Database [32]. The experimental protocols and

the raw sequencing data can be found in ArrayExpress under the accession number E-MTAB-

6099.

Fluorometric determination of reactive oxygen species

To evaluate endogenous ROS production, a 2’,7’-dichlorodihydrofluorescein diacetate

(H2DCFDA)-based assay was used. H2DCFDA is a colourless, non-fluorescent compound that

passively diffuses into the cell, where non-specific intracellular esterases cleave the acetate

groups and so trap the compound in the cell. The cleaved product will be easily oxidized by

intracellular ROS, yielding highly fluorescent 2’,7’-dichlorofluorescein (DCF) [20]. Cells were

pre-incubated with the dye before treatment to exclude differences in fluorescence due to an

altered uptake by treated cells. Since this assay has been described as highly pH dependent, a

pH-matched control was included [16]. For this assay, biofilms were cultivated as described

above, while planktonic cultures were grown aerobically for 24 hours and were standardized to

an optical density of 1 (λ = 590 nm). Biofilms and planktonic cultures were grown in LBB.

After 24 hours the cells were rinsed with PS and incubated with 10 μM H2DCFDA in LBB

shielded from light at 37˚C. After 45 minutes the cells were rinsed with phosphate buffered

saline (PBS) and treated with TOB (4xMIC), BH (250 μM) or a combination of both. A pH-

matched control in PBS was included as a control for each condition. Fluorescence (λ excita-

tion = 485 nm, λ emission = 535 nm) was measured using an Envision multilabel MTP reader.

Net fluorescence was calculated by subtracting autofluorescence of bacterial cells incubated

under the same conditions without H2DCFDA. Each experiment included at least three bio-

logical replicates.

Statistical data analysis

Statistical analysis was performed using SPSS version 24 software (SPSS, Chicago, IL, USA).

The Shapiro-Wilk test was used to verify the normal distribution of the data. Normally
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distributed data were analysed using an ANOVA or an independent sample T-test. Non-nor-

mally distributed data were analysed using a Kruskal-Wallis test or a Mann-Whitney test. P-

values smaller than 0.05 were considered significant.

Results and discussion

Determination of the potentiating effect of flavonoids on the antibiotic

susceptibility of Bcc species

The ability of several structural analogues of BH to increase the susceptibility of B. cenocepacia
J2315 towards TOB was evaluated. The analogues tested were scutellarin, luteolin 7-O-gluco-

side, schaftoside, myricitrin and apigenin 7-O-glucoside. First, the MIC on B. cenocepacia was

determined in order to select a flavonoid concentration which did not inhibit growth of the

bacterial cells (sub-MIC). For all flavonoids the MIC values were>500 μM for B. cenocepacia
J2315. To limit the amount of DMSO in the final solution to 1%, a concentration of 100 μM

was selected. When biofilms were treated with BH or apigenin 7-O-glucoside, an increased

killing was observed compared to treatment with TOB alone (Fig 1). No potentiating effect

was observed with any of the other flavonoids tested. These results were not surprising since

small structural differences in flavonoids can influence their antimicrobial activity [33,34].

The effect of BH in combination with TOB on the susceptibility of B. cenocepacia J2315 was

already established [24]. This raised the question if BH could increase the susceptibility of B.

cenocepacia J2315 biofilms towards other antibiotics. Therefore, several antibiotics (CEF, CIP,

MIN, MEM and SXT) belonging to different classes were tested in combination with BH.

However, the addition of BH did not lead to a significantly increased susceptibility towards

any of the antibiotics tested (S1 Fig and S1 Table). This suggests that the increased susceptibil-

ity towards TOB is specific to aminoglycosides. To test this hypothesis, other aminoglycosides

(GN, KN and NEO) were tested in combination with BH against B. cenocepacia J2315 and

other Bcc strains (Table 1). Since BH has no antibacterial effect, a significant antibacterial

effect of the antibiotic alone is required in order to observe the potentiating influence of BH.

Therefore, strains with a high innate resistance towards aminoglycosides (MIC� 1024 μg/ml)

Fig 1. Potentiating effect of BH and other flavonoids. Data shown are percentage survival of B. cenocepacia J2315

biofilm cells treated with the combination of a flavonoid (100 μM) and TOB (4 x MIC) compared to TOB alone. The

tested flavonoids were scutellarin (scut), apigenin 7-O-glucoside (api), luteolin 7-O-glucoside (lut), schaftoside (scha),

myricitrin (myr) and baicalin hydrate (BH). �: statistically significant (p< 0.05) less survival compared to TOB alone.

Error bars are standard deviations (SD) (n = 4).

https://doi.org/10.1371/journal.pone.0190533.g001
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were not included (S2 Table). The reduction in surviving cells after treatment with the combi-

nation compared to the aminoglycoside alone is shown in Table 2.

All B. cenocepacia strains, except B. cenocepacia C5424, showed an increased susceptibility

towards TOB in combination with BH. For GN, KN and NEO, the potentiating effect of BH

was strain-dependent. For B. ambifaria LMG 19182, an increased susceptibility was observed

towards GN and NEO in combination with BH. For B.multivorans strains, the addition of BH

only caused an increased susceptibility for B.multivorans LMG 13010 in combination with

NEO (Table 2). The findings for this strain are in contrast with previously obtained data by

Brackman et al. [24], where BH did show a TOB-potentiating activity. However, the experi-

mental setup of biofilm formation differs in both studies. Brackman et al. [24] used medical-

grade silicone disks placed in 24-well plates, while 96-well microtiter plates were used in this

study. These results indicate that the potentiating effect of BH is not only strain- and amino-

glycoside-dependent, but also model-system dependent.

For subsequent experiments we used B. cenocepacia J2315 as the test strain and TOB as the

aminoglycoside.

Effect of baicalin hydrate on gene expression in B. cenocepacia J2315 biofilms. To dis-

cover the molecular mechanism by which BH affects biofilm susceptibility towards TOB, tran-

scriptomes of treated and untreated B. cenocepacia J2315 biofilm cells were compared using

RNA sequencing. Results show that the addition of BH had a small but significant impact on

gene expression, both for TOB treated and untreated cells (Fig 2). Major differences in gene

Table 2. Potentiating effect of BH in Bcc biofilms.

Strain TOB+BH vs. TOB GN+BH vs. GN KN+BH vs. KN NEO+BH vs. NEO

B. cenocepacia J2315T 88.9 (± 10.3) 80.6 (± 14.6) NR NR

B. cenocepacia K56-2 81.3 (± 40.0) 96.7 (± 11.5) NR 51.5 (± 44.1)

B. cenocepacia C5424 NR ND ND ND

B. cenocepacia AU1054 97.4 (± 10.4) ND 98.2 (± 1.4) ND

B. cenocepacia LMG18828 75.8 (± 51.1) NR ND ND

B. cenocepacia LMG18829 95.3 (± 5.7) 69.9 (± 30.5) NR 97.2 (± 6.2)

B.multivorans LMG13010T NR NR NR 98.1 (± 3.2)

B.multivorans LMG18825 NR NR NR NR

B. ambifaria LMG19182T NR 76.7 (± 32.2) NR 97.0 (± 7.6)

Data shown are percentage reduction in CFU/ml (±SD) when combination treatment is compared to the antibiotic

alone (n = 3). NR, no significant reduction in CFU/ml when BH is added to the antibiotic treatment (p > 0.05). ND,

not determined because MIC > 1024 μg/ml. Tobramycin (TOB) + BH (TOB+BH), gentamicin (GN) + BH (GN

+BH), kanamycin (KN) + BH (KN+BH) and neomycin (NEO) + BH (NEO+BH).

https://doi.org/10.1371/journal.pone.0190533.t002

Fig 2. Differentially expressed genes in B. cenocepacia J2315 biofilms exposed to different treatments. A.

Downregulated genes. B. Upregulated genes.

https://doi.org/10.1371/journal.pone.0190533.g002
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expression were observed in pathways related to cellular respiration and QS. The genes signifi-

cantly differentially expressed in these pathways are shown in Table 3. Genes responsible for

the electron transport chain and TCA were upregulated, while the expression for genes encod-

ing enzymes of the glyoxylate shunt showed a significant downregulation. These results point

to a potential increase in intracellular oxidative stress, as Van Acker et al. [10] previously

described an upregulation of glyoxylate shunt-related genes and a downregulation of genes

related to the TCA cycle in B. cenocepacia biofilm cells after treatment with high concentra-

tions of TOB. These cells were likely metabolically less active which leads to reduced ROS pro-

duction [10]. We hypothesized that BH could stimulate cellular respiration, which

subsequently would induce the production of ROS and lead to increased killing. As the oxida-

tive stress response is partially controlled by QS [7] and as BH has already been described as a

QS inhibitor [24,35] the focus in the search for the molecular mechanism of BH on the

increase of the antibiotic susceptibility of B. cenocepacia biofilms was directed toward both QS

and oxidative stress.

Effect of baicalin hydrate on oxidative stress. The effect of BH on oxidative stress was

evaluated by testing the susceptibility of a catalase deletion mutant (ΔkatB) and the corre-

sponding wild type strain (B. cenocepacia C5424) towards the combination BH+TOB. We

hypothesised that if BH increases ROS-mediated killing by antibiotics, a mutant that lacks pro-

tection against oxidative stress would be more sensitive towards the potentiating effect of BH

than the wild type. As shown in Fig 3, there was no increase in susceptibility for the wild type

after combining BH with TOB. As previously described [16], TOB treatment of the katB dele-

tion mutant resulted in more killing than in the wild type. Furthermore, addition of BH led to

a significant further increase in susceptibility of the biofilm cells to TOB in the mutant (but

not in the WT). In addition, the effect was more pronounced using higher concentrations of

BH, suggesting a dose-dependent effect (Fig 3).

From the transcriptomic analysis we learned that no changes in expression were observed

for respiration-related genes upon exposure to BH alone, suggesting the effect of BH on bio-

film susceptibility is antibiotic-mediated. This was confirmed by the lack of an effect by BH

alone on WT or ΔkatB biofilms (Fig 3).

To confirm the role of BH in promoting ROS-mediated killing, endogenous ROS accumu-

lation was measured using the H2DCFDA assay. In this assay, fluorescence generated is a mea-

sure for the amount of ROS present in the cell. Almost a 2-fold increase in fluorescence is

observed when B. cenocepacia J2315 biofilms were treated with TOB compared to the

untreated control. Another 2-fold increase is observed when BH is combined with TOB, com-

pared to TOB alone (Fig 4). This confirms an increased production of ROS in the cells treated

with TOB+BH.

Baicalin hydrate as a quorum sensing inhibitor. As the oxidative stress response is co-

regulated by QS [7,16] and as BH has been described as a QS inhibitor [24], we hypothesized

that BH inhibits QS and as a result increases ROS production in B. cenocepacia. To test this

hypothesis, ROS production in a triple QS mutant (ΔcepIΔcciIΔrpfF) was compared to ROS

production in the wild type after treatment with TOB and BH. A triple QS mutant was chosen

over single ΔcepI or ΔcciImutants in order to avoid biased results caused by the complex inter-

action between the three QS networks in B. cenocepacia J2315 [26,36]. The H2DCFDA assay

was carried out on planktonic cells to eliminate nonspecific effects due to the reduced biofilm

formation of the triple QS mutant [26]. We observed a significant increase in the amount of

ROS in the triple QS mutant compared to the wild type for the control and TOB treatments

(Fig 5). The increased amount of ROS is probably due to a lack of oxidative stress response in

the triple QS mutant, as previously described [16]. Surprisingly, the addition of BH resulted in

an increased ROS production in the triple QS mutant compared to TOB alone. Also, no
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Table 3. Differences in gene expression expressed as fold change (p< 0.05) caused by BH (compared to TOB or to an untreated control) in B. cenocepacia J2315.

Gene number Annotation BH vs. ctrl TOB+BH vs. TOB

Glyoxylate shunt

BCAL2122 (aceB) Malate synthase - -1.4

BCAL2118 (aceA) Isocitrate lyase AceA - -1.5

BCAM1588 Isocitrate lyase - -1.9

TCA cycle

BCAM0972 (gltA) Type II citrate synthase - 1.8

BCAM0961 (acnA) Aconitate hydratase - 1.7

BCAL1215 (lpdV) Dihydrolipoamide dehydrogenase - 1.5

BCAL1517 (odhL) Dihydrolipoamide dehydrogenase - 1.7

BCAM1250 Putative acetyl-CoA hydrolase/transferase 1.6 1.5

BCAM0970 (sdhB) Succinate dehydrogenase iron-sulfur protein - 1.6

Pyruvate metabolism

BCAM1581 (pckG) Phosphoenolpyruvate carboxykinase - 2.0

BCAL1910 Acetoin:2,6-dichlorophenolindophenol oxidoreductase beta subunit 1.6 -

Oxidative phosphorylation

BCAL2337 NADH dehydrogenase I chain H - 1.5

BCAL2336 NADH dehydrogenase I chain I - 1.8

BCAL2335 (nuoJ) NADH dehydrogenase I chain J - 1.5

BCAL2334 (nuoK) NADH-ubiquinone oxidoreductase I chain K - 1.8

BCAL2333 (nuoL) NADH-ubiquinone oxidoreductase I chain L - 1.5

BCAL2332 (nuoM) NADH-ubiquinone oxidoreductase I chain M - 1.6

BCAL2331 (nuoN) NADH dehydrogenase I chain N - 1.6

BCAM0905 (ndh) Putative NADH dehydrogenase - -1.4

BCAM0166 (ndh) NADH dehydrogenase -2.6 -

BCAM0970 (sdhB) Succinate dehydrogenase iron-sulfur protein - 1.6

BCAL0759 (ubiA) Prenyltransferase family protein - 1.4

BCAL2141 (cyoD) Cytochrome O ubiquinol oxidase protein - 1.6

BCAL0752 Putative cytochrome c oxidase assembly protein - 1.6

BCAM1734 Putative cytochrome C - 1.7

BCAL2142 (cyoC) Cytochrome o ubiquinol oxidase subunit III - 2.0

BCAL2143 (cyoB) Ubiquinol oxidase polypeptide I - 1.5

BCAM2674 Putative cytochrome oxidase subunit I -1.6 -

BCAL0784 (cydB) Cytochrome d ubiquinol oxidase subunit II - 1.5

BCAL0034 (atpA) ATP synthase alpha chain - 1.7

BCAL0031 (atpE) ATP synthase C chain - 1.7

BCAL2622 (ppa) Polyphosphate kinase - -1.5

Glucarate/galactarate metabolism to 2-oxo-glutarate

BCAL1043 (gudD) Glucarate dehydratase 2.6 1.5

BCAM2511 (garD) Putative galactarate dehydratase 2.3 1.6

BCAM2512 5-dehydro-4-deoxyglucarate dehydratase 2.2 2.9

BCAM2514� Putative fatty aldehyde dehydrogenase 2.0 1.6

Quorum sensing

BCAM1870 (cepI) N-acylhomoserine lactone synthase CepI - 1.5

BCAM0239a (cciI) N-acylhomoserine lactone synthase - -1.6

BCAM0240 (cciR) N-acylhomoserine lactone dependent regulatory protein - -2.3

Oxidative stress response

BCAS0085 (ohr) Organic hydroperoxide resistance protein - -1.7

(Continued)
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difference was observed between the triple QS mutant and the wild type for the combination

treatment. Whether these findings mean that the effect of BH on oxidative stress is unrelated

to QS or whether the maximal amount of ROS has been reached (and cannot further be

increased by addition of BH) remains to be determined.

Remarkably, the data obtained from RNA sequencing revealed an upregulation of genes

involved in the main QS systems when BH and TOB were combined (Table 3). cciR
(BCAM0240) and cciI (BCAM0239A) are both located on chromosome 2, and are co-tran-

scribed [37]. They encode CciR and CciI, which are mainly negative regulators of QS-related

genes, and showed a significant downregulation of 2.3 and 1.6 fold, respectively. cepI
(BCAM1870) and cepR (BCAM1868) are also located on chromosome 2, but are divergently

transcribed [37]. CepI, the synthase of the CepIR system which is mainly a positive regulator,

was 1.5 fold upregulated. These results are in accordance with results from a previous study in

which an upregulation of cepIwas observed in several stress conditions (including low oxygen

and high temperature) [13]. It is conceivable that the upregulation of these QS systems is not a

direct result of the presence of BH, but rather an indirect effect, possibly due to differences in

growth stages after both treatments. This is in agreement with observations by Brackman et al

[38], where the addition of BH to biofilms at the same growth stage resulted in a downregula-

tion in expression of QS-regulated genes.

Based on these results, we could not confirm a direct link between QS and the effect of BH

on oxidative stress. Therefore other mechanisms were considered in the search of a mode of

action for BH.

Table 3. (Continued)

Gene number Annotation BH vs. ctrl TOB+BH vs. TOB

BCAL3477 Putative catalase - -1.5

BCAL3301 (oxyR) Oxidative stress regulatory protein - -1.8

BCAL2643 (sodC) Superoxide Dismutase SodC - -1.5

BCAL2641 Putative ornithine decarboxylase - -2.1

BCAM1812 Agmatinase -1.8 -1.4

https://doi.org/10.1371/journal.pone.0190533.t003

Fig 3. Potentiating effect of BH in B. cenocepacia ΔkatB. Data shown are the average log(CFU/ml) recovered after

24h treatment of mature biofilms of B. cenocepacia C5424 (WT) and its catalase deletion mutant (ΔkatB) with 4 x MIC

TOB (MIC for both strains = 128 μg/ml), and TOB in combination with BH (100 μM and 250 μM). �: significant

difference (p < 0.05) compared to TOB alone ��: significant difference (p< 0.05) compared to the wild type. Error

bars represents SD (n = 3).

https://doi.org/10.1371/journal.pone.0190533.g003
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Influence of baicalin hydrate on cellular respiration. An upregulation of the expression

of genes involving the oxidative phosphorylation and TCA cycle was observed upon the addi-

tion of BH to TOB treatment (Table 3). This suggests that BH increases respiration, which

could increase TOB-mediated killing.

To evaluate the influence of BH on oxidative phosphorylation, the effect of a cytochrome c

oxidase inhibitor (sodium azide, NaN3) on the potentiation of TOB by BH was investigated.

Biofilms were pre-treated with NaN3, BH, or a combination of both. After 4 hours, TOB was

added to the pre-treated cells for an additional 20 hours. Data in Fig 6 depict the percentage of

surviving cells compared to their respective controls. There is no increase in surviving cells

between sessile cells treated with TOB and NaN3 compared to TOB alone. However, when

NaN3 was combined with TOB+BH, a significant increase in surviving cells could be observed

compared to TOB+BH alone, showing that the addition of NaN3 suppressed the potentiating

Fig 4. ROS production in B. cenocepacia J2315 biofilms after treatment with TOB alone or in combination with

BH. Accumulation of ROS in B. cenocepacia J2315 biofilms, expressed as fluorescence generated after incubation with

H2DCFDA, after 24 hours treatment with TOB (4 x MIC), TOB in combination with BH (250 μM) or an untreated

pH-matched control. Data presented are means, error bars are standard deviations. The experiment was conducted six

times. �: Significant difference (p< 0.05) compared to treatment with TOB alone.

https://doi.org/10.1371/journal.pone.0190533.g004

Fig 5. ROS production in B. cenocepacia J2315 and its triple QS mutant after treatment with TOB alone or in

combination with BH. Accumulation of ROS, expressed as fluorescence (average ± SD) generated after incubation

with H2DCFDA, in planktonic cultures of B. cenocepacia J2315 and its triple QS mutant treated with TOB (4 x MIC) or

the combination with BH (250 μM) and a pH-matching control after 16 hours. MIC for TOB was 256 μg/ml and

128 μg/ml for the wild type and its triple QS mutant respectively. The experiment was conducted using six biological

replicates. �: statistically significant difference compared to the wild type (p< 0.05).

https://doi.org/10.1371/journal.pone.0190533.g005
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effect of BH. These results are in accordance with data showing increased production of ROS

(Fig 4), since an increased activity of the electron transport chain will result in an increased

production of ROS [11]. Together our data suggest an influence of BH on the proton motive

force, leading to potentiation of the activity of TOB. It was previously shown that metabolic

stimulation of the TCA cycle can increase susceptibility towards aminoglycosides, but not to

other classes of antibiotics [39]. This is in line with the findings in the present study.

Influence of baicalin hydrate on glucarate metabolism. As RNAseq data revealed an

upregulation of genes involved in cellular respiration, we looked for changes in the expression

of genes involved in turnover of compounds feeding into the TCA cycle.

The only pathway with a direct link to the TCA cycle that showed upregulation of multiple

genes was that for glucarate utilisation (Fig 7). D-glucarate, the dicarboxylic acid analogue of

glucose, can serve as a growth substrate in many bacteria [40]. According to the biochemical

pathways in the KEGG database, B. cenocepacia J2315 is able to use two pathways for the utili-

zation of D-glucarate [31]. In the first pathway D-glucarate is converted to D-glycerate and

finally to 2-phosphoglycerate, which is a metabolite in the glycolytic pathway [41]. In the sec-

ond pathway three enzymatic steps lead to the generation of ɑ-ketoglutarate as an end product,

which is a key substrate in the TCA cycle [42].

The expression of genes involved in the pathway generating D-glycerate was unaffected by

addition of BH. However, in the other pathway, a significant upregulation (2.6-fold) was

observed for glucarate dehydratase (gudD) upon the addition of BH. Also for 5-keto-4-deoxy-

glutarate dehydratase (BCAM2512) and ɑ-ketoglutarate semialdehyde dehydrogenase

(BCAM2514), genes coding for enzymes involved in generating ɑ-ketoglutarate [43], a signifi-

cant upregulation could be observed (2.2-fold and 2.0-fold, respectively). This was also the

case when gene expression was compared between cells exposed to the combination of TOB

and BH, and those exposed to TOB alone: gudD, BCAM2512 and BCAM2514 showed a

1.5-fold, 2.9-fold, and 1.6-fold increased expression, respectively (Fig 7).

To further investigate the involvement of glucarate metabolism in the potentiating activity

of BH, glucarate was added to sessile cells treated with TOB and TOB+BH. The glucarate

+TOB treatment caused a significant reduction in the number of surviving cells compared to

Fig 6. Effect of electron transport chain inhibition by NaN3 on BH-mediated TOB potentiation. Percentage of

surviving cells (±SD) after treatment compared to their respective controls (which received a pre-treatment but no

antibiotic). Final concentrations of NaN3, BH and TOB were 150 μM, 250 μM and 1024 μg/ml (4 x MIC) respectively.

Pre-treated cells received BH, NaN3, a combination of both or MHB for 4 hours. The experiment was conducted in

triplicate. �: significant difference (p< 0.05) between sessile cells not treated with NaN3. ��: significant difference

(p< 0.05) between sessile cells when NaN3 is included in the treatment.

https://doi.org/10.1371/journal.pone.0190533.g006
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TOB alone. This reduction was similar to that observed for the combinations TOB+BH and

TOB+BH+glucarate (Fig 8). Our data suggest that stimulation of the glucarate degradation

pathway (by adding glucarate or BH) increases cellular metabolism and increases susceptibility

to TOB. When both compounds are added simultaneously, the pathway is not more stimulated

than it is by either one of the compounds, resulting in a similar reduction in surviving cells.

Influence of baicalin hydrate on putrescine biosynthesis. Bacteria can produce poly-

amines that quench ROS and protect membranes against lipid peroxidation [11]. Polyamines

are small aliphatic molecules with multiple amino groups, which are protonated at physiologi-

cal pH. The most common cellular polyamines are putrescine, spermidine, spermine and

cadaverine [44]. The most abundant one in B. cenocepacia is putrescine, whereas spermidine

and cadaverine are produced in lower amounts [45]. B. cenocepacia can produce putrescine via

two different pathways. In the first pathway ornithine decarboxylase (ODC) converts ornithine

Fig 7. BH affects regulation of genes involved in glucarate metabolism of B. cenocepacia J2315. The reactions

depicted in black are significantly (p < 0.05) upregulated (fold changes of “BH vs. Ctrl” / “TOB+BH vs TOB”). The

involved enzymes are gudD (glucarate dehydratase), BCAM2512 (5-keto-4-deoxyglutarate dehydratase) and

BCAM2514 (ɑ-ketoglutarate semialdehyde dehydrogenase). For the reactions depicted in grey no significant

differential expression in either “BH vs. Ctrl” or “TOB+BH vs TOB” was observed.

https://doi.org/10.1371/journal.pone.0190533.g007

Fig 8. Impact of glucarate and BH on the susceptibility of B. cenocepacia J2315 biofilms towards TOB. Data shown

are the percentage surviving cells compared to TOB treatment alone. �: significantly less surviving cells compared to

TOB alone (p < 0.05). Error bars show SD (n = 3).

https://doi.org/10.1371/journal.pone.0190533.g008
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to putrescine. The second pathway uses arginine as a start product, which is decarboxylated to

agmatine by arginine decarboxylase (ADC). In a following step, agmatine is converted to

putrescine by agmatinase, releasing urea [28]. B. cenocepacia has two ODC homologues

(BCAM1111 and BCAL2641) and one ADC homologue (BCAM1112) (Fig 9). El-Halfawy

et al. [28] demonstrated that these three genes are the only contributors to putrescine produc-

tion in B. cenocepacia, and that BCAL2641 is the key enzyme in protection against antibiotic-

mediated oxidative stress. They also showed that the ODC BCAL2641 responds to antibiotic

stress by increasing putrescine levels. The other ODC BCAM1111 and ADC BCAM1112 were

not affected by exogenous stress and their expression appeared to be regulated by BCAL2641.

This suggests that the increased levels of putrescine upon antibiotic stress depend on the activ-

ity of BCAL2641. Increased putrescine levels can induce expression of oxyR which activates

oxidative stress response mechanisms, whereas a reduced putrescine biosynthesis resulted in

an increased ROS generation [28].

The key enzyme in putrescine biosynthesis (ODC, BCAL2641) was significantly downregu-

lated (-2.1-fold) in cells treated with TOB+BH compared to treatment with TOB alone. Since

this enzyme protects against oxidative stress in B. cenocepacia [28], we hypothesized that BH

causes a downregulation of BCAL2641 which would lead to an inhibition of putrescine synthe-

sis, resulting in impaired oxidative stress response leading to increased biofilm susceptibility

towards TOB. To test this hypothesis, we investigated the potentiating effect of BH in a

ΔBCAL2641 mutant and the corresponding WT strain (B. cenocepacia K56-2) [28]. Biofilms

were treated with TOB alone (8 x MIC) and a combination of TOB (8 x MIC) and BH

(250 μM) (Fig 10). The ΔBCAL2641 deletion mutant is more susceptible to TOB than the wild

type, indicating that putrescine protects against oxidative stress, as previously described

[12,28]. Furthermore, there is no difference between wild type and mutant when cells were

treated with TOB + BH. This could indicate that the potentiating effect of BH is indeed linked

to regulation of BCAL2641 expression by BH. Together, these results suggest that BH affects

putrescine biosynthesis, and by doing so affects the oxidative stress response, leading to an

increased biofilm susceptibility.

Concluding remarks

Several studies already indicated that changes in metabolism upon antibiotic treatment play an

important role in the effect of antibiotics [10,15,19,20,22]. These metabolic shifts allow the

Fig 9. BH affects regulation of genes involved in putrescine biosynthesis of B. cenocepacia J2315. The reactions

depicted in black are significantly (p < 0.05) differentially regulated (fold changes of “BH vs. Ctrl” / “TOB+BH vs

TOB”). The enzymes involved the putrescine synthesis pathway are ornithine decarboxylase (ODC), arginine

decarboxylase (ADC) and agmatinase. NS: no significant change in gene expression (p> 0.05).

https://doi.org/10.1371/journal.pone.0190533.g009
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bacteria to enter a protective state by reducing cellular growth, by limiting ROS production

[46] and/or by reducing antibiotic uptake [39]. Especially aminoglycosides can be affected by

the latter, since their uptake is an energy-requiring process [39].

In conclusion, the addition of BH to TOB treatment increases oxidative stress in B. cenoce-
pacia J2315 biofilms compared to treatment with TOB alone. The potentiating activity of BH

appears to be strain-, aminoglycoside- and model-system dependent. While the exact mode of

action is still not entirely clear, we have shown that BH has an impact on oxidative stress by

influencing oxidative phosphorylation, glucarate metabolism and the protective response by

putrescin. Combined, these factors cause an increased ROS production and increased killing

upon exposure to TOB.

Supporting information

S1 Fig. Potentiating effect of BH in combination with several antibiotics on B. cenocepacia
J2315 biofilms. Data shown are percentage survival of B. cenocepacia J2315 biofilm cells

treated with the combination of BH (250 μM) with antibiotic compared to the antibiotic alone

(4 x MIC) (MICs are shown in S1 Table). The antibiotics are ceftazidime (CEF), ciprofloxacin

(CIP), minocycline (MIN), meropenem (MEM) and co-trimoxazole (SXT). None of the com-

bination treatments were significantly different (p > 0.05) compared to the antibiotic alone

(n = 3).

(TIF)

S1 Table. MICs of B. cenocepacia J2315 for several antimicrobial agents.

(XLSX)

S2 Table. MIC (μg/ml) of other tested Bcc species for several aminoglycosides, including

tobramycin (TOB), kanamycin (KN), neomycin (NEO) and gentamicin (GN).

(XLSX)

Fig 10. Influence of BH on TOB susceptibility of B. cenocepacia K56-2 biofilms and its ΔBCAL2641 mutant. Data

are averages of log(CFU/ml) surviving cells after treatment with TOB (8 x MIC) alone or in combination with BH

(250 μM). Influence of BH on biofilm susceptibility was evaluated in B. cenocepacia K56-2 (wild type) and its

ΔBCAL2641 deletion mutant. The MIC for TOB in both strains was 128 μg/ml. The experiment was conducted in

triplicate. �: significantly different compared to the wild type (p< 0.05). ��: significant difference compared to TOB

alone (p< 0.05). Error bars are SD.

https://doi.org/10.1371/journal.pone.0190533.g010
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