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Abstract

The present study uses bioenergetics modeling to estimate the annual consumption of the

main zooplankton groups by some of the most commercially important planktivorous fish

stocks in the Northeast Atlantic, namely Norwegian spring-spawning (NSS) herring (Clupea

harengus), blue whiting (Micromesistius poutassou) and NEA mackerel (Scomber scom-

brus). The data was obtained from scientific surveys in the main feeding area (Norwegian

Sea) in the period 2005–2010. By incorporating novel information about ambient tempera-

ture, seasonal growth and changes in the diet from stomach content analyses, annual con-

sumption of the different zooplankton groups by pelagic fish is estimated. The present study

estimates higher consumption estimates than previous studies for the three species and

suggests that fish might have a greater impact on the zooplankton community as foragers.

This way, NEA mackerel, showing the highest daily consumption rates, and NSS herring,

annually consume around 10 times their total biomass, whereas blue whiting consume

about 6 times their biomass in zooplankton. The three species were estimated to consume

an average of 135 million (M) tonnes of zooplankton each year, consisting of 53–85 M

tonnes of copepods, 20–32 M tonnes of krill, 8–42 M tonnes of appendicularians and 0.2–

1.2 M tonnes of fish, depending on the year. For NSS herring and NEA mackerel the main

prey groups are calanoids and appendicularians, showing a peak in consumption during

June and June–July, respectively, and suggesting high potential for inter-specific feeding

competition between these species. In contrast, blue whiting maintain a low consumption

rate from April to September, consuming mainly larger euphausiids. Our results suggest

that the three species can coexist regardless of their high abundance, zooplankton con-

sumption rates and overlapping diet. Accordingly, the species might have niche segrega-

tion, as they are species specific, showing annual and inter-annual variability in total

consumption of the different prey species. These estimates and their inter-annual and inter-

specific variation are fundamental for understanding fundamental pelagic predator-prey

interactions as well as to inform advanced multispecies ecosystem models.

PLOS ONE | https://doi.org/10.1371/journal.pone.0190345 January 2, 2018 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Bachiller E, Utne KR, Jansen T, Huse G

(2018) Bioenergetics modeling of the annual

consumption of zooplankton by pelagic fish feeding

in the Northeast Atlantic. PLoS ONE 13(1):

e0190345. https://doi.org/10.1371/journal.

pone.0190345

Editor: Brian R. MacKenzie, Technical University of

Denmark, DENMARK

Received: January 11, 2017

Accepted: December 13, 2017

Published: January 2, 2018

Copyright: © 2018 Bachiller et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All the data

underlying the present study are available from the

Dryad Digital Repository (doi: 10.5061/dryad.

gb786).

Funding: E. Bachiller was supported by a

postdoctoral fellowship (2014 – 2016) from the

Department of Education, Language policy and

Culture of the Basque Country Government (EJ –

GV). Kjell R. Utne and E. Bachiller also

acknowledge financing from the Research Council

of Norway (EcoNorSe Project).

https://doi.org/10.1371/journal.pone.0190345
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190345&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190345&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190345&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190345&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190345&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190345&domain=pdf&date_stamp=2018-01-02
https://doi.org/10.1371/journal.pone.0190345
https://doi.org/10.1371/journal.pone.0190345
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5061/dryad.gb786
https://doi.org/10.5061/dryad.gb786


Introduction

The Northeast Atlantic has extensive oceanic areas with high zooplankton densities in the

upper waters during summer. The area is therefore a major feeding area for some of the largest

planktivorous fish stocks in the world, including Norwegian Spring Spawning (NSS) herring

(Clupea harengus, Linnaeus, 1758), blue whiting (Micromesistius poutassou, Risso 1827) and

Northeast Atlantic (NEA) mackerel (Scomber scombrus, Linnaeus, 1758). Among these pelagic

planktivorous stocks, while NSS herring spend their life cycle within the Norwegian Sea and

Barents Sea [1,2], NEA mackerel and blue whiting overwinter and spawn elsewhere in the

Northeast Atlantic, but migrate into the Norwegian Sea to feed during spring and summer [3].

Consequently, these three pelagic stocks show a substantial spatial [4,5] and dietary [6–8] over-

lap in the Norwegian Sea, their main feeding ground during these seasons. Their diet consists

mainly of various zooplankton species with the copepod Calanus finmarchicus as the most

important prey [6–8]. All three stocks have had large fluctuations in stock size the last decades,

mainly due to variable recruitment and fishing pressure [9]. There has been a substantial

increase in the total biomass of these stocks since the 1980s, and during the last decade it has

been about 15 million (M) tonnes [9].

The total annual production of C. finmarchicus in the Norwegian Sea is estimated to be in

the range of 200–300 million tonnes [1,10], but the uncertainty is high. In addition to small

pelagic fish, there is a range of other predators including other zooplankton species that prey

on zooplankton, small mesopelagic fish and whales. Large zooplankton like krill and amphi-

pods as well as squids are estimated to consume around 150–200 M tonnes of C. finmarchicus
[1]. The annual consumption of zooplankton by pelagic fish in the Norwegian Sea is an issue

that has been the focus of several studies [1,11–13]. In fact, planktivorous fish populations can

be very abundant and have a great impact on the ecosystem [14,15], e.g. reducing the zoo-

plankton biomass in restricted marine areas such as the southeast Bering Sea [16], the Baltic

Sea [17], the Black Sea [18] and the Barents Sea [14,19–21].

Knowledge of the zooplankton consumption by planktivorous fish stocks is therefore impor-

tant for several reasons. Regarding the energy flow from one trophic level to another [22], the

zooplankton community is key to understand the bottom-up control in the Nordic Seas (e.g.

[23,24]), usually underestimated (e.g. [25]), and has received an increased scientific interest dur-

ing the last decade [3,26]. In addition, there are two important management issues that are in

need of knowledge addressing trophic regulation in the Norwegian Sea. The first question is

whether there is enough zooplankton available for the large fish stocks feeding in the area [3],

considering the increase in fish biomass and changes in the zooplankton community during the

last decades [1,9,27]. There has been reduced individual growth and increasing stock size for all

three fish stocks [3]. There is density dependent regulation of both juvenile [28] and adult

[28,29] mackerel, where both interspecific competition with herring as well as intraspecific

competition affect the individual’s growth [3,28,29]. The competition for food has likely been

one of the key drivers for the expansion of the feeding area towards north and west [30].

The second question is related to a new fishery based on pelagic trawling directly targeting

spawning components of the copepod C. finmarchicus in eastern part of the Norwegian Sea.

This fishery is presently small scale, but is expected to increase in quantity and geographic

extent the coming years [31]. The total allowable catch for harvesting C. finmarchicus has

recently been increased from 1000 t to 165 000 t as part of the development of a management

plan [32,33]. An important concern is whether this fishery will increase the negative effect on

individual growth for pelagic fish, as it becomes a direct competitor for C. finmarchicus. It will

therefore be important to expand the knowledge base on zooplankton consumption exerted by

the planktivorous stocks prior to a potential increase in Calanus harvest.

Zooplankton consumption by pelagic fish feeding in the Northeast Atlantic
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To estimate the annual consumption of zooplankton several approaches can be used, rang-

ing from simple assumptions about consumption/biomass ratios, as used by Dommasnes et al.

[12], to more complex approaches including coupled individual based models [13]. However,

previous estimates are limited to total zooplankton consumption, whereas detailed consump-

tion of different prey groups is still unknown. This is important when observing potential

competition for food between co-occurring fish populations such as NEA mackerel, NSS

herring and blue whiting, which show interspecific differences in the relative importance of

different prey ingestion [8]. In this sense, bioenergetics modeling is an efficient method for

estimating annual consumption, as field estimates of food consumption are often highly vari-

able and require considerable effort [34]. Energy budgets and energetic models, in combina-

tion with field data on fish growth and water temperature, are important tools for predicting

food consumption [24,35,36]. The approach is to estimate the total consumption as equal to

the sum of all energy expenses for the individual fish. This consists mainly of fish growth,

change in energy content (mainly fat) through the year [37], and metabolic costs. When com-

bined with observations of dietary composition of the fish and energy density of the food

organisms, the annual consumption of different prey groups can be estimated.

The objective of this study is to estimate the annual food consumption for NEA mackerel,

NSS herring and blue whiting using bioenergetics modeling with species-specific parameters

for the years 2005–2010. The present study makes a novel approach to such estimates, consid-

ering 1) recent diet composition information for the three species [8], 2) the length-growth

during the feeding season in the Norwegian Sea–which was omitted by previous studies (e.g.

[11,13])–, 3) new energy density estimates for NEA mackerel, and 4) metabolic costs account-

ing for new ambient temperature measurements representing the horizontal and vertical dis-

tribution of the species. The results are discussed both in an ecological context and compared

to consumption estimates from previous studies. The consumption estimates are for the entire

stocks independent of where feeding takes place, although most of the fish are feeding in the

Norwegian Sea [8]. A sensitivity analysis is also provided as the consumption estimates

strongly depend on the input data and parameters applied in the model [38].

Material and methods

Bioenergetics model purpose: Consumption estimates

Fish require a certain amount of energy for swimming, feeding, growing and reproducing

throughout the year. Bioenergetics models calculate the energy needed for respiration (includ-

ing activity costs and specific dynamic action), waste losses (egestion and excretion) and

growth [39]. In this study a bioenergetics model is applied for the NEA mackerel, NSS herring

and blue whiting in order to estimate their annual consumption of different prey groups

defined from their diet composition [8] for the years 2005–2010. With this model, both

monthly and inter-annual variations can be calculated for the three species. The annual con-

sumption is split into seven prey groups based on stomach content information and the energy

demand throughout the feeding period. The simulations apply biomass estimates from the

analytic assessment in 2015 [9] to estimate the total consumption of the stocks.

Sampling and data range definition

All the analyses are based on data from Norwegian pelagic ecosystem surveys as well as from

commercial vessels fishing in the area, from 2005 to 2010 (Fig 1; Table 1). The monitoring

surveys are the International Ecosystem Survey in the Nordic Seas (IESNS) in May and the

International Ecosystem Summer Survey in the Nordic Seas (IESSNS) in July/August. These

surveys provided Conductivity, Temperature and Depth (CTD) measurements, acoustic data,
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trawl samples, morphometric measurements (length and weight) and stomach content of fish.

CTD casts were carried out using Seabird 911 and SAIV SC 204 instruments from the surface

down to 500 m, and were taken prior to the fish trawls. The acoustic data, given as Nautical

Area Scattering Coefficient (NASC, [40]), were collected using Simrad EK60 with a calibrated

Fig 1. Map of samples of (a) NEA mackerel, (b) NSS herring and (c) blue whiting, used to get different information used as

input for the analysis. Small dots represent CTD sampling stations considered for ambient temperature calculations. Triangles

represent stations used for the diet characterization analysis [8]. Fish length and weight measurements used as input for the growth in

the bioenergetics consumption estimation model are from summer stations and represented with red circles, whereas fish collected

during winter time (i.e. no growth) from commercial vessels are from stations marked with blue rhombus. Note that many stations

(considered in bar charts in the upper right corner of each plot and in Table 1) are not indicated in maps. These are mostly winter

sampling stations from commercial vessels not providing detailed position information. During winter time herring were distributed

in the Norwegian Sea, whereas mackerel and blue whiting were generally collected southwards, in the southern region of the

Norwegian Sea as well as in the North Sea.

https://doi.org/10.1371/journal.pone.0190345.g001
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38 kHz split beam echo sounder and stored with a resolution of 10 m vertically and 1 nm hori-

zontally. The raw data were scrutinized during the surveys and the acoustic values were

assigned to species based on appearance on echograms and the observed composition in trawl

hauls. Stomach content information comes from the study by Bachiller et al. [8], that investi-

gated the diet based on sampling in May and July 2005–2010 (Fig 1; Table 1). Since summer is

the main feeding period of NEA mackerel in the Norwegian Sea [3,8,41], no mackerel was

caught in May surveys and therefore diet composition information for this species was only

available for July (see Bachiller et al. [8] for further details).

All the data underlying the present study are available from the Dryad Digital Repository

(doi: 10.5061/dryad.gb786).

As all three stocks spawn and have nursery areas outside the Norwegian Sea, NEA mackerel

usually enter the Norwegian Sea as 2 year old [42], herring as 4 year old [1] and blue whiting as

one year old [9]. Accordingly, the length ranges considered in the study were those corre-

sponding to the size fractions that are feeding in the Norwegian Sea: 25–45 cm for NEA mack-

erel, 28–38 cm for NSS herring and 15–40 cm for blue whiting. Since Bachiller et al. [8]

studied the prey composition of 32–41 cm mackerel, 29–34 cm herring and 28–32 cm blue

whiting, their diet composition information fits well with these pre-defined length ranges.

Table 1. Sampling stations (Nst) and number of fish (Nf) per species considered for each purpose during the study. ‘ac’ means acoustic measurements (i.e. no fish

sampled).

NEA mackerel

(Age groups: 2–17)

NSS herring

(Age groups: 4–17)

Blue whiting

(Age groups: 2–13)

Sampling purpose Year Sampling period Nst Nf Nst Nf Nst Nf

Ambient temperature:

fish + CTD sampling

2005 May 01 –July 29 44 ac 63 ac - ac

2006 May 01 –Aug 03 62 ac 313 ac 296 ac

2007 May 01 –Aug 03 118 ac 112 ac 99 ac

2008 May 06 –Aug 07 - ac 26 ac 43 ac

2009 May 01 –Aug 04 91 ac 331 ac 431 ac

2010 May 07 –Aug 18 266 ac 421 ac 407 ac

Length distribution (winter):

fish sampling

2005 Sep 17 –Oct 29 12 516 17 811 - -

2006 Sep 21 –Oct 24 53 1339 30 831 - -

2007 Sep 18 –Oct 27 38 916 26 672 3 11

2008 Sep 16 –Oct 24 33 955 32 928 14 155

2009 Sep 18 –Oct 15 19 574 40 1286 10 65

2010 Sep 19 –Oct 30 18 499 22 636 3 95

2011 Sep 16 –Oct 20 22 656 14 410 1 2

Length distribution (growth period):

fish sampling

2005 May 12 –Sept 03 158 6986 148 5630 207 14538

2006 Apr 03 –Sept 20 155 5479 163 8110 257 15973

2007 Apr 27 –Sept 16 206 7437 176 9357 238 15472

2008 May 05 –Sept 14 142 4025 94 4207 139 9346

2009 Apr 04 –Sept 16 163 5912 107 3105 118 7339

2010 Apr 08 –Sept 14 270 13461 163 9105 145 6174

Diet composition:

fish sampling

2005 May 01 –July 29 22 212 28 265 8 80

2006 May 01 –Aug 03 23 229 30 299 33 313

2007 May 01 –Aug 03 36 346 51 500 51 495

2008 May 06 –Aug 07 - - 21 163 12 111

2009 May 01 –Aug 04 12 71 24 162 3 30

2010 May 07 –Aug 18 50 499 43 410 11 107

https://doi.org/10.1371/journal.pone.0190345.t001
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Information about change in length and weight throughout the feeding season is needed to

account for growth and stored energy in the model. Accordingly, length–weight measure-

ments within the pre-defined length ranges provided by commercial fishing vessels (Fig 1;

Table 1) were also included in the analyses.

NEA mackerel, NSS herring and blue whiting grow during the feeding season [13,29,43],

whereas during winter the feeding nearly stops and the length growth drops down significantly

[1,44]. The feeding period was defined as the period when the fish increased the weight at

length. This was calculated from the change in weight per length, using the most frequent

length group in the samples from the surveys. These were 34, 32 and 26 cm length groups for

NEA mackerel, NSS herring and blue whiting, respectively. This analysis is presented in Fig 2

and shows how the feeding period was defined: from May 16th (Day of Year = 136) to August

31st (Day of Year = 243) for NEA mackerel; from April 1st (Day of Year = 91) to September

15th (Day of Year = 258) for NSS herring; and from April 1st (Day of Year = 91) to September

30th (Day of Year = 273) for blue whiting.

Model design concepts

The purpose of the bioenergetics model is to estimate the annual consumption of different

prey groups during the feeding season. The model calculates the consumption for each fish

species and length group and scales it to population level, based on the length distribution in

the respective populations. In this sense, consumption was modelled according to a standard

bioenergetics model with species specific parameter values [37], based on the following equa-

tion:

C ¼ Rþ F þ E þ Sþ G ð1Þ

C is consumed food in g prey g predator-1 day-1. R is energy loss due to respiration (g prey g

predator-1 day-1) and depends on body mass (g wet weight), ambient temperature and swim-

ming speed. F and E are energy loss due to egestion and excretion, respectively, and S is energy

loss due to specific dynamic action. G is growth (g prey g predator-1 day-1) and is a function of

changes in fish weight and energy obtained during the feeding season. Consumption, respira-

tion, specific dynamic action, excretion, and egestion are converted to g fish g fish−1 d−1 by the

ratio of the prey energy densities.

The model is run for the feeding period in the spring and summer with daily time steps,

where the number of days of the period is species specific. Input data to the model, such as

ambient temperature and prey composition, is updated each time step based on survey obser-

vations. The basics of the model are the same as those used in previous similar studies [11,13].

Although it still assumes no mortality, the present model provides new insights in several

aspects:

1. Updated diet composition information, now available for different seasons [8], allows esti-

mating the energetic income from different species. The daily consumption is estimated for

7 different prey groups. This will lead to more precise estimates of annual zooplankton con-

sumption by the NEA mackerel, NSS herring and blue whiting.

2. Since growth is an integrator of consumption over time, bioenergetics models can be used

to derive consumption estimates based on observed growth over a defined period [37]. In

contrast to previous studies for these species in the Norwegian Sea [11,13], this study con-

siders the daily length–growth during the feeding migration.

3. In the short feeding season, there is also a change in the energy content of the fish. In this

sense, seasonal cycles in the energy density of the predator can strongly influence estimated

Zooplankton consumption by pelagic fish feeding in the Northeast Atlantic
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Fig 2. Box-plots of the average weight (mg) in 15-day periods for (a) 34 cm NEA mackerel, (b) 32 cm NSS herring

and (c) 26 cm blue whiting, considering data from all the years (2005–2010) together. The width of the boxes is

Zooplankton consumption by pelagic fish feeding in the Northeast Atlantic
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seasonal consumption patterns [11,45,46]. Changing energy density of the fish is a method

to store energy independent of somatic growth. However, this has not been included in pre-

vious consumption estimates. Varpe et al [11] included changes in energy density when cal-

culating the energy needed for weight gain, but not the energy needed to increase the

energy density of the existing body mass. In this sense, our model considers daily changes

in energy density of the fish.

4. Water temperature affects fish metabolism and consumption rates [3,13,47,48]. This study

combines survey data of spatial (i.e. horizontal and vertical) distribution of fish with water

temperature measurements from CTDs, to calculate ambient temperature for two periods

during the feeding season. In this sense, ambient temperature estimates are more accurate

than in previous studies [4,8,11,13,49–51].

Model input

Swimming speed. The swimming speed of NEA mackerel, NSS herring and blue whiting

was defined as in Varpe et al. (2005), being one body length per second.

Ambient temperature. For NSS herring and blue whiting, the ambient temperature (aT)

each year (2005–2010) was calculated for May and July separately, according to the following

equation:

aT ¼
Pn

st¼1

Pm
d¼5

Tst;dSAst;dPn
st¼1

Pm
d¼5

SAst;d
ð2Þ

Since acoustic data were averaged and projected into 1˚ latitude by 1˚ longitude grids, st
corresponds to the average value of each grid or stratum. Tst,d is the water temperature at stra-

tum st and depth d. Depth is defined in 10 m bins from the surface to the maximum depth m
with available acoustic data. SAst,d is the estimated fish abundance (see ‘Sampling and data

range definition’ section) at stratum st and depth d. In those cases where more than one CTD

measurement was obtained for the same stratum (st), the average temperature per depth (d)

was considered.

During the feeding season NEA mackerel is concentrated in the upper water layer in loose

shoals [52], making standard acoustic methods unreliable for abundance estimation [53].

Instead, catch–per–unit–effort (CPUE) in kg m-2 from standardized surface trawling was used

as a proxy for the total NEA mackerel abundance at stratum st, and 10 m depth as a fixed

depth (d) for NEA mackerel vertical distribution.

The ambient temperature estimated for May was used as input in the model before June 1st.

After July 1st the ambient temperature for July was used. For dates in between, a linear interpo-

lation between May and July data was used.

Diet composition and energy density of prey groups. For the bioenergetics model, stom-

ach contents described in Bachiller et al. [8] were categorized into 7 prey groups: Copepoda

subcl. (all copepods grouped), Euphausiacea ord., Amphipoda ord., other crustaceans (crusta-

ceans not included in previous groups), Appendicularia cl., Actinopterygii cl. and other

remains (other prey).

Prey energy densities (J g-1 wet weight) were used to convert consumption from Joule to

prey biomass. The energy density of copepods was set to 3600 J g-1 for C. finmarchicus
[11,13,37,54]. For euphausiids and amphipods an energy density of 4000 J g-1 was used

proportional to the sample size (number of measurements are indicated above each box-plot). White background

represents the growing period considered for the analyses.

https://doi.org/10.1371/journal.pone.0190345.g002

Zooplankton consumption by pelagic fish feeding in the Northeast Atlantic

PLOS ONE | https://doi.org/10.1371/journal.pone.0190345 January 2, 2018 8 / 29

https://doi.org/10.1371/journal.pone.0190345.g002
https://doi.org/10.1371/journal.pone.0190345


[37,55]. Fish were rarely found in stomachs and were not identified to species level [8]. How-

ever, a preliminary data review made for the present study determined that the identified fish

organisms consisted mainly of herring larvae [56] and small mesopelagic fish (e.g. Maurolicus
muelleri [57]). The energy density of adult NSS herring estimated in this study (see in Material

and Methods section below) ranged between 8270 and 15440 J g-1, and values of mesopelagic

fish could vary between 7490 and 10250 J g-1 from small to large specimens respectively [58].

Therefore, and considering the small size of fish observed in stomach contents, a conservative

value of 8500 J g-1 was applied for this group. For the remaining prey groups the same energy

density as for C. finmarchicus was used, as in previous studies [11,13].

Prey composition in percentages for each predator species, season and year used as input

for the model is presented in Table 2. There was no available information of prey composition

for NEA mackerel in May, or for NSS herring and blue whiting in July some years. The NEA

mackerel prey composition for July was used for the entire feeding season. In years without

Table 2. Diet composition (prey percentages) for NEA mackerel (S. scombrus), NSS herring (C. harengus) and blue whiting (M. poutassou) in the Norwegian Sea

(2005–2010). Modified from Bachiller et al. [8].

Year Season Copepoda subcl. Euphausiacea ord. Amphipoda ord. Other crustaceans Appendicularia cl. Actinopterygii cl. Other remains

NEA

mackerel

2005 July 72 4 4 1 14 1 4

2006 July 89 2 <1 4 4 0 2

2007 July 67 <1 2 0 30 0 1

2008 July� 61 6 2 11 18 <1 3

2009 July 26 12 1 50 9 0 2

2010 July 50 11 1 <1 31 1 6

NSS herring 2005 May 91 3 1 0 5 0 <1

July 73 10 2 5 9 0 <1

2006 May 92 7 <1 0 1 0 <1

July� 53 13 10 2 21 0 <1

2007 May 41 7 4 1 47 0 1

July� 53 13 10 2 21 0 <1

2008 May 42 6 3 1 48 <1 <1

July 31 6 3 <1 60 0 0

2009 May 61 4 <1 0 32 0 3

July 48 30 22 0 <1 0 <1

2010 May 82 2 4 0 0 0 13

July 61 8 12 4 15 0 1

Blue whiting 2005 May 73 23 3 0 <1 0 0

July� 17 63 19 1 1 0 <1

2006 May 33 48 6 0 7 2 4

July� 17 63 19 1 1 0 <1

2007 May 33 55 7 0 0 3 2

July 2 88 8 0 1 0 1

2008 May 39 46 3 0 0 11 <1

July� 17 63 19 1 1 0 <1

2009 May 0 93 6 0 0 0 0

July� 17 63 19 1 1 0 <1

2010 May 4 67 26 0 0 2 1

July 32 38 29 1 0 0 0

(�) No available diet information, so the average between values for the same prey species obtained for the other applicable years was applied.

https://doi.org/10.1371/journal.pone.0190345.t002
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July information for NSS herring and blue whiting, the average value obtained from the other

years was applied (Table 2). As for ambient temperature, prey composition for May was used

as input in the model before June 1st. After July 1st the diet for July was used. To consider the

daily change in the diet composition for dates in between, a linear interpolation in prey group

proportions between May and July was used.

Abundance distribution per length (in winter). Historic fish abundance was calculated

from number-at-age and weight-at-age from the analytic assessment reported by ICES

WGWIDE in 2015 [9]. Total number-at-age was applied without attempting to quantify the

proportion of fish feeding in the Norwegian Sea. As the bioenergetics model is length specific,

it was necessary to express the stock as number of individuals per 1 cm length group. Accord-

ingly, the average length at age–specific weight (L) was calculated based on the following

length–weight relationship:

W ¼ aLb ð3Þ

where W is the weight in grams [9] and a and b are constant parameters from regression equa-

tions (Table 3).

The total number of individuals in each length group is calculated by assuming a Gaussian

distribution using estimated variance from samples taken from winter commercial catches in

the Norwegian Sea (Fig 1; Table 1). Hence, the standard deviation (SD) in each age group, year

and species was firstly calculated from these data. Then, fish numbers at age obtained from

ICES [9] for each year were re-distributed to 0.1 cm length groups, following a normal distri-

bution with the calculated SD. This way, new abundance estimates for each cm length group

were obtained excluding age information. As the last step, the length distribution and the total

biomass estimated for the start of the feeding period were scaled to the annual biomass esti-

mates from the assessment [9], according to the following equation:

ABD0L ¼ ABDL
BICES

PLmax
Lmin

WL;t¼91ABDL

 !

ð4Þ

where ABD'L is the resulting abundance distribution used as input for the model. ABDL

denotes numbers of fish from L cm length group. BICES is the total annual biomass from the

assessment [9]. For NEA mackerel and blue whiting total stock biomass estimates were used,

whereas for NSS herring the spawning stock biomass was used. WL,t = 91 is the total weight of

fish of L cm, at the beginning of the feeding period (t = 91; see ‘Sampling and data range defini-

tion’ section for definition of t and the next section for W calculation equation).

Somatic growth and change in energy content. Somatic growth during the feeding sea-

son is the combined effect of length growth and changes in weight-at-length. To calculate the

weight-at-length, the length data from the feeding season (Table 1) were grouped into 1 cm

groups and second order polynomial equations were fitted to the data, combining all sampling

Table 3. Length (L)–Weight (W) relationships used to calculate the total length at age for NEA mackerel, NSS herring and blue whiting.

Species Country Area Nf LR (cm) a b R2

NEA mackerel Ireland [59] Celtic Sea 1801 15–44 0.00338 3.241 0.996

NSS herring Various [60] North Sea; ICES sub-area IV, Divisions VIId and IIIa 20165 7–37 0.00322 3.22 0.991

Blue whiting France [59] Bay of Biscay 1272 14–40 0.00375 3.082 0.992

Nf is the number of fish samples from a certain length range (LR), collected by different countries in different areas, used for the exponential regression equations, Eq

(3).

https://doi.org/10.1371/journal.pone.0190345.t003
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years (2005–2010):

WL;t ¼ aLt
2 þ bLt þ cL ð5Þ

where WL,t is the weight (in grams) at a certain day (t, in Day of Year) and a, b and c are con-

stant regression parameters specific for each length group (L).

Then, the length increment per year was estimated using the following growth model [61],

which is a modification of Von Bertalanffy’s growth equation without the time dimension:

dL ¼ kðLmax � LsÞ ð6Þ

This model assumes that the length increment of fish (dL) living under constant conditions

and unlimited food supply decreases linearly with increasing total length of fish (Ls), until it

reaches zero at a maximal fish length (Lmax); k is a variable determined by environmental fac-

tors, such as food availability and temperature [61]. Based on winter (December-February)

length-at-age measurements, a k value was estimated from the increment in length of each

age-group from year x to year x+1. The average k (i.e., all age-groups together) per year and

species was then calculated and used as input for the model (Table 4).

The growth of the modeled fish is in discrete centimeters to limit the time required for each

simulation. As individual growth is a continuous process, and assuming a linear growth in

length through the feeding season, a growth adjustment had to be done in the model. The

weight at the start of the feeding season was calculated from Eq (5). The estimated dL for each

length-group in Eq (6) was split in upper (dGupper) and lower (dGlower) integer values, corre-

sponding to the values obtained when rounding dL to the nearest upper and lower absolute

(cm) values, respectively. The relative difference between the lower bound (dGlower) and dL
was defined as RdLlower, whereas the relative increment from dL to the upper bound (dGupper)

was defined as RdLupper. The total weight of the individual at the end of the feeding season was

given by:

W 0
t;Ls
¼ ðWt;Ls;dGupper

RdLupperÞ þ ðWt;Ls;dGlower
RdLlowerÞ ð7Þ

where W’t,Ls is the fish weight of length group Ls at the end of the feeding season (t in Day of

Year, see ‘Sampling and data range definition’ section).

In order to ease the understanding of this adjustment, an illustrative example is presented

in Fig 3, applying a dL of 1.3 cm for the 33 cm length group in herring. This means that part of

the 33 cm herring population will grow to 34 cm, whereas the rest will reach 35 cm, in one

Table 4. Estimated average k values from Eq (6), considering the increment in length (dL, from winter in year x to

winter in year x+1) and the maximum length for growth (Lmax) assumed for each species.

NEA mackerel NSS herring Blue whiting

Lmax (cm) 42 36 35

k
2005 0.34 0.15 0.19�

2006 0.24 0.15 0.19�

2007 0.47 0.19 0.19�

2008 0.36 0.17 0.26

2009 0.19 0.17 0.07

2010 0.16 0.24 0.24

(�) Since there was no available information for these cases, the average between values for the other years was

applied.

https://doi.org/10.1371/journal.pone.0190345.t004

Zooplankton consumption by pelagic fish feeding in the Northeast Atlantic

PLOS ONE | https://doi.org/10.1371/journal.pone.0190345 January 2, 2018 11 / 29

https://doi.org/10.1371/journal.pone.0190345.t004
https://doi.org/10.1371/journal.pone.0190345


year period. The regression parameters of daily increment in weight used as reference are

those obtained from Eq (5) for fixed length groups (e.g. 33, 34 and 35 cm herring; Fig 3A). To

correctly estimate the seasonal change in weight given the length growth, new polynomial

equations for each cm length group and year were fitted, considering an increase in length

defined by the lower (dGlower = +1 cm) and upper (dGupper = +2 cm) bounds for the estimated

increment (dL = +1.3 cm). Each polynomial equation was obtained from three points: 1) the

weight at a given length group at the beginning of the feeding season, 2) the weight at the end

of the feeding season after applying a certain growth increment (amount of cm increments

Fig 3. Example of growth correction for length distribution of herring, considering 33 cm length group as reference and a dL
value of 1.3 cm (as a result example for Eq 6). Firstly, (a) polynomial equations are fitted for weight (g) increment per day (Day of

Year) in 33, 34 and 35 cm length groups. Secondly, (b) considering the beginning of the feeding period (Day of Year = 91, marked as

opened circle) as a starting point for the 33 cm length group, and the end of the feeding period (Day of Year = 258) for 34 and 35 cm

length groups as ending points (closed circles), new equations are built for each cm growth steps: ‘Pol.Eq.33+1cm’ equation for 33+1

cm and ‘Pol.Eq.33+2cm’ equation for 33+2 cm. The mid-point (Day of Year = 175, marked with rhombus and triangle) in weight

estimates for each new equation has the same distance (vertical arrows) from the estimated weight at that day for the lower length

group and for the upper length group. Finally, (c) based on the dL and assuming a normal distribution for each cm length group, ‘Pol.

Eq.33+1cm’ equation applies to the 70% of the 33 cm herring population abundance that will incorporate to the 34 cm length group

one year later, whereas ‘Pol.Eq.33+2cm’ will apply to the other 30% that will correspond the 35 cm length group.

https://doi.org/10.1371/journal.pone.0190345.g003
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defined by dGlower or dGupper in each case), and 3) the mid-point between the two previous val-

ues (i.e. estimated weight in grams when Day of Year is 175) (Fig 3B). Each equation obtained

was applied to the percentage of the population abundance within the corresponding length

group after considering growth in one year period, (Eq 7), i.e. RdLlower = 70% and RdLupper =

30% (Fig 3C).

As stated before, the daily change in energy density (J g-1 fish) has to be also considered to

determine the change in total energy for each individual fish during the feeding season.

The energy composition of mackerel changes substantially through the year. During spawn-

ing the average lipid content decrease to 2–8%, followed by a rapid increase in June–July to

mid-summer, where it peaks at 25–31% [62–64]. The dry weight fraction of the wet weight fol-

lows the lipid content closely (R2 = 0.99), so other parts remain nearly constant. Seasonal

changes in energy content of mackerel was expressed by a third degree polynomial model (Fig

4 & Table 5 –Eq(8)) fitted to the data (Dryad Digital Repository; doi: 10.5061/dryad.gb786).

Daily estimates in energy density of NSS herring were based on data from Slotte [43], using

the obtained regression equations (Eqs (9) and (10) in Table 5; Fig 4) as input for the bioener-

getics model as in Varpe et al. [11].

For blue whiting there is no relevant information available, and we assumed the same

energy density value as for Atlantic cod (Gadhus morhua) [65], given that these two species

previously have been considered as comparable gadoid fish [13,66]. Gadoids do not accumu-

late energy in muscles, but store it in the liver throughout the feeding season [67,68]. On aver-

age the liver increases from 4% to 9% of the body mass in the period April to September [67].

Therefore, in order to incorporate that energy accumulation in the liver to the energy density

values, in this study we applied the equations given by Dumke [67] (Fig 4 & Table 5 –Eq(11)).

Consumption estimates from bioenergetics model

Table 6 summarizes the functions, variables and parameters need as input in the bioenergetics

model (Eq 1). Results were presented in terms of energy consumption (Joules) and wet weight

biomass (grams).

The software packages R v. 3.0.2 [69] and ggplot2 v. 1.0.0 [70] were used for data analysis

and graphical representations, respectively. Fig 1 was plotted with package mapdata v.2.2–6
and Fig 3 was made with Grapher v. 8.2 software. The bioenergetics model was run in Fortran,

using Eclipse v. Neon Milestone 2 for Parallel Application Developers (www.eclipse.org).

Results

Prey consumption estimates

The specific average daily consumption rates (Fig 5) did not show any significant inter-annual

variability (Tukey HSD test, p> 0.05). Average values could therefore been considered over

the entire time series. The species with the shortest feeding season, NEA mackerel, had the

highest mean daily consumption rate of 0.08 g prey g fish-1 day-1. NSS herring consumed 0.05

g prey g fish-1 day-1, whereas blue whiting showed the lowest value, 0.02 g prey g fish-1 day-1

(Tukey HSD test p< 0.001 for the three paired comparisons). This is equivalent to a daily con-

sumption rate of 8% of fish body weight for NEA mackerel, 6% for NSS herring and 2% for

blue whiting.

The total annual prey consumption by the NEA mackerel and NSS herring stocks generally

increased during the study period from 2005 to 2010 (Fig 6) while it decreased for blue whiting

stock (Tukey HSD test p< 0.001 for both interspecific and inter-annual variability). Inter-

annual variation in total consumption primarily reflected variation in predator biomass (Fig

6). However, in 2009–2010, when the total biomass of NSS herring and NEA mackerel were
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Fig 4. Daily energy density averages (red lines and left Y axes, in kJ g-1 wet weight) and ambient temperature

(black symbol-lines and right Y axes) for (a) NEA mackerel, (b) NSS herring (energy density as in Varpe et al.
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the highest, the total energy consumption of NEA mackerel remained stable or even decreased

despite an increasing stock size. NSS herring consistently showed higher total consumption

than NEA mackerel, even in 2010, when the biomass of NEA mackerel exceeded NSS herring

(Fig 6).

Regarding the annual zooplankton consumption, our bioenergetics modeling resulted in

estimates ranging from 31 to 51 million (M) tonnes by NEA mackerel, 51–70 M tonnes by

NSS herring and 20–53 M tonnes by blue whiting (Fig 7). Depending on the year, NEA mack-

erel consumed 23–38% of the total zooplankton eaten by the three pelagic fish species during

the feeding season (24–52% of the copepods and 2–30% of the euphausiids eaten); NSS herring

consumed 38–51% (38–72% of the copepods and 11–36% of the euphausiids eaten), and the

blue whiting consumed 14–39% (4–24% of the copepods and 46–85% of the euphausiids

eaten).

According to the obtained estimates from our model, NSS herring showed high levels of

zooplankton consumption in both spring and summer, gradually increasing from April to

June, followed by a slight reduction in July. Very little feeding was done in August and Septem-

ber (Fig 8). The modeling results suggest that mackerel fed intensively in the Norwegian Sea in

June and July, followed by lower consumption rates in August. In contrast, blue whiting main-

tained an almost constant low consumption rate through entire feeding season (Fig 8).

Total consumption of major prey groups

The most important prey for NEA mackerel and NSS herring were copepods (especially cala-

noids [8,57]), and euphausiids for blue whiting (Fig 7). However, substantial inter–annual var-

iation was indicated. For instance, appendicularians and other crustaceans (mainly cladoceran

Evadne spp. [8,57]) were also important, or even dominating, in the diet composition of NEA

[11]) and (c) blue whiting. White background represents the feeding period assumed for each species. The blue

whiting plot (c) represents the assumed fixed value for cod (horizontal red dotted line) and the accumulated energy in

liver (E.Lv = 0.0028t2 − 0.4842t + 205.02; R2 = 0.997); this equation was extracted from our model observations (note

the different scale in left Y axis). See Table 5 for further details about equations used in the bioenergetics model.

https://doi.org/10.1371/journal.pone.0190345.g004

Table 5. Equations and values used to estimate changes in energy density (ED) during the feeding period (t) for predator species (pred.sp): NEA mackerel, herring

and blue whiting. For blue whiting, the energy content in liver (E.Lv) is added to the constant energy density of the fish muscles for gadoids (EDG.m.), assumed in previous

studies. t: Day of Year; EDt,pred: Energy Density of fish (pred: predator species) at day t. E.Lv: Energy content in liver (based on observations for Pollock, in kJ); W.Lv:

Weight of the liver (g); ED.Lv: Energy Density in liver (J g-1); Lind: liver index; W’t: total weight of fish (as a function of time t); DM.Lv: Proportion of dry material in liver;

O.Lv: Proportion of oil in liver.

Species (pred.sp) Time period (t) Equation (or value) Reference

NEA mackerel 121–243 (May01 –Aug31) EDt,pred = −3.367 10−5t3 + 0.019t2 −3.282t + 191.171 (8) this study

NSS herring 74–195

(March15 –July14)

EDt,pred = 2.749 10−6t3 − 2.807 10−4t2 − 0.027t + 11.067 (9) [11]

196–259

(July15 –Sept15)

EDt,pred = −0.053t + 25.771 (10) [11]

Blue whiting 91–273

(April01 –Sept30)

EDt,pred = EDG.m. + E.Lv (11) this study

EDG.m. = 4500 J g-1 [65]

E.Lv = (W.Lv)(ED. Lv) (11.1) [68]

W.Lv = Lind/100W0t (11.1.1) [67]

ED:Lv ¼ ½DM:Lvð39:55 � ð16:49e� 0:235Lind ÞÞ� þ 39:55ðO:LvÞ (11.1.2) [68]

Lind = 4 + 1/30.33t (11.2.1) [68]

DM.Lv = (1.085 − (0.824/Lind)) − 0.276log(Lind) (11.2.2) [68]

O.Lv = 0.276log(Lind) − 0.2 (11.2.3) [68]

https://doi.org/10.1371/journal.pone.0190345.t005

Zooplankton consumption by pelagic fish feeding in the Northeast Atlantic

PLOS ONE | https://doi.org/10.1371/journal.pone.0190345 January 2, 2018 15 / 29

https://doi.org/10.1371/journal.pone.0190345.g004
https://doi.org/10.1371/journal.pone.0190345.t005
https://doi.org/10.1371/journal.pone.0190345


mackerel and NSS herring in some years. Copepod consumption by NSS herring decreased

from 2006 to 2008, copepods being partially replaced by appendicularians, which consisted in

more than 50% of the diet composition in 2008 (Fig 7). This pattern was reversed in 2009 and

2010. Copepod consumption by blue whiting also decreased from 2005 onwards, being

replaced by larger prey like krill or early life stages [8] of fish (e.g. 2006–2008, Fig 7).

Considering the three species together, they were estimated to have consumed 53–81 M

tonnes of copepods, 26–39 M tonnes of euphausiids and amphipods, 8–42 M tonnes appendi-

cularians and 0.2–1 M tonnes of fish, depending on the year (Fig 7).

The diet composition of NEA mackerel was only sampled during summer and seasonal

changes could therefore not be analyzed. For NSS herring and blue whiting, some changes

were apparent. For example, NSS herring fed mainly on copepods and appendicularians early

Table 6. Equations, variables and parameters used in the bioenergetics model, obtained from Elliott and Davison [71], Kitchell et al. [36], Hanson et al. [37], Hans-

son et al. [72], Stewart and Binkowski [45] and Stewart et al. [73]. All weights are wet weights (g).

Description Equations, Variables and parameters Values or reference equations (Eq.),

Tables or sections (Sct), by predator

species

NEA

mackerel

NSS

herring

Blue

whiting

Consumption C = R + F + E + S + G Eq (1) Eq (1) Eq (1)

Respiration

(metabolism)

R ¼ aW 0ber aTeTopt SW (12) Eq (12) Eq (12) -

R = αW0βVxe(x(1−V))act (13) - - Eq (13)

α: Intercept of the allometric weight function (RA) corrected for the energy equivalent of Oxygen (J g-1

O2
-1) and energy density of fish.

a ¼ RA 13560

EDpred
(14)

Eq (14) Eq (14) Eq (14)

RA: Intercept of the allometric weight function

(g O2 g-1 day-1)

0.00264 0.0033 0.008

EDpred: Energy density of (predator) fish Table 5 Table 5 Table 5

W’: Fish weight (body mass, g) Eq (7) Eq (7) Eq (7)
β: Slope of the allometric weight (W') function -0.217 -0.227 -0.172

V ¼ Tmax � aT
Tmax � Topt

(15) - - Eq (15)

x ¼ ½lnrðTmax � Topt Þ�
2 ½1þð1þ40=lnrðTmax � Toptþ2ÞÞ0:5 �2

400
(16) - - Eq (16)

ρ: Slope for temperature (aT) dependence (-˚C-1);

approximates the rate at which the function

increases over relatively low water temperatures

0.06818 0.0548 1.88

aT: Ambient temperature (˚C) Eq (2) Eq (2) Eq (2)

Tmax: Maximum (lethal) water temperature (˚C) - - 24

Topt: Optimal temperature (˚C) as slope for

swimming speed (SW) dependence

0.0234 0.03 21

act: The Winberg activity multiplier - - 1.25

SW: Swimming speed (body length s-1) 1 1 1

Egestion F = θ C (17)

θ: Proportion of consumed food egested 0.16 0.16 0.17

Excretion E = ε (C − F) (18)

ε: Proportion of assimilated food excreted 0.10 0.10 0.09

Specific dynamic

action

S = ω (C − F) (19)

ω: Coefficient, specific dynamic action 0.172 0.175 0.17

Growth Body mass change per length group (as a function of time t):

GðtÞ ¼
ðW0
ðtÞEDpredðtÞÞ� ðW0ðt� 1Þ

EDpredðt� 1ÞÞ

EDpredðtÞ
(20)

GðtÞ ¼
½ðW0
ðtÞEDG:m:ðtÞÞ� ðW0ðt� 1Þ

EDG:m:ðt� 1ÞÞ�þE:Lv

EDpredðtÞ
(21)

Eq (20)

-

Eq (20)

-

-

Eqs (11,21)

https://doi.org/10.1371/journal.pone.0190345.t006
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in spring while euphausiids and amphipods entered the diet during summer (Fig 8). Blue whit-

ing fed mainly on copepods in high percentages of their diet early in spring and early summer,

shifting to a more selective diet based on euphausiids and amphipods later in the season (e.g.

in 2005, Fig 8).

Consumption–Predator biomass ratios

Total annual consumption (in prey weight) relatively to the biomass of the stock (C/B ratio)

differed between the predators. NEA mackerel and NSS herring were at a similar level con-

suming between 9.5 and 12 times their biomass in zooplankton (Fig 9). Blue whiting was esti-

mated to consume around the half, with a C/B ratio between 4.7 and 6 (Fig 9).

The low inter-annual variation in C/B ratio could indicate that the mean C/B ratio for the

period 2005–2010 could be used to extrapolate into unobserved years. Based on this assump-

tion, and ICES assessments of total fish biomass [9], the total zooplankton consumption was

estimated from 1960 to 2015. This suggested that the three predators had approximately con-

sumed between 100 and 130 M tonnes of zooplankton annually in the last two decades (Fig

10). In addition, our estimates suggest that NSS herring had consumed most zooplankton in

almost all years since 1990. Blue whiting consumed more zooplankton than NEA mackerel

during the years where this stock was highly abundant (1998 to 2006). Zooplankton consump-

tion by NEA mackerel has increased from 2007 and levelled out from 2011 to 2015 (Fig 10).

Parameter sensitivity on consumption estimates

Fig 11 represents a sensitivity analysis to show how the final consumption estimates were

affected by different parameter values assumed in the bioenergetics model. For the three spe-

cies the ambient temperature, swimming speed, daily (somatic) growth and specific dynamic

action showed a positive relation with the total consumption estimates, i.e. higher parameter

values resulting in higher estimates. Increasing the swimming speed leads to higher metabolic

rate, which increases the energy loss due to respiration. The effect of changing the growth and

swimming speed values in the model for NSS herring and blue whiting consumption estimates,

respectively, was lower, in comparison with the other species (Fig 11).

Discussion

In contrast to previous studies estimating zooplankton consumption by pelagic planktivores

in the NEA Atlantic, the current study incorporates more detailed information on diet

Fig 5. Average daily consumption estimates ±2SE (prey g fish g-1 day-1) by NEA mackerel, NSS herring and blue

whiting, per year (from 2005 to 2010).

https://doi.org/10.1371/journal.pone.0190345.g005
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composition, ambient temperature and length–growth during the feeding migration. Accord-

ingly, the bioenergetics model presented in this study estimated that the three stocks on aver-

age consumed 135 mill tones of zooplankton in the study period. Our consumption estimates

are higher than in previous literature for the same stocks. In all sampling years NEA mackerel

showed higher daily consumption rates than the other two stocks, whereas the amount of prey

consumed by blue whiting was relatively lower. Given that the variation in annual consump-

tion seems to be mainly driven by the total fish biomass, our results showed that 14.70–17 M

tonnes of pelagic fish consumed between 131 and 139 M tonnes of zooplankton in 2005–2010,

Fig 6. Total annual (2005–2010) energy consumption (Joules) by NEA mackerel, NSS herring and blue whiting, indicated as dark grey bars (left vertical

axis). Empty bars (based on right vertical axis) indicate the total biomass (in Million tonnes) from the assessment (TSB for NEA mackerel and blue whiting,

SSB for NSS herring; [9]). Dotted line represents consumption estimates when the daily (somatic) growth of fish was set to 0 in the bioenergetics model, as

assumed in Utne et al. [13] and Varpe et al. [11].

https://doi.org/10.1371/journal.pone.0190345.g006
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which is more than the consumption estimated by Utne et al. [13] and moreover the double of

that estimated by Skjoldal et al. [1] for similar amount of fish. Considering the three species

together, Skjoldal et al. [1] and Utne et al. [13] determined a C/B ratio of 3.75 and 6.3 respec-

tively, while our calculations yielded a C/B ratio ranging from 7.87 to 9.21, depending on the

year. This is a rather large difference. In fact, when assuming no length–growth and applying a

constant temperature of 5˚C as in Varpe et al. [11], consumption estimates obtained by our

model for NSS herring are close to their estimates, ranging from 1.47 (1017) J to 1.96 (1017) J

Fig 7. Annual (2005–2010) prey consumption estimates for NEA mackerel, NSS herring and blue whiting.

https://doi.org/10.1371/journal.pone.0190345.g007
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(e.g. see dl = 0 in Fig 6). However, even in such case, obtained C/B ratios (7.88–7.96) are more

than 50% higher in comparison with values assumed in Dommasnes et al. [12]. The most

important difference regards in the inclusion of combined individual length growth (i.e.

Fig 8. Seasonal variation in prey consumption by NEA mackerel, NSS herring and blue whiting during their species-specific

feeding periods in 2005–2010.

https://doi.org/10.1371/journal.pone.0190345.g008

Fig 9. Consumption/Biomass ratios per year and species. Dotted lines represent estimates when daily growth of fish is not considered [11] in the model.

https://doi.org/10.1371/journal.pone.0190345.g009
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somatic growth), changes in weight-at-length and changes in energy density of the fish during

the feeding season. By combining all these factors a realistic estimate of the amount of energy

stored as muscles or fat in the fish can be achieved, and thus how much the fish must have con-

sumed to achieve the observed growth. Earlier work has either ignored the change in energy

density (e.g. Utne et al [13]), the increase in length growth (e.g. Varpe et al. [11]), or used a

simpler general approach to estimate the total consumption of pelagic fish in the Norwegian

Sea (e.g. Skjoldal et al. [1]).

Bioenergetics modeling has several uncertainties related to the parameter estimates and the

functional relations [38]. The model relies on quite a few parameters, some of which are based

on experimental work on different species than applied here. This may either lead to bias in

consumption estimates as there are differences between species in energy cost associated with

movement, digestion of prey, and how this vary with water temperature. Accordingly, it

should be noted that the ambient temperature was calculated taking into account the spatial

distribution of the fish, resulting in more accurate but slightly higher temperatures than

assumed in previous studies, which therefore resulted in higher zooplankton consumption

estimates (Fig 11) due to higher respiration costs [47,48]. Besides, assumed swimming speed

had an important effect in consumption estimates for NSS herring and (especially) NEA mack-

erel (Fig 11). The parameter used for the specific dynamic action (Table 6, Fig 11) as well as

other factors such as natural mortality [74] or seasonal [46] and inter-annual variations in diet

composition [8,74] also influenced consumption estimates, although larger time-series would

be needed to reduce the uncertainty of using bioenergetics modeling (e.g. [75]) as well as to

make further conclusions.

The generally higher contribution of copepods and lower contribution of euphausiids in

NEA mackerel stomachs than in NSS herring stomachs, as well as the different diet of the blue

whiting were well reflected in our consumption estimates, in accordance with previous stom-

ach content investigations [6,8,76,77]. In fact, the diet of small pelagic fish changes with prey

availability [6–8,78,79]. This way, the three fish species are abundant with overlapping diet and

are able to coexist in the same habitat, due to a certain degree of niche differentiation [8]. NEA

Fig 10. Total zooplankton consumption by NEA mackerel, NSS herring and blue whiting, from 1980 to 2015. Estimates are based on the mean consumption values

from 2005–2010, which were then extrapolated to the total fish biomass reported for different years by the assessment [9]. Black line represents the total consumption by

the three species (note the different scale on the right vertical axis).

https://doi.org/10.1371/journal.pone.0190345.g010
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mackerel and blue whiting have little vertical overlap [52,80] and different ability to filtering

small zooplankton [6,8]. This is reflected in the annual consumption estimates, as blue whiting

mainly prey on euphausiids while this prey is of minor importance for mackerel. So while

NEA mackerel feed on small zooplankton like copepods and appendicularians close to the sur-

face, blue whiting selectively pick larger zooplankton at 100–400 m depth. On the other hand,

NSS herring and NEA mackerel have large vertical overlap as they both feed close to the sur-

face in the feeding period [8,52,80]. For these two species the niche differentiation is also evi-

dent as NSS herring consume copepods and appendicularians early in the feeding season

before mackerel enter the feeding grounds, but switch to euphausiids and amphipods later in

the summer [8]. This separation may partly be explained by horizontal segregation as NSS her-

ring migrate into colder waters (2–6˚C) further north and west than NEA mackerel [4,51], but

other mechanisms such as the potential inter-specific feeding competition [8] are probably

also important, as there are large areas where the two species horizontally overlap. Differences

in the degree of particulate feeding (i.e. selective predation) and filter feeding, or in the amount

of daylight needed for efficient feeding may influence the total consumption estimates. The

large consumption of euphausiids and amphipods by NSS herring late in the summer suggest

Fig 11. Sensitivity analysis of the bioenergetics model, presented by spider diagrams showing the percentage of variation in estimates of the total energy

consumption (J) by NEA mackerel, NSS herring and blue whiting, depending on the percentage of change of different parameter variables: ambient temperature

(˚C), swimming speed (body length s-1), somatic growth and coefficient of the specific dynamic action (ω). The mean %change value for the five years of the analysis

(2005–2010) is represented with error bars indicating the standard error. Symbols indicate different assumptions made when determining parameter values, based on

different sources. this study: values as used in the present study (i.e. % change of parameters = 0); prev.observ: values used as in previous studies (e.g. Utne et al. [13] and

Varpe et al. [11]); min and max: minimum and maximum possible values mentioned in previous literature, respectively; min’ and max’: artificial (unrealistic) values used

to highlight the general changing trend of estimates when extreme values are considered.

https://doi.org/10.1371/journal.pone.0190345.g011
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that (1) they might base their feeding strategy on selective predation, which is reasonable in

areas with limited prey available [81], or (2) they could feed in the dark [82], when the large

zooplankton raise towards the surface [1].

The target stocks are spread over large areas in the North Atlantic and it is difficult to attri-

bute the predation to particular areas such as the Norwegian Sea. For instance, NEA mackerel

might have been incompletely covered by our model and data collection during spring, when

it was spawning and probably also feeding south of our study area [9]. Nonetheless, consider-

ing all the NEA mackerel older than 2 years feeding within the Norwegian Sea and according

to the diet description based on adults caught in that area [8] might also cause some kind of

bias. Besides, the proportion of the NEA mackerel stock feeding in the North Sea and further

south is not known. By combining estimated biomass from surveys in the North Sea [83] and

the Norwegian Sea [42], and assuming only minor abundance not covered by these two sur-

veys, we can estimate that 10–30% of the total NEA mackerel stock was feeding in the North

Sea in 2007–2010. However, it must be pointed out that there is a high uncertainty around

this proportion, as for instance the surveys may have a very different catchability, as well as

regarding the mackerel feeding in further southern areas (e.g. Bay of Biscay [9,78]). Neverthe-

less, even in the case we assume a more conservative proportion of the NEA mackerel stock

feeding in the Nordic regions or at least passing through the area at any rate of their life cycle,

the zooplankton consumption by this species seems higher than suggested in previous studies,

especially for NEA mackerel. In fact, for NSS herring, the estimated relative zooplankton con-

sumption (38–51% of the total zooplankton eaten by pelagic species) was lower than the 61%

estimated by Utne et al. [13] for 1997. This is likely a result of the increase in NEA mackerel

feeding in the area in recent years (Fig 10; [42]). Accordingly, Óskarsson et al. [77] also esti-

mated that NEA mackerel consumed around 2.4–4.5 M tonnes in Icelandic waters during

summer 2011, which seems low (given the proportion of mackerel in Icelandic waters [84])

compared to our consumption estimates for this species in the whole distribution area (31–51

M tonnes). The relative high total zooplankton consumption observed for NEA mackerel

might also explain the strong density dependence seen in their growth [29] in recent years

associated with the expanding stock size and distribution area [30]. This way, density depen-

dence is incorporated in the model by reduced individual length and weight growth, according

to observed annual growth for the time period handled in the model.

On the other hand, earlier consumption estimates of zooplankton made for the Norwegian

Sea assumed that stomach samples taken during May–July are representative for the whole

feeding season [1,11,12]. However, Utne et al. [13] suggested that planktivorous fish have rela-

tively important changes in their diet composition during their feeding seasons as, for example

in case of NEA mackerel and blue whiting, C. finmarchicus copepods are only available for

them during parts of their feeding season. In order to approach the diet variation during the

feeding season, the present study considered the diet composition in May and July as reference

[8] and makes a linear interpolation to estimate the diet for the dates in between. This informa-

tion is still limited, e.g. by the lack of NEA mackerel information from May or the spatial cov-

erage of the stomach sampling, as commented before regarding the proportion of the total

stock feeding within the Norwegian Sea. Moreover, our estimates can also be biased due to the

diet information, as in general softer organisms (e.g. appendicularians) are digested more rap-

idly. In general softer organisms are digested more rapidly, which can lead to underestimation

of these prey in the diet [8]. Bias in the diet can lead to wrong consumption estimates of certain

prey species. In any case, it seems clear that the three species are exerting a significantly higher

predation impact on the C. finmarchicus population than suggested in earlier studies (e.g.

[11,13]) and therefore potential ecological implications (e.g. top-down control [1,75]) should

be taken into account in the near future. Due to the potential and observed interactions
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between the three stocks [3,56,85] it has been proposed that the stocks should be managed as a

multispecies system. A report being developed jointly by the Ministry of Fisheries, the Fisher-

ies Directorate and the Institute of Marine Research suggests that the three stocks are candi-

dates for multispecies management, but that more research and model development is needed

before attempting to establish a management system.

Regarding the timing of the main consumption, it should be noted that during May only

NSS herring and blue whiting are feeding in the south-central Norwegian Sea [13]. In early

summer, these species generally move towards Northwest, while the NEA mackerel enters

from the South [13]. This means that in July/August a large part of the Norwegian Sea is inhab-

ited by pelagic fish, although the main predation pressure on zooplankton could be expected

in the northern area, where NSS herring dominates. Also in this period, the total consumption

by NEA mackerel appears to be higher than that by NSS herring. Utne et al. [13] defined the

peak of consumption by NSS herring to be in April, whereas our results suggest the peak of

feeding for NSS herring a bit later in the season, in June. This peak of feeding is also in accor-

dance with observations based on light and feeding ecology made by Varpe and Fiksen [86].

For NEA mackerel, our results showed the peak of consumption in July, a month earlier than

that suggested by Utne et al. [13]. This is relevant since it could increase the potential interac-

tions between these species. In this sense, it is unclear whether the NSS herring makes a shift

in the prey search from copepods towards euphausiids due to feeding interactions with NEA

mackerel in summer [8]. Observed inter-annual differences in prey consumption can suggest

a potential competition for prey between NEA mackerel and NSS herring mainly during July

and early August, given that in years when one species consumes more copepods and less of

other prey (e.g. appendicularians), the other species shows the opposite trend (Figs 8 and 9).

However, such potential trophic interactions between these species should be further investi-

gated due to the uncertainty regarding the spatial overlap during the feeding season

[4,8,51,77].

Finally, the low seasonal and inter–annual variation observed in blue whiting agree with

previous studies (e.g. Utne et al. [13]). This also suggests low interaction with the other species,

probably due to a different vertical distribution and/or diet preference [8,51], more selective

on euphausiids and amphipods, which at the same time would result in generally lower con-

sumption rates. In addition, sampling biases regarding this species [8] could also affect the

quality of input data to some extent.

Concluding remarks

Our results suggest much higher annual zooplankton consumption by NSS herring, NEA

mackerel and blue whiting than described previously. The higher consumption estimates are

both due to higher biomass of pelagic fish than that assumed in previous studies, and due to

higher consumption estimates obtained for the individual fish. In the time period 2005–2010,

NSS herring and NEA mackerel consumed annually around 10 times their total biomass in

zooplankton, mainly copepods, krill and appendicularians. Blue whiting consumed 6 times

their biomass in zooplankton, with a diet mainly based on euphausiids. Between the three spe-

cies it is estimated that their annual zooplankton consumption could be around 135 million

tonnes.

To what extent the top-down and/or bottom-up control mechanisms are playing a role as

regulation mechanisms of the pelagic ecosystem in the Northeast Atlantic is still unclear. In

this sense, previous studies showed that the growth of blue whiting and in particular of NSS

herring appeared to be negatively affected, especially by the increase of NEA mackerel bio-

mass, through interspecific competition [3]. According to that, although the high consumption
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rates observed for both NSS herring and NEA mackerel during the feeding period as well as

the shift in the diet of NSS herring later in the season when NEA mackerel is incorporated into

the area might suggest some kind of interspecific feeding competition, it seems that the three

species can coexist regardless of their high abundance, consumption rates and overlapping

diet. Accordingly, our results show that the species might have niche segregation, as they are

species specific, showing annual and inter-annual variability in total consumption of the differ-

ent prey species. However, the potential consequences that the high amount of prey consumed

by the three species could have as foragers in the zooplankton community, especially the C. fin-
marchicus population, remain unknown and should be taken into consideration for further

research. This highlights the importance to understand marine trophodynamics in the context

of the potential impact of pelagic fish consumption for the zooplankton community and its rel-

evance for the pelagic fish populations through interspecific trophic interactions.

Annual estimates of diet require stomach sampling with good spatial and temporal resolu-

tion. Obtaining such good data is expensive and time-consuming. The results presented here

should be sufficient for parameterization and calibration and of large-scale ecosystem models.

Models such as Ecopath with Ecosim, Atlantis or coupled individual based ecosystem models

can both hind-cast and forecast annual consumption estimates, and future effort should be put

into improving such models.
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gian Sea relative to currents, temperature, and prey. ICES J Mar Sci J du Cons. 2015; fsv239. https://

doi.org/10.1093/icesjms/fsv239

53. Korneliussen RJ, Ona E. An operational system for processing and visualizing multi-frequency acoustic

data. ICES J Mar Sci. 2002; 59: 293–313. https://doi.org/10.1006/jmsc.2001.1168

54. Laurence GC. Caloric values of some North-Atlantic Calanoid copepods. Fish Bull. 1976; 74: 218–220.

55. Kulka DW S. C. Length and Weight Relationships of Euphausiids and Caloric Values of Meganycti-

phanes norvegica (M. Sars) in the Bay of Fundy. J Crustac Biol. 1982; 2: 239–247.

56. Skaret G, Bachiller E, Langøy H, Stenevik EK. Mackerel predation on herring larvae during summer

feeding in the Norwegian Sea. ICES J Mar Sci. 2015; 72: 2313–2321. https://doi.org/10.1093/icesjms/

fsv087

57. Bachiller E. Diet characterization (2005–2010) of Atlantic mackerel (Scomber scombrus), Norwegian

Spring Spawning herring (Clupea harengus) and blue whiting (Micromesistius poutassou): identification

of target prey species for further analyses in EcoNorSe. Institute of Marine Research & Norwegian

Research Council Project Report. Bergen, Norway; 2015.

58. Van De Putte A, Flores H, Volckaert F, Van Franeker JA. Energy content of Antarctic mesopelagic

fishes: Implications for the marine food web. Polar Biol. 2006; 29: 1045–1051. https://doi.org/10.1007/

s00300-006-0148-z

59. Dorel D. Poissons de l’Atlantique nord-est: Relations taille-poids. IFREMER Report. 1986.

60. Froese R, Sampang A. Potential Indicators and Reference Points for Good Environmental Status of

Commercially Exploited Marine Fishes and Invertebrates in the German EEZ [Internet]. 2013. Available:

http://oceanrep.geomar.de/id/eprint/22079

61. Hamre J, Johnsen E, Hamre K. A new model for simulating growth in fish. PeerJ. 2014; 2:e244. https://

doi.org/10.7717/peerj.244 PMID: 24498574
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